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Abstract. We address a situation when more than one feature subset
allows for linear separability of given data sets. Such situation can occur
if a small number of cases is represented in a highly dimensional feature
space.
The method of the feature selection based on minimisation of a special
criterion function is here analysed. This criterion function is convex and
piecewise-linear (CPL). The proposed method allows to evaluate differ-
ent feature subsets enabling linear separability and to choose the best
one among them. A comparison of this method with the Support Vector
Machines is also included. (3)

1 Introduction

The linear separability of data sets is one of the basic concepts in neural net-
works and pattern recognition [1]. This concept provided fundamentals for the
Perceptron’s theory [2], [3]. More recently, the linear separability is intensively
explored in the method of the Support Vector Machines [4].

The feature selection in pattern recognition means neglecting such measure-
ments (features) which have no significant influence on the final decisions. The
feature selection is particularly important when the data sets are composed of a
small number of elements in a highly dimensional feature space. The situation
when a small number of elements is represented in a highly dimensional feature
space (long feature vectors) usually leads to the linear separability of data sets.
The genomic data sets contain examples of the ”long feature vectors”.

The measures of linear separability of two data sets can be based on the
minimal value of the convex and piecewise-linear (CPL) criterion functions [5].
The perceptron criterion function belongs to the CPL family in question. The
linear separability measures with different properties can be achieved through
modification of the CPL criterion functions. Recently proposed CPL criterion
function allows to compare different feature subsets enabling linear separability
and to choose the best one among them [6]. This criterion function contains the
CPL penalty functions reflecting the costs of the particular features.
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The minimal value of the CPL functions can be found efficiently through
applying the basis exchange algorithms, which can be treated as special methods
for the linear programming [7]. The Support Vector Machines are based on the
algorithms of the quadratic programming [4].

This paper is an analysis of the properties of the feature selection based on the
modified CPL criterion function. Particular attention is paid to the comparison
of the CPL criterion functions to the Support Vector Machine approach.

2 Linear Separability of Data Sets

Let us consider data represented as the feature vectors xj [n] = [xj1, ..., xjn]T

(j = 1, ...,m) of the same dimensionality n or as points in the n-dimensional
feature space F [n]. The components xi of the vectors xj [n] are called features.
We are considering a situation, when the data can be a mixed (a qualitative-
quantitative) type. Some components xji of the vectors xj [n] can be the binary
(xi ∈ {0, 1}) and others the real numbers (xi ∈ R1).

Let us take into consideration two disjoined sets G+ and G− composed of m
feature vectors xj :

G+ ∩G− = ∅ . (1)

The positive set G+ contains m+ vectors xj and the negative set G− contains
m− vectors (m = m+ + m−). We are considering the separation of the sets G+

and G− by the hyperplane H(w, θ) in the feature space F [n]

H(w, θ) = {x : 〈w,x〉 = θ} (2)

where w = [w1, ..., wn]T ∈ Rn is the weight vector, θ ∈ R1 is the threshold, and
〈w,x〉 is the inner product.

Definition 1. The feature vector x is situated on the positive side of the hy-
perplane H(w, θ) if and only if 〈w,xj〉 > θ and the vector x is situated on the
negative side of H(w, θ) iff 〈w,xj〉 < θ.

Definition 2. The sets G+ and G− are linearly separable if and only if they
can be fully separated by some hyperplane H(w, θ) (2):

(∃w, θ) (∀xj ∈ G+)〈w,xj〉 > θ and (∀xj ∈ G−)〈w,xj〉 < θ . (3)

In accordance with the relation (3), all the vectors xj belonging to the set G+

are situated on the positive side of the hyperplane H(w, θ) (2) and all the feature
vectors xj from the set G− are situated on the negative side of this hyperplane.
It is convenient to replace the feature vectors xj by the augmented vectors yj ,
where

yj = [1,xT
j ]T = [1, xj1, ..., xjn]T . (4)

The inequalities (3) can be represented now as

(∃v) (∀yj ∈ G+)〈v,yj〉 > 0 and (∀yj ∈ G−)〈v,yj〉 < 0 (5)

where v = [−θ, wT ]T is the augmented weight vector [1].



3 From Linear Independence to Linear Separability

The linear separability of the sets G+ and G− can be defined equivalently to (5)
in the following manner:

(∃v1) (∀yj ∈ G+)〈v1,yj〉 ≥ 1 and (∀yj ∈ G−)〈v1,yj〉 ≤ −1 (6)

Remark 1. (sufficient condition for linear separability). The sets G+ and G− are
linearly separable (6), if the following matrix equality is fulfilled:

(∃v2)Av2 = 1’ (7)

where A is the matrix of dimension m× (n + 1), m = m+ + m−, and 1’ is the
vector of dimension m. The rows of the matrix A constitute of the augmented
feature vectors yj(i). The vector yj(i) constitutes the i-th row of the matrix A.
The i-th component of the vector 1’ is equal to 1 if yj(i) ∈ G+ and equal to −1
if yj(i) ∈ G−.

Remark 2. If the m vectors yj(i) constituting the matrix A are linearly inde-
pendent, then there exists at least one nonsingular submatrix B of dimension
m×m made of m independent columns of A.

In other words, the matrix B is composed of m independent vectors y′
j(i)

of dimension m. The vectors y′
j are constructed from the feature vectors yj by

means of neglecting of the same components xi. In this case, the below equation

Bv′
2 = 1’ (8)

has the following solution:
v′

2 = B−11’ . (9)

Let us remark that the solution v2 of the equation (7) also exists in this case.
The solution v2 (7) can be derived from (8) by means of enlarging the vector v′

2

with additional components equal to zero. The new components are put in those
places, where the neglected components xi of the vectors yj have been situated.
The existence of the solution v2 of the equation (7) means that the sets G+ and
G− are linearly separable (9). The above remarks allow to prove the following
Lemma.

Lemma 1. The sets G+ and G− (8) composed of m linearly independent feature
vectors yj are linearly separable in at least one m-dimensional feature subspace
Fk[m] (Fk[m] ⊂ F [n],m ≤ n).

The Lemma 1 points out an important fact, that the linear separability of
the sets G+ and G− (5) may result from the linear independence of the feature
vectors yj constituting these sets. Such case often occurs in practice, when the
number m of the vectors yj in the sets G+ and G− is no greater than dimen-
sionality (n + 1) of these vectors (m ≤ n + 1).



4 Convex and Piecewise Linear (CPL) criterion function
Φλ(v)

The criterion function Φλ(v) is based on the CPL penalty functions ϕ+
j (v) or

ϕ−j (v) and φi(v). The functions ϕ+
j (v) are defined on the feature vectors yj from

the set G+. Similarly ϕ−j (v) are based on the elements yj of the set G−.

if (yj ∈ G+) and (〈v,yj〉 < 1) then ϕ+
j (v) = 1− 〈v,yj〉

if (yj ∈ G+) and (〈v,yj〉 ≥ 1) then ϕ+
j (v) = 0

(10)

and

if (yj ∈ G−) and (〈v,yj〉 > −1) then ϕ−j (v) = 1 + 〈v,yj〉
if (yj ∈ G−) and (〈v,yj〉 ≤ −1) then ϕ−j (v) = 0

(11)

The penalty functions φi(v) = |vi| are related to particular features xi.

if (〈ei,v〉 < 0) then φ(v) = −〈ei,v〉
if (〈ei,v〉 ≥ 0) then φ(v) = 〈ei,v〉

(12)

where ei = [0, ..., 0, 1, 0, ..., 0]T are the unit vectors (i = 1, ..., n + 1).
The criterion function Φλ(v) can be given in the following form:

Φλ(v) =
∑

yj∈G+

αjϕ
+
j (v) +

∑
yj∈G−

αjϕ
−
j (v) + λ

∑
i∈I

γiφi(v) (13)

where αj ≥ 0, λ ≥ 0, γi > 0, I = {1, ..., n + 1}.
The nonnegative parameters αj determine relative importance (price) of partic-
ular feature vectors xj(k). The parameters γi. represent the costs of particular
features xi.We are using the minimal value of the criterion function Φλ(v):

Φλ(v∗) = min
v

Φλ(v) (14)

The criterion function Φλ(v) (13) is the convex and piecewise linear (CPL) func-
tion as the sum of the CPL penalty functions αjϕ

+
j (v) (11), αjϕ

−
j (v) (12) and

λγiφi(v) (13). The basis exchange algorithm allows to find the minimum (18)
efficiently, even in the case of large multidimensional data sets G+ and G− (1)
[7]. The following Lemma can be proved:

Lemma 2. If the sets G+ and G− (1) are linearly separable (5), and the prices
γi are equal to 1 ((∀i ∈ I)γi = 1), then there exists such value λ+ that for a
positive parameter λ which is no greater than λ+ (∀λ ∈ (0, λ+)), the optimal
vector v∗ (14) separates (5) these sets and

Φλ(v∗) = λ
∑
i∈I

|vi ∗ | = λ‖ v∗ ‖L1 (15)

where v∗ = [v1∗, ..., vn∗]T and ‖ v∗ ‖L1 =
∑

|vi∗| is the L1 norm of the vector
v∗.



The proof of this Lemma is based on the fact, that for sufficiently small
parameter λ the minimal value Φλ(v∗) (14) of the function Φλ(v) (13) defined
on the linearly separable sets G+ and G− (1) is equal to

Φλ(v∗) = λ
∑
i∈I

γiφi(v∗) (16)

The above equality results from the property, that the values of all the penalty
functions ϕ+

j (v) and ϕ−j (v) are equal to zero in the optimal point v∗ for the
linearly separable case.

As it results from the Lemma 2, in the case of linearly separable sets G+ and
G− (1) minimisation of the function Φλ(v) (13) with a small parameter λ leads
to the optimal vector v∗ which not only separates these sets, but also has the
minimal value of the L1 norm of this vector.

5 Comparisons of the Support Vector Machines with the
CPL Approach

The linear separability of the sets G+ and G− (5) by the vector v∗ (14) can be
formulated as:

(∀yj ∈ G+) 〈v∗/‖ v∗ ‖,yj〉 ≥ 1/‖ v∗ ‖
and (∀yj ∈ G−) 〈v∗/‖ v∗ ‖,yj〉 ≤ 1/‖ v∗ ‖

(17)

If the Euclidean norm (‖ v∗ ‖ = 〈v∗,v∗〉) is used, the inequalities (17) mean
that the sets G+ and G− (10) are separated by the hyperplane H(v∗) = {y :
〈v∗,y〉 = 0} (2) with the margin δ = 2/‖ v∗ ‖. Minimization of the norm ‖ v∗ ‖
means that the margin δ between the sets G+ and G− (10) becomes maximal.
Such approach has been adopted in the Support Vector Machine (SVM) method
in order to optimize location of the separating hyperplane H(v∗) (2) [7]. The
quadratic programming is applied in order to find the minimal value of the
margin 2/‖ v∗ ‖ under the condition of the linear separability (17).

Let the symbols G+
l [m] and G−

l [m] stand for the positive and negative sets
(1) composed of the m-dimensional feature vectors yj [m] from the subspace
Fk[m] (Fk[m] ⊂ F [n]). The sets G+

k [m] and G−
k [m] can be linearly separable (5)

in the subspace Fl[m]. The minimal value Φλ(v∗k[m]) (14) of the CPL criterion
function Φλ(v[m]) (13) defined on the vectors y′

j [m] can be used as the measure
of the linear separability of the subspace Fk[m]. In other words, minimisation of
the criterion function Φλ(v) (13) allows to compare different feature subspaces
Fk[m] and to choose the best one F ∗

k [m] from them.
The basis exchange algorithm adjusted to minimisation of the CPL criterion

functions Φk(v[m]) (13) in different subspaces Fk[m] has been designed and
implemented. This algorithm allows to find the best feature subspace F ∗

k [m]
through the sequence of the below type:

F1[m] → F2[m] → . . . · · · → Fk[m] = F ∗
k [m] (18)



where
Φ∗1(v[m]) ≥ Φ∗2(v[m]) ≥ . . . · · · ≥ Φ∗k(v[m]) = Φ∗k(v[m]) (19)

In accordance with the above relations, the sequence of the linearly separable
feature subspaces Fk[m] is designed in a such manner, that the minimal values
Φ∗k(v[m]) of the criterion functions Φk(v[m]) (13) in the successive subspaces
Fk[m] is decreasing. Each feature subspace Fk[m] assures linear separability of
the sets G+

k [m] and G−
k [m]. In this case, the decreasing of the minimal values

Φ∗k(v[m]) means the decreasing of the L1 type distance (15), (17) between the
sets G+

k [m] and G−
k [m].

6 Concluding Remarks

The proposed method of the selection of the optimal feature subspace F ∗
k [m] is

based on directed search among linearly separable feature subspace Fk[m]. This
search can be implemented as an efficient basis exchange procedure based on the
sequence (18) with the property (19).

Selection of the feature subspaces F ∗
k [m] with best linear separability may

be applied in solving many problems. One of the most interesting possibilities
is gene extraction [8]. Another group of important applications is related to
designing hierarchical neural networks and multivariate decision trees on the
basis of the learning sets Gk (1) with a ”long feature vectors”. The ranked and
the dipolar designing strategies can be combined with the procedure proposed
here of the optimal feature subspace F ∗

k [m] selection [9].
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