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SKEW DERIVATIONS AND THE NIL AND PRIME
RADICALS

JEFFREY BERGEN AND PIOTR GRZESZCZUK

Abstract. We examine when the nil and prime radicals of an algebra
are stable under q-skew σ-derivations. We provide an example which
shows that even if q is not a root of 1 or if δ and σ commute in charac-
teristic 0, then the nil and prime radicals need not be δ-stable. However,
when certain finiteness conditions are placed on δ or σ, then the nil and
prime radicals are δ-stable.

In this paper, we examine when the nil and prime radicals of an algebra

are stable under q-skew derivations. Throughout this paper, R will be an

algebra over a field F . The nil radical of R will be denoted as N(R) and it is

the largest nil two-sided ideal of R. The prime radical of R will be denoted

as P (R) and is the intersection of all the prime ideals of R. It is well known

that P (R) ⊆ N(R) and that σ(P (R)) = P (R) and σ(N(R)) = N(R), for

any automorphism σ of R. When F has characteristic 0, Proposition 2.6.28

of [R] shows that if δ is a derivation of R, then δ(N(R)) ⊆ N(R) and

δ(P (R)) ⊆ P (R). Whenever f is a function and A is a subset of R such

that f(A) ⊆ A, we say that A is f -stable. In [LMS], the authors examine

various conditions under which the Jacobson radical is stable under actions

of finite dimensional semisimple Hopf algebras.

For any prime p, the case when F has characteristic p is quite different.

For example, let R = F [x | xp = 0] and consider the F -linear derivation δ

defined as δ(x) = 1. In this example, neither N(R) nor P (R) are δ-stable

as x ∈ P (R) ⊆ N(R) but δ(x) = 1 /∈ N(R).
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If σ is an F -linear automorphism of R we say that δ is a σ-derivation if

δ(rs) = δ(r)s+ σ(r)δ(s),

for all r, s ∈ R. Furthermore, if 0 6= q ∈ F , we say that δ is a q-skew

derivation provided

δ(σ(r)) = qσ(δ(r)),

for all r ∈ R. Regardless of the characteristic of F , the behavior of q-skew

derivations when q is a root of 1 is often quite similar to that of derivations

in characteristic p. For example, suppose qn = 1 and q 6= 1. If we let

R = F [x | xn = 0], then there is an automorphism σ such that σ(x) = qx

and a q-skew derivation δ such that δ(x) = 1. Observe that neither P (R)

nor N(R) are δ-stable as x ∈ P (R) ⊆ N(R) but δ(x) = 1 /∈ N(R). Note

that since 1 + q + · · ·+ qn−1 = 0, δ preserves the relation xn = 0.

In light of the above, it remains to consider the case where 1 + q+ · · ·+
qn−1 6= 0, for all n ∈ N. This is equivalent to saying that either q is not a

root of 1 or that q = 1 and F has characteristic 0. In this situation, the

behavior of q-skew derivations is often quite similar to that of derivations in

characteristic 0. However, we now present an example that shows that the

nil and prime radicals need to be δ-stable in this situation. Following this

example, we will show that when certain finiteness conditions are placed on

σ or δ, the nil and prime radicals will be δ-stable.

The example below is motivated by an example in [BR] in which the

authors examine the Jacobson radical of skew polynomial rings of automor-

phism type.

Example 1. Let 0 6= q ∈ F such that 1 + q + · · ·+ qn−1 6= 0, for all n ∈ N.

Then there exists an F -algebra R with an automorphism σ and a locally

nilpotent q-skew derivation δ such that neither the nil radical nor the prime

radical of R are δ-stable.

Proof. Let F be a field and let B be the set of all bi-infinite sequences of

elements of F . Thus B = {(. . . , a−2, a−1, a0, a1, a2, . . . ) | ai ∈ F} and B is a

ring where addition and multiplication are defined componentwise. Observe

that B is commutative with no nonzero nilpotent elements. Next, let τ

denote the right-shift operator on B, thus τ((. . . , a−2, a−1, a0, a1, a2, . . . )) =

(. . . , b−2, b−1, b0, b1, b2, . . . ), where bi = ai−1, for all i ∈ Z. Note that τ is an

automorphism of B

If we let A consist of the elements of B with only a finite number of

nonzero entries, then A is an ideal of B. Now let e = (. . . , 1, 1, 1, 1, 1, . . . )
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denote the multiplicative identity of B and let Fe be all multiples of e by

elements of F . If we let C = Fe+A, then C is a commutative algebra over

F with no nonzero nilpotent elements, τ is an automorphism of C, and A

is a τ -stable ideal of C of codimension 1.

Let R = C[x; τ ] be the skew polynomial ring over C of automorphism

type. Therefore every element of R can be written uniquely as a finite sum

of the form
∑n

i=0 cix
i. When multiplying in R, we have xc = τ(c)x, for all

c ∈ C. Let e1 be the element of A where every component is 0 except the

i = 1 component is 1. Thus e1 has the properties that 0 6= e1 = (e1)
2 and

e1τ
t(e1) = 0, for t 6= 0. If c ∈ C and n ≥ 0, then, computing in R, we have

(e1x)(cxn)(e1x) = (e1x)(cτn(e1))x
n+1 = e1τ(cτn(e1))x

n+2

= (e1τ
n+1(e1))τ(c)xn+2 = 0.

The previous equation tells us that (R(e1x)R)2 = 0, hence

e1x ∈ R(e1x)R ⊆ P (R) ⊆ N(R).

Next, we can define an automorphism σ of R as σ(c) = τ−1(c), for all c ∈ C
and σ(x) = qx. Since 1 + q + · · · + qn−1 6= 0, for all n ∈ N, we can apply

Theorem 2 of [BG] to conclude that there is a q-skew derivation δ of R

such that δ(c) = 0, for all c ∈ C, and δ(x) = 1. Furthermore, Theorem

2 of [BG] also asserts that δ is locally nilpotent and its ring of constants,

Rδ = {r ∈ R | δ(r) = 0}, is equal to C.

We know that e1x ∈ P (R) ⊆ N(R). However,

0 6= δ(e1x) = δ(e1)x+ σ(e1)δ(x) = τ−1(e1) ∈ C.

Since C has no nonzero nilpotent elements, we see that δ(e1x) is not nilpo-

tent and cannot belong to N(R). As a result, e1x ∈ P (R) ⊆ N(R) and

δ(e1x) /∈ N(R) and so, the nil and prime radicals of R are not δ-stable. �

We now begin the work needed to show that if certain finiteness condi-

tions are placed on σ or δ, then the assumption that 1 + q+ · · ·+ qn−1 6= 0,

for all n ∈ N is enough to guarantee that P (R) and N(R) are δ-stable. Our

earlier example indicates that it is not enough to assume that δ is locally

nilpotent. If σ has locally finite order then N(R) will be δ-stable and P (R)

will be δ-stable under the somewhat weaker condition that σ is locally alge-

braic. Both P (R) and N(R) will be δ-stable if we assume that δ is algebraic.

In the next lemma, we will see that some of these assumptions place certain

restriction on the possible values of q.
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Lemma 2. Let δ be a q-skew derivation of R where 1 + q + · · ·+ qn−1 6= 0,

for all n ∈ N.

(i) If σ has locally finite order and δ 6= 0, then q = 1 and F has char-

acteristic 0.

(ii) If δ is algebraic then either δ is nilpotent or q = 1 and F has char-

acteristic 0.

Proof. For (i), let r ∈ R such that δ(r) 6= 0. Since σ has locally finite order,

there exists n ∈ N such that σn(r) = r and σn(δ(r)) = δ(r). Observe that

δσn = qnσnδ, therefore

δ(r) = σn(δ(r)) = q−nδ(σn(r)) = q−nδ(r).

Since δ(r) 6= 0, we see that qn = 1. Furthermore, since 1+q+ · · ·+qn−1 6= 0,

we know that q = 1, which immediately implies that F has characteristic 0.

For (ii), since δ is algebraic over F , there exists some minimal n ∈ N and

αi ∈ F such that

(1) δn(r) = αn−1δ
n−1(r) + · · ·+ α1δ(r) + α0r,

for all r ∈ R. If we replace r by σ(r) in equation (1) and use the fact that

δjσ = qjσδj, for all j ∈ N, we obtain

qnσ(δn(r)) = qn−1αn−1σ(δn−1(r)) + · · ·+ qα1σ(δ(r)) + α0σ(r).

Applying σ−1 to the previous equation and then multiplying by q−n results

in

δn(r) = q−1αn−1δ
n−1(r) + · · ·+ q1−nα1δ(r) + q−nα0r.

When we compare the previous equation to equation (1), the minimality

of n asserts that qn−iαi = αi, for 0 ≤ i ≤ n − 1. If each αi = 0, then δ is

nilpotent. On the other hand, if some αi 6= 0, then q must be a root of 1.

As in the proof of part (1), since q is a root of 1, it follows that q = 1 and

F has characteristic 0. �

Our next lemma does not require that δ be q-skew nor that R be an

algebra.

Lemma 3. Let R be a ring with a σ-derivation δ.

(i) If I is a σ-stable ideal of R, then I + δ(I) is an ideal of R.

(ii) If δ(s) is nilpotent, for all s ∈ N(R), then N(R) is δ-stable.
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Proof. For (i), if r ∈ R and s ∈ I, then

rδ(s) = δ(σ−1(r)s)− δ(σ−1(r))s ∈ I + δ(I)

and

δ(s)r = δ(sr)− σ(s)δ(r) ∈ I + δ(I).

Therefore Rδ(I), δ(I)R ⊆ I + δ(I) and so, I + δ(I) is an ideal of R. In

particular, this tells us that N(R) + δ(N(R)) is an ideal of R.

For (ii), if r, s ∈ N(R) and n ∈ N, then (r+ δ(s))n = (δ(s))n +w, where

w ∈ N(R). Since δ(s) is nilpotent, we can choose n such that (δ(s))n =

0, hence (r + δ(s))n ∈ N(R). As a result, (r + δ(s))n is nilpotent which

immediately implies that r + δ(s) is nilpotent. Therefore N(R) + δ(N(R))

is a nil ideal, hence it must be contained in N(R). Thus δ(N(R)) ⊆ N(R),

as required. �

For the remainder of this paper, if n ∈ N, we let

(n!)q = (1)(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Note that if q = 1, then (n!)q = n!.

Lemma 4. Let R be a ring with q-skew derivation δ. If I is a σ-stable ideal

of R and r1, r2, . . . , rn ∈ I, then

(i) δn(r1r2 · · · rn) = (n!)qσ
n−1(δ(r1))σ

n−2(δ(r2)) · · ·σ(δ(rn−1))δ(rn) +w,

where w ∈ I;

(ii) σn−1(δ(r1))σ
n−2(δ(r2)) · · · σ(δ(rn−1))δ(rn) =

q−
(n−1)n

2 δ(σn−1(r1))δ(σ
n−2(r2)) · · · δ(σ(rn−1))δ(rn);

(iii) if σ(I) = I, (n!)q 6= 0, and δn(In) ⊆ K, for some ideal K, then

(δ(I))n ⊆ I +K.

Proof. For (i), if r1, . . . , rn ∈ R, we have

δ(r1r2 · · · rn−1rn) = δ(r1)r2 · · · rn−1rn + σ(r1)δ(r2) · · · rn−1rn + · · ·+

(2) σ(r1) · · ·σ(rn−2)δ(rn−1)rn + σ(r1)σ(r2) · · ·σ(rn−1)δ(rn).

If 1 ≤ k ≤ n, let fk =
∑n−k

i=0 σ
n−k−iδσi. Repeated application of δ to

equation (2) results in

(3) δn(r1r2 · · · rn) = f1(r1)f2(r2) · · · fn(rn) + w,

where w is a sum of terms of the form g1(r1)g2(r2) · · ·σj(ri) · · · gn(rn) such

that j ≥ 0 and each gi is a composition of l copies of δ and σ, for some

0 ≤ l ≤ n.
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Since δ is q-skew, it follows that fk(r) = (1 + q + · · ·+ qn−k)σn−k(δ(r)),

for all r ∈ R. Thus

f1(r1)f2(r2) · · · fn(rn) =

(1)(1 + q) · · · (1 + q + · · ·+ qn−1)σn−1(δ(r1)) · · ·σ(δ(rn−1))δ(rn) =

(n!)qσ
n−1(δ(r1)) · · ·σ(δ(rn−1))δ(rn).

Therefore, if each ri ∈ I, we can rewrite equation (3) as

δn(r1r2 · · · rn) = (n!)qσ
n−1(δ(r1))σ

n−2(δ(r2)) · · ·σ(δ(rn−1))δ(rn) + w,

where w ∈ I, proving part (i).

Since δσ = qσδ, we see that σn−iδ = q−(n−i)δσn−i, for 1 ≤ i ≤ n.

Therefore part (ii) follows by replacing each term of the form σn−i(δ(ri)) in

σn−1(δ(r1))σ
n−2(δ(r2)) · · · σ(δ(rn−1))δ(rn)

by q−(n−i)δ(σn−i(ri)).

For (iii), we know that both (n!)q and q−
(n−1)n

2 are nonzero. Therefore,

since δn(In) ⊆ K, it follows from parts (i) and (ii) that

(4) δ(σn−1(r1))δ(σ
n−2(r2)) · · · δ(σ(rn−1))δ(rn) ∈ I +K.

In addition, σ(I) = I, thus σi(I) = I, for all i ∈ N. It now follows from (4)

that (δ(I))n ⊆ I +K. �

We can now prove

Theorem 5. Let R be an algebra over a field of characteristic 0 with a

σ-derivation δ such that δ and σ commute. If σ has locally finite order then

the nil radical of R is δ-stable.

Proof. Let r ∈ N(R); in light of Lemma 3, it suffices to show that δ(r)

is nilpotent. Since σ has locally finite order, there exists n ∈ N such

that σn(r) = r and we can let s = σ−n+1(r) · · ·σ−2(r)σ−1(r)r. Note that

σ−n(s) = s and, for any m ∈ N, it now follows that

sm = σ(1−m)n(s) · · ·σ−2n(s)σ−n(s)s = σ1−mn(r) · · ·σ−2(r)σ−1(r)r.

Since s ∈ N(R), we can choose m such than sm = 0 and we now have

0 = δmn(sm) = δmn(σ1−mn(r) · · ·σ−2(r)σ−1(r)r).

Observe that δ is q-skew with q = 1. Therefore (n!)q = n! and σiδ = δσi,

for all i ∈ N. As a result, the term

(n!)qσ
n−1(δ(r1))σ

n−2(δ(r2)) · · ·σ(δ(rn−1))δ(rn)
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in Lemma 4 can now be written as

n!δ(σn−1(r1))δ(σ
n−2(r2)) · · · δ(σ(rn−1))δ(rn).

Applying Lemma 4(i) with I = N(R) now gives us

0 = δmn(σ1−mn(r) · · ·σ−2(r)σ−1(r)r) = (mn)!δ(r) · · · δ(r)δ(r)δ(r) + w,

where w ∈ N(R). Thus (mn)!(δ(r))mn ∈ N(R) and, since F has character-

istic 0, this immediately implies that δ(r) is nilpotent. �

For any ring S, let W (S) be the sum of the nilpotent ideals of S. A useful

property of the prime radical of R is that it can also be defined as the union

of an ascending chain of ideals Pα ⊆ R as follows:

• P0 = 0, P1 = W (R);

• Pα+1 is the ideal of R such that W (R/Pα) = Pα+1/Pα;

• if α is a limit ordinal, then Pα =
⋃
β<α Pβ.

Observe that each Pα is σ-stable and there exists an ordinal γ such that

Pγ = Pγ+1 = P (R). For our next result, we can weaken the assumption in

Theorem 5 and assume instead that σ is locally algebraic. This means that

every element of R is contained in a finite dimensional σ-stable subspace of

R.

Theorem 6. Let R be an algebra with a q-skew derivation δ such that

1 + q+ · · ·+ qn−1 6= 0, for all n ∈ N. If σ is locally algebraic, then the prime

radical of R is δ-stable.

Proof. We will prove, using transfinite induction, that δ(Pα) ⊆ Pα, for every

ordinal α. To this end, suppose δ(Pβ) ⊆ Pβ, for all ordinals β < α. If α is a

limit ordinal, we have

δ(Pα) = δ(
⋃
β<α

Pβ) =
⋃
β<α

δ(Pβ) ⊆
⋃
β<α

Pβ = Pα.

Next, suppose α = β + 1 and let a ∈ Pα; we will show that δ(a) ∈ Pα.

Using that Pα is σ-stable, it follows that (Rσj(a)R+ Pβ)/Pβ is a nilpotent

ideal of R/Pβ, for all j ≥ 0. Since σ is locally algebraic, there exists m ∈ N
such that

∞∑
j=0

(Rσj(a)R + Pβ)/Pβ =
m∑
j=0

(Rσj(a)R + Pβ)/Pβ.

Therefore, there exists an ideal J such that σ(J) = J , a ∈ J and having

the additional properties that

(RaR + Pβ)/Pβ ⊆ (J + Pβ)/Pβ
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and Jn ⊆ Pβ, for some n > 0. Since δ(Pβ) ⊆ Pβ, we have δn(Jn) ⊆ δn(Pβ) ⊆
Pβ.

Applying Lemma 4(iii) with I = J , and K = Pβ, we have δ(J)n ⊆ J+Pβ.

Thus (J+δ(J))n ⊆ J+δ(J)n ⊆ J+Pβ, hence (J+δ(J))n
2 ⊆ (J+Pβ)n ⊆ Pβ.

By Lemma 3(i), J + δ(J) is an ideal, therefore J + δ(J) ⊆ Pβ+1 = Pα. Since

a ∈ J , we have δ(a) ∈ Pα. �

An ideal I is called a semiprime ideal if whenever J is an ideal and n ∈ N
such that Jn ⊆ I, we have J ⊆ I. Observe that both N(R) and P (R) are

semiprime ideals of R.

Theorem 7. Let R be an algebra with a q-skew derivation δ such that δ is

algebraic and 1 + q + · · ·+ qn−1 6= 0, for all n ∈ N.

(i) If I is a semiprime ideal of R such that σ(I) = I, then I is δ-stable.

(ii) The nil radical and prime radical of R are both δ-stable.

Proof. SinceN(R) and P (R) are both semiprime ideals ofR with σ(N(R)) =

N(R) and σ(P (R)) = P (R), we see that part (ii) follows directly from part

(i). Lemma 2(ii) showed that whenever δ is algebraic, either δ is nilpotent

or q = 1 and F has characteristic 0. However, in proving part (i), it will not

be necessary to consider those cases separately.

To begin the proof of part (i), let I be a semiprime ideal of R such that

σ(I) = I. Since δ is algebraic over F , there exist n ∈ N and αi ∈ F such

that

δn(r) = αn−1δ
n−1(r) + · · ·+ α1δ(r) + α0r,

for all r ∈ R. Since σ(I) = I, it follows that if 0 < j < n, we have δj(In) ⊆ I.

In light of the equation above, we now have δn(In) ⊆ I.

Since (n!)q 6= 0, applying Lemma 4(iii), we have (δ(I))n ⊆ I. Using

Lemma 3(i), we see that I + δ(I) is an ideal of R such that (I + δ(I))n ⊆ I.

Since I is a semiprime ideal, we know that I+ δ(I) ⊆ I, which immediately

implies that δ(I) ⊆ I. Thus I is δ-stable. �
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