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/Session overview

« Elicitation of structure
« Elicitation of probabilities

e Canonical (a.k.a. ICI, independence of
causal influences) models

Do parameters matter?
 Does structure matter?
e Other relevant issues
e Sensitivity analysis
o Strength of influence
e Value of information
o Clarity test
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/What | want you to know after this session? \

« Know how to start and how to proceed with building
Bayesian networks

« Be somewhat familiar with the idea of obtaining
subjective probabilities from experts

 Know Noisy-OR gates (and know of existence of other
canonical models)

Do not worry too much about precision of numerical
probabilities, use sensitivity analysis
« Know how to simplify the structure

« Know sensitivity analysis, strength of influences, value of
Information, and clarity test

lp Building Bayesian Networks /




’. Elicitation of structure

Elicitation of probabilities
Canonical models
Are parameters important?
Is model structure important?
. . . Other relevant issues
Elicitation of structure

« Create a network node for every variable in your problem

« Connect nodes that “directly impact each other” by means
of direct arcs

« What does it mean for two variables to directly impact each
other?

« The game is a correct factorization of the probability
distribution

« How do you go from direct impact to correct factorization?
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’. Elicitation of structure

Elicitation of probabilities
Canonical models
Are parameters important?
Is model structure important?
. Other relevant issues
Bayesian network models

are snapshots of the World

« An important thing to realize is that they represent
snapshots of the world, a static situation, and do not model
dynamic systems with feedback loops, etc.

 |s this alimitation? Not really ...
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’. Elicitation of structure

Elicitation of probabilities
Canonical models

Are parameters important?
Is model structure important?
Other relevant issues

/Subjectivity and usefulness of models

 Another important point is that there are multiple
representations of the same problem possible.

 Models are subjective!

 “All models are wrong, but some are useful” — Statistician
George E P Box, in "Science and statistics", Journal of the
American Statistical Association, 71:791-799, 1976
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’. Elicitation of structure
[ Elicitation of probabilities

Canonical models

Are parameters important?

Is model structure important?
Other relevant issues

Causality

* One way of thinking about direct impact is through causality
* Following causal structure typically guarantees us that the
resulting factorization will be correct

* Why is that ©?
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Elicitation of probabilities
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{  Elicitation of structure
[0 Elicitation of probabilities

Canonical models

Are parameters important?

Is model structure important?
Other relevant issues

Elicitation of probabilities

Three fundamental methods:
Ask directly
Symmetric bets
Reference lottery

Three additional issues:
Assessing continuous distributions
Discretization of continuous distributions
Decomposition
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(" Elicitation of structure

model structure important?

[ (E:Iicitat_ior: of pdrolbabilities
Are parameters important?
/Elicitation of probabilities: Direct assessment prraarias

N\

by

Example:

“What is your belief regarding the probability that event
A will occur?”

Graphical aids that make it indirect: Probability wheel
¥,

Bar chart
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Canonical models
Are parameters important?

Is model structure important?

{  Elicitation of structure
@ Elicitation of probabilities
Other relevant issues

Kzlicitation of probabilities: Symmetric bets

Offer choice between two lotteries, adjust values until the
expert is indifferent between the two lotteries.

Then we have:
PX-(1-p)Y=-pX+(1-p)Y

which yields X
P=2Y/(2X+2Y)=Y/(X+Y)
-Y
-X
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{  Elicitation of structure
l. Elicitation of probabilities

Canonical models

Are parameters important?

Is model structure important?
Other relevant issues

Kzlicitation of probabilities: Symmetric bets

What is the probability that it will rain tomorrow (in downtown

Pittsburgh)?
$8
-$5
-$8
We have:
p*8—(1-p)*5 = —p*8+(1-p)*5 $5

which yields o
\ p=2*5/(2*8+2*5)=5/(8+5)=5/13=0.38 Expert choice: |nd|fferent/
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(" Elicitation of structure )
@ Elicitation of probabilities
Canonical models

Are parameters important?

/Elicitation of probabilities: Reference lottery [Siewiaamisue""

A transferable round
trip ticket to Hawai

A can of coke

A transferable round
trip ticket to Hawai

A can of coke

Use a tool like probability wheel (to hide the numbers).
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(" Elicitation of structure

@ Elicitation of probabilities
R o
Elicitation of probabilities: Continuous distributions ™"

\

» Use methods for elicitation of discrete probabilities but conduct a
series of elicitations.
* Reduces each step of elicitation to P(A<a,), where a, varies.

* Fit the CDF curve to the elicited points. Hawaian trip

a packof beer

Hawaian trip

L

Possible to do the other way round: 0.95
» Given P(A<a;)=0.05, find a, for which this holds.
 Manipulate a, until the expert is indifferent between the two

options.
» Use the following fractiles: 0.05, 0.95, 0.25, 0.75. 0.5. /
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(" Elicitation of structure )

@ Elicitation of probabilities
Canonical models
Are ngrameters important?
el structure important?

Elicitation of probabilities: Metalog Distribution [eeantissues

™ Metalog Distribution O >
Lower bound: Click on the PDF curve to select the value of k.
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Elicitation of structure

'd
@ Elicitation of probabilities
Canonical models
Are parameters important?
. - . L - Is model structure important?
Elicitation of probabilities: Gther relevan issus

Discretization of continuous distributions

Two methods of discretizing continuous distributions:

(1) Extended Pearson and Tuckey:
3 point approximation: 0.05, 0.5, 0.95
Assign them p=0.185, 0.63, 0.185

(2) Bracket medians:

Split the range into intervals, assess the value that
corresponds to probability that is median of each interval.
Usually borders of intervals are 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.
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{  Elicitation of structure
[0 Elicitation of probabilities

Canonical models
Are parameters important?

Is model structure important?
Other relevant issues

Kzlicitation of probabilities: Decomposition

Breaking the assessment into manageable chunks.
The goal is to make the assessment easier (and more reliable!).
Sometimes it is easier to introduce another variable.

For example, instead of assessing P(quadriplegic), i.e.,
probability that the decision maker becomes quadriplegic, we
assess P(quadriplegic|*) P(*), where * are various ways of
becoming quadriplegic, e.g., a car accident.

(1) Think how the event in question is related to other events
(e.g., P(stock price up | market up)

(2) Think what kinds of alternative uncertain events could
eventually lead to the event in question

(3) Think through all of different events that must happen

\ before the event in question occurs. /
lp Building Bayesian Networks
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Canonical models (Noisy OR/MAX)
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{  Elicitation of structure
Elicitation of probabilities

@® Canonical models

Practical BN models can be very Are parameters important?

Is model structure important?
large and densely connected

Other relevant issues
X i T
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52127, 1632

1082 is believed to be the
number of atoms In the
observable universe
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Przytula s, 3,995ares, 2,261,001 independences,

12,351 numerical parameters (instead of 22127 ~ 106321)
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(" Elicitation of structure
Elicitation of probabilities
@® Canonical models
Are parameters important?
model structure important?
ther relevant issues

Fundamental problem: (too) many parameters F

 Size of conditional probability tables (CPTs) grows exponentially
in the number of parents

* This can become quickly unmanageable

& parents

Node2 S NodeZ Statell | Statel | Stae]

Mode3 Statell katell Statel

Nudzd Statel] Stated b | Statel 0.5 0.5 Siate] Statel] Statel

Nodeh Statel | Statel State) | Statel CStatel 05 05 Statel [ Statel State) | Statel Stated | Statel a
b |Statell 1] 05 05 0h h e U5 s [ 1] 1] 1] 05 05 0k 053 I
:‘Slale'l 0h 0h 0h 0h 1A 0h 0h 0h 0h 0h 0h 05 0h 0h 05 05: il

« Not uncommon to see 10-15 parents (would need between 1,024
and 32,768 parameters).
* A lot of work for experts or a lot of data needed.
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{  Elicitation of structure

Elicitation of probabilities
@® Canonical models

Are parameters important?
Is model structure important?
Other relevant issues

Solution: Canonical gates

e Various solutions were proposed, but one of them seems
to be most popular and useful: Noisy-OR

 We assume that all nodes are binary {present, absent}

* We specify the interaction between the parents and the
child by means of one numerical parameter g; per parent

Building Bayesian Networks




{  Elicitation of structure

Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
S Other relevant issues

olution: Canonical gates

Conditions that have to be fulfileld in practice for Noisy-OR to
be applicable:

 There should be a causal mechanism for each parent such
that the parent is able to impact the child variable in the
absence of the other parents.

 The causal mechanisms through which each parent
Influences the child should be independent?

o If there are other, unmodeled causes, they should be
iIndependent of the modeled causes.
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{  Elicitation of structure

Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
N Other relevant issues

0isy-OR: The meaning of g;?

g; Is the probability that E=present given
Ci=present and all other parents C;=absent

q,=P(E=present | C,=absent, ..., C;=present, ..., C =absent)

lp Building Bayesian Networks /




{  Elicitation of structure )

Elicitation of probabilities
@® Canonical models

Are parameters important?
Is model structure important?
Other relevant issues

Why is it called Noisy-OR?

If all parameters g,=1, noisy-OR becomes logical OR
Here is an alternative representation of Noisy-OR

@ @ @ Madel present | absent
present q 1]
abzent 1-q 1

o — Deterministic OR

l' Building Bayesian Networks




{  Elicitation of structure

Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
. Other relevant issues
Noisy-OR vs. CPT

Noisy-OR always defines a unique CPT (i.e., you can always
calculate the CPT that is defined by a noisy-OR gate)

P(E =absent|C1,....Cn)= [ [(@1-q,)

C; =present

lp Building Bayesian Networks /




{  Elicitation of structure

Elicitation of probabilities
@® Canonical models

Are parameters important?
Is model structure important?
Other relevant issues

Leaky Noisy-OR

* Noisy-OR assumes that the effect will be absent with
probability 1 if all the causes are absent. This is not
very realistic

e Leak is a special dummy node, that represents the
influence of all unmodeled causes on the effect node

* Leak is always present

lp Building Bayesian Networks /




{  Elicitation of structure

Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
. Other relevant issues
Leaky Noisy-OR: Parameters

* Leaky Noisy-OR is an extension of the Noisy-OR

 Two parameterizations of leaky Noisy-OR: due to
Henrion and Diez (compound and net parameters)

 They are mathematically equivalent, however they
imply different questions in knowledge elicitation

lp Building Bayesian Networks /




{ Elicitation of structure A
Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
. . Other relevant issues
Leaky Noisy-OR: Diez

Leak probability q,:
q, = P(E = present |C1l=absent,..,CN = absent)
Link probability g;:
d, = P(E = present | C1=absent,...,Ci = present,
CN = absent, L = absent)

How to calculate the CPT:;

P(E =absent|Cl,...Cn)=(1-q,) |[@-q)

C, =present

CP Building Bayesian Networks /
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/Leaky Noisy-OR: Henrion

« Leak probability p,: (same as Diez)

p, = P(E = present | C1l=absent,..,CN = absent)

e Link probability p;: (no leak term)

p, = P(E = present | C1=absent,.

CN = absent)

e How to calculate CPT:;
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P(E =absent |C1,...,.Cn)=(1-p,) H 1-h

.., Cl = present,

Are parameters important?
Is model structure important?

{  Elicitation of structure
Elicitation of probabilities
@® Canonical models
Other relevant issues

C; =present 1- P L
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{  Elicitation of structure

Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
H Other relevant issues

enrion vs. Diez

 They imply different questions to ask of experts:
e Henrion:

“What is the probability that E is present given that C, is
present and all other modeled causes are absent?”
* Diez:

“What is the probability that E is present given that C, is
present and all other modeled and unmodeled causes are
absent?”
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@® Canonical models
Are parameters important?
Is model structure important?
Other relevant issues

{  Elicitation of structure
[ Elicitation of probabilities

Noisy-MAX

Noisy-MAX is a version of Noisy-OR for multi-valued nodes.

Modes high med |

high 0.7 0.5 I
rnedium 0.2 0.3 0
|y 0.1 0z 1

o — Deterministic MAX
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{ Elicitation of structure
Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
Other relevant issues

Deterministic OR

Crirky
Connectors

Shartcut
Caused by
Wi ater

Dead
B attem

Engine does
hiat start

fail 0 1 1 1 1 1 1 1

start 1 0 0 0 0 0 0 0
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{  Elicitation of structure

Noisy-OR |

Crirky
Connectors
Engine does
hiat stark

Dead
B atten

Shortcut
Caused by
Wwiater

Elicitation of probabilities
@® Canonical models

Are parameters important?
Is model structure important?
Other relevant issues

P(E =absent|C1,...,.Cn)= []@-q,)

C,=present

Building Bayesian Networks



{  Elicitation of structure

Elicitation of probabilities
@® Canonical models

Are parameters important?

Is model structure important?

Leaky Noisy-OR |

Other relevant issues

Dty
Connectars

Engine does
nat Start

Shartout
Cauzed by
Water

Dead Battery

We use a “leak” or “background” probability
to model all unmodeled causes

0.944

0.977

0.056 0.023 0.013

P(E =absent |CL...Cn) =(1-q,) [] 1-g;

C;=present 1- g L
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{ Elicitation of structure
Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
N . A N D/M I N Other relevant issues

Based on the DeMorgan’s law:
XAY ==(=XVAY))

Fail
o We negate all nodes

by reversing the order

of their states.

Dargrt I o I I
Farent Fouipment Failure Human Emor |
N 4 Equipment Failure MoFailure Failure
¥ |Not  Human Emor  |MoEmror| Emor | NoEmor| Emor

24"y [NoAccident I}.ErE-'IE 0.81: 0.505:0.05:

Accident 00195: 0.19: 0.095:095:
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Canonical Gates in Practical Models
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Probability

{  Elicitation of structure

Noisy MAX in practical models

0.1

0.08

006

0.04

0.02

Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?
Other relevant issues

Euclidean Average ©
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Proportion of Nodes in Model

[Zagorecki & Druzdzel 2011]
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Probability

{  Elicitation of structure

Elicitation of probabilities
@® Canonical models
Are parameters important?
Is model structure important?

Noisy MAX in practical models

Other relevant issues

0.3
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Proportion of Nodes in Model

[Zagorecki & Druzdzel 2011]
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{  Elicitation of structure

Elicitation of probabilities
@® Canonical models

Are parameters important?
Is model structure important?
Other relevant issues

Concluding remarks

 In practical models, canonical gates are the only
way to go

 There are significant computational advantages that
stem from canonical gates

Building Bayesian Networks




Do parameters matter?
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transformed parameters

{  Elicitation of structure

Random noise, Normal(0,0)

o=0.3

Elicitation of probabilities
Canonical models
@ Are parameters important?

Is model structure important?

Other relevant issues

0.9
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original parameters

[Onisko & Druzdzel 2011]
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(" Elicitation of structure
Elicitation of probabilities
Canonical models

neters important?

Biased noise (overconfidence), Normal(0,0) btructure important?
added to the largest probability in a distribution

transformed parameters

original parameters
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{  Elicitation of structure
Elicitation of probabilities
Canonical models

Biased noise (underconfidence), o Areparmetas mportan?
Normal(0,0) subtracted from the largest
probability in a distribution

! sigma=0.1 sigma=0.5

transformed parameters

original parameters

(P Building Bayesian Networks



{  Elicitation of structure

Elicitation of probabilities
Canonical models
@ Are parameters important?

Diagnostic performance as a function
of parameter accuracy

Is model structure important?
Other relevant issues
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{  Elicitation of structure
Elicitation of probabilities
Canonical models

@ Are parameters important?

Rounded vs. original probabilities for S model structure important?

Other relevant issues
various levels of rounding accuracy

1 Ee iR
0% TR 09

038 Ry 08 & AR

0 & R 0.7

transformed parameters

1 gt L e e 1
0 0.9
03: .8
0.7 o
06: 06
05 s
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0.3 03
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0.1 0.1
- T T T T T T o 4+ T T T T
0 0.1 02 03 04 05 06 07 08 09 1 0 [X] 02 03 04 05 06 07 08 08 1
original_parameters original

q) original parameters
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{  Elicitation of structure

Elicitation of probabilities

Histograms of original and rounded
probabilities for various levels of

rounding accuracy

Canonical models

@ Are parameters important?
Is model structure important?
Other relevant issues

Hepar Il original parameters

Hepar Il rounded (100 intervals)
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{  Elicitation of structure

Elicitation of probabilities
Canonical models

@ Are parameters important?

Is model structure important?
Other relevant issues

/Diagnostic performance as a function
of parameter accuracy (w=1)

acc #zeros  Y%zeros

n=100 0.595 116 5% 1
***************** n=10 0.295 400 19% -1 0.9
fffffffffffffffff n=>5 0.219 605 28% -+ 0.8
fffffffffffffffff n=4 0.230 754 35% - 0.7
& - - - - n=3 0.136 869 41% 1 06
777777777777777 1056 49% 0.5
ffffffffffff - 0.4
fffffffffffffffffffffffffffffffffffff - 0.3
************************************** 3 0.2
ffffffffffffffffffffffffffffffffffffff - 0.1

‘ ‘ | 0

2.0 1.5 1.0 0.5 |0910(n) 0.0
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{  Elicitation of structure

@ Are parameters important?

Diagnostic performance as a function
of parameter accuracy and g (w=1)

Elicitation of probabilities
Canonical models

Is model structure important?
Other relevant issues

What if we replace all zeros by some small number g ?

The actual value of
¢ does not seem to

|
\matter much!

2.0 1.5 1.0 0.5 0.0
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{  Elicitation of structure

Definition

Model selection is
the task of selecting
a statistical model
from a set of
candidate models
given data.

Elicitation of probabilities
Canonical models
Are parameters important?

@ |s model structure important?
Other relevant issues

Model Selection

Learned function
with appropriate model

Learned function Learned function
with too simple model with too complex model

Goal: Choose appropriate model I

http://sugiyama-www.cs.titech.ac.ip/~sugi/research _htV
Building Bayesian Networks



http://sugiyama-www.cs.titech.ac.jp/%7Esugi/research.html

{ Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?

@ |s model structure important?

Model selection: Example

~TURCTRE
e ¥R

':F-_=_
L= L

i S e

Ptolemy’s model Copernicus’ model

What criteria should be used to select between competing models?
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Does structure matter?
Simple vs. complex models
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{  Elicitation of structure

Naive Bayes models
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Elicitation of probabilities
Canonical models
Are parameters important?

@ |s model structure important?
Other relevant issues
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TAN (Tree Augmented Network) models
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Elicitation of structure

Elicitation of probabilities

Canonical models

Are parameters important?
@ |s model structure important?

Other relevant issues
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{  Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?

@ |s model structure important?
Other relevant issues

Bipartite models
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{  Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?

@ |s model structure important?
Other relevant issues
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{ Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?

@ |s model structure important?

Other relevant issues

Complete models
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{  Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?

@ |s model structure important?
Other relevant issues

Is precision real or illusory?

 When getting the parameters from experts, we

may well get better models when eliciting fewer
parameters.

« When learning, the same may happen!
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[ Elicitation of probabilities

Canonical models
Are parameters important?
Is model structure important?

@® Other relevant issues

Sensitivity analysis in Bayesian networks

 Given atarget node (or a set of target nodes) and a possible
set of evidence nodes, we can identify the parameters that
matter most for those target(s)’s posteriors.

« We compute essentially the derivative of the posterior over
each of the parameters.

Metastatic Ca.. | present absent
b | present { 0.2 0.05
Increased _ i o8 GaE
Serum Brain Tumor 5 = 0053972
max(abs(5)) = 0,053972

Calcium

Severe
Headaches

Building Bayesian Networks




(" Elicitation of structure
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Is model structure important?

@® Other relevant issues

/Strength of influence in Bayesian networks

« Because we have the entire joint probability distribution, we
can compute individual strengths of influences between

nodes
» It is essentially a measure of difference between conditional

probability distributions in a CPT.
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{ Elicitation of probabilities

@® Other relevant issues

Value of information in Bayesian networks

« Because we have the entire joint probability distribution, we
can compute the expected value of observations and rank-
order them from the most to least informative.

» It is essentially expected cross-entropy between the targets
and the individual observations.

Metastatic
Cancer

Entropy./cost ratio: |1 — J Maze: |1 0 hd

Ranked Observations Diagnostic Value

Increased Serum Calcium  0.253 [ |
Brain Tumol| Coma 0.140 R I
Severe Headaches < 0.001

Increased
Serum
Calcium

Severe
Headaches

Building Bayesian Networks




{  Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?
Is model structure important?
CI a”ty test @® Other relevant issues

o "Gas price in 1999" vs. "average regular unleaded gas price
taken over all gas stations within the city of Pittsburgh on
January 1 1999".

e "Market up or down" vs. "the market goes up means that the
Standard & Poor's 500 Index rises".

 The matter of clarifying definitions of alternatives, outcomes,
and consequences is absolutely crucial in real-world decision
problems. The clarity test forces us to define all aspects of a
problem with great care.
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