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GOLDIE DIMENSION OF CONSTANTS

OF LOCALLY NILPOTENT SKEW DERIVATIONS

JEFFREY BERGEN AND PIOTR GRZESZCZUK

Abstract. In this paper, we examine rings R with locally nilpotent skew derivations d

and compare the Goldie dimension of R to that of the subring of constants Rd. This
generalizes the situation where one compares the Goldie dimension of an Ore extension

to that of the base ring. Under certain natural conditions placed upon Rd, we show that

R and Rd have the same Goldie dimension.

1. Introduction

There has been a good deal of interest in the relationship between the Goldie dimension
of a ring and that of naturally occurring ring extensions and subrings. In [7], it is proved
that dimS = dimS[x]. More generally, the Goldie dimension of S and Ore extensions S[x; δ]
were studied in [1], [3], [6], and extensions of skew derivation type were examined in [5].

If R is the q-skew Ore extension R = S[x;σ, δ], then the formula σ(x) = q−1x extends the
automorphism σ to R and there is a q−1-skew σ−1-derivation d : R→ R defined as d(x) = 1
and d(a) = 0 for a ∈ S (cf. [2]). Observe that d is locally nilpotent and if q is either
not a root of unity or q = 1 and S is of characteristic zero, then the subring of constants
Rd is equal to S. Therefore, we can think of the relationship between a ring and an Ore
extension as being a special case of the relationship between the subring of constants of a
locally nilpotent q-skew derivation and the original algebra.

The concepts of a σ-derivation being regular and a ring being specially homogeneous will
be defined immediately after the proofs of Proposition 1 and Lemma 7, respectively. Using
these concepts, our two main results will be

Theorem 13. Let d be a locally nilpotent q-skew σ-derivation of R, where q is not a root
of unity or R has characteristic 0 and q = 1, such that

(1) d is regular,
(2) R is specially homogeneous.

Then R has finite Goldie dimension if and only if Rd has finite Goldie dimension and
dimRR = dimRd Rd.

Corollary 14. Let d be a locally nilpotent q-skew σ-derivation of an algebra R where q is
not a root of unity or R has characteristic 0 and q = 1. If

(1) Rd is σ-semiprime and
(2) Rd is nonsingular,
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then R has finite Goldie dimension if and only if Rd has finite Goldie dimension and
dimRR = dimRd Rd.

To put these results in perspective, Bell and Goodearl constructed in [1] a Q-algebra S
with a derivation δ, such that dimS = 1 but dimS[x; δ] =∞. Based upon our earlier obser-
vation, we can view this as an example of an algebra R with a locally nilpotent derivation
d such that dimRd = 1 and dimR = ∞. Furthermore, in this example, the derivation d is
regular.

To illustrate the opposite point, let R be the Grassmann algebra over Q generated by
e1, e2, . . . . Next, let d be the Q-linear derivation of R defined as d(ei) = ei−1, for i > 1,
and d(e1) = 0. In this case, d is locally nilpotent and Rd is spanned over Q by 1 and all
products of the form e1 · · · em, where m ≥ 1. Observe that

Qe1 ⊕Qe1e2 ⊕Qe1e2e3 ⊕ · · ·
is an infinite direct sum of left ideals of Rd, hence dimRd =∞. On the other hand, if L1, L2

are nonzero left ideals of R, then there exists n ∈ N such that e1e2 · · · en ∈ L1 ∩ L2. Thus
dimR = 1.

In light of these two examples, we can see that if either Rd or R has finite Goldie dimension
then some additional assumptions, such as those in Theorem 13 and Corollary 14, are needed
to show that Rd and R have the same Goldie dimension.

We should also point out that there is a strong relationship between the Goldie dimensions
of Rd and R when R is semiprime and d is algebraic. In particular, it is proved in [4] that
if R is semiprime and dn = 0, then dimRd 6 dimR 6 n · dimRd.

We will now introduce the terminology and notation that will be used throughout the
paper. R will be an algebra over a field K. If σ is a K-linear automorphism of R, then a
σ-derivation d is a K-linear map d : R→ R such that

d(rs) = d(r)s+ σ(r)d(s),

for all r, s ∈ R. The ring of constants Rd is defined as

Rd = {r ∈ R | d(r) = 0}.

A σ-derivation d is said to be locally nilpotent if for every r ∈ R, there exists n = n(r) ≥ 1
such that dn(r) = 0. If q is a nonzero element of K, we say that our σ-derivation is q-skew
if

dσ(r) = qσd(r),

for all r ∈ R. For n ≥ 1, let

(n!)q =

n∏
k=1

(1 + q + · · ·+ qk−1).

Then the q-binomial coefficient
(
n
i

)
q

is defined as evaluation at t = q of the polynomial

function (
n

i

)
t

=
(tn − 1)(tn−1 − 1) . . . (tn−i+1 − 1)

(ti − 1)(ti−1 − 1) . . . (t− 1)
.

If q is not a root of unity, then (
n

k

)
q

=
(n!)q

((n− k)!)q(k!)q



GOLDIE DIMENSION OF CONSTANTS 3

is nonzero for all n > k > 0.

The following q-Leibniz Rule holds in a ring with q-skew σ-derivation d.

dn(ab) =

n∑
j=0

(
n

j

)
q

σn−jdj(a)dn−j(b)

for all a, b ∈ R and n > 0.

For m > 0, let Rm = ker dm+1. Clearly, d is locally nilpotent if and only if R =
⋃

m>0

Rm.

By the degree of an element a ∈ R, which we denote as deg(a), we mean the integer n
such that a ∈ Rn but a 6∈ Rn−1. The q-Leibniz Rule implies that RnRm ⊆ Rn+m, so R is a
filtered algebra, with R0 = Rd.

We will always assume that 1 + q+ · · ·+ qm 6= 0, for any integer m > 1. This means that
either q is not a root of unity, or q = 1 and charK = 0.

2. Results

Since d is locally nilpotent, any nonzero d-stable subset of R has nonzero intersection
with Rd. Therefore, if E is a nonzero d-stable and σ-stable right (or left) ideal of R, then
Ed = E ∩ Rd is a nonzero σ-stable right (or left) ideal of R. Throughout much of this
section, Rd will be σ-semiprime. In this situation, it then follows that R has no nonzero
one-sided ideals which are d-stable and σ-stable whose intersection with Rd is nilpotent.

Proposition 1. Let d be a locally nilpotent q-skew σ-derivation of a ring R. If the subring
of constants Rd is σ-semiprime, then there exist ideals A and B of R which are d-stable and
σ-stable such that

(1) A ∩B = 0 and r. annR(A⊕B) = 0,
(2) B ⊆ Rd,
(3) d(A) ⊆ A and r. annA(d(A) ∩Ad) = 0.

Proof. Let C = r. annR(d(R) ∩ Rd). If C = 0, then it is enough to let A = R and B = 0.
Now suppose that C 6= 0; it is clear that C is a right ideal of R that is d-stable and σ-stable
such that

(d(C) ∩ Cd)2 ⊆ (d(R) ∩Rd) · C = 0.

The σ-semiprimeness of Rd implies that d(C) ∩ Cd = 0. Furthermore, since d is locally
nilpotent, we immediately see that d(C) = 0.

Next, let B = RC; since Cd(R) = d(CR) ⊆ d(C) = 0, we see that Cd(R) ⊆ d(R) ∩ Rd.
It now follows that

(d(R)C)2 ⊆ d(R) · (Cd(R)) · C = 0.

Since d(R)C is a σ-stable right ideal of Rd, we have d(R)C = 0 and so, B = RC ⊆ Rd.

Now let A = r. annR(B); clearly A and B are both σ-stable and d-stable ideals of R such
that (A ∩ B)2 ⊆ BA = 0. It follows by the σ-semiprimeness of Rd that A ∩ B = 0. In
addition, since r. annR(A⊕B) ⊆ r. annR(B) = A, we have

(r. annR(A⊕B))2 ⊆ A · r. annR(A⊕B) = 0.

The σ-semiprimeness of Rd now tells us that r. annR(A⊕B) = 0.
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Finally, suppose that 0 6= X = r. annA(d(A) ∩Ad). Then X is a nonzero right ideal of R
that is d-stable and σ-stable. Clearly (d(A) ∩Ad)Xd = 0 and so,

(d(R) ∩Rd) · (Xd)
2 ⊆ (d(R) ∩Rd) ·Ad ·Xd ⊆ (d(A) ∩Ad) ·Xd = 0.

As a result,

(Xd)
2 ⊆ A ∩ r. annR(d(R) ∩Rd) = A ∩ C ⊆ A ∩RC = A ∩B = 0.

Since (Xd)
2

= 0, the σ-semiprimeness of Rd implies that Xd = 0, hence X = 0. This is a
contradiction, thereby proving (3). �

Let d be a locally nilpotent σ-derivation of a ring R. In light of Proposition 1, it is natural
to define d to be right regular (or simply regular) if r. annRd(d(R) ∩ Rd) = 0. Observe
that d being regular is equivalent to the condition that r. annR(d(R) ∩Rd) = 0.

Observe that Proposition 1 asserts that if Rd is σ-semiprime, then R contains d-stable
and σ-stable ideals A and B such that A∩B = 0, A⊕B is essential in RR, B ⊆ Rd, and d
restricted to A is regular.

Lemma 2. If x1, x2, . . . , xn ∈ R1, then

dn(x1x2 . . . xn−1xn) = (n!)qσ
n−1d(x1)σn−2d(x2) . . . σd(xn−1)d(xn).

Proof. Since each xi ∈ R1, it follows that x1x2 . . . xn−1 ∈ Rn−1. The q-Leibniz rule tells us
that

dn(x1x2 . . . xn−1xn) =

n∑
i=0

(
n

i

)
q

σn−idi(x1x2 . . . xn−1)dn−i(xn)

=

(
n

1

)
q

σdn−1(x1x2 . . . xn−1)d(xn).

The result follows now by induction. �

For any f ∈ Rn and x1, x2, . . . , xn ∈ R1 we define the element

f̂(x1, x2, . . . , xn) =

(n!)qσ
−1d(x1)σ−2d(x2) . . . σ−nd(xn)f − x1x2 . . . xndn(f).

Lemma 3. For any f ∈ Rn and x1, x2, . . . , xn ∈ R1, the element f̂(x1, x2, . . . , xn) has
degree smaller than n.

Proof. Since (n!)qσ
−1d(x1)σ−2d(x2) . . . σ−nd(xn) ∈ Rd, applying Lemma 2, we have

dn(f̂(x1, x2, . . . , xn)) = (n!)qσ
n(σ−1d(x1)σ−2d(x2) . . . σ−nd(xn))dn(f)

− dn(x1x2 . . . xn)dn(f) = (n!)qσ
n−1d(x1)σn−2d(x2) . . . d(xn)dn(f)

− dn(x1x2 . . . xn)dn(f) = 0.

�
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We continue with

Lemma 4. Let d be a regular q-skew locally nilpotent σ-derivation of R. If 0 6= fα ∈
Rd ∩Rα, where α ∈ Rd and f ∈ R, then there exists γ ∈ Rd such that 0 6= γfα ∈ Rdα.

Proof. We will apply induction to the degree of f . If f has degree 0, then 0 6= f ∈ Rd. In
this case, we can let γ = 1 and then γfα = fα ∈ Rdα.

Suppose that f has degree n and assume the result holds for elements of smaller degree.
Since d is regular, fα does not annihilate d(R) ∩ Rd on the right. As a result, there exists
γn = d(xn) ∈ d(R) ∩ Rd such that 0 6= σ−n(γ1)fα. Continuing as above, there exist
γn−1 = d(xn−1), γn−2 = d(xn−2), . . . , γ1 = d(x1) ∈ d(R) ∩Rd such that

(n!)qσ
−1(γ1)σ−2(γ2) . . . σ−(n−1)(γn−1)σ−n(γn)fα 6= 0.

Now consider the element c = f̂(x1, x2, . . . , xn); by Lemma 3, c has smaller degree than
f . Recall that 0 = d(fα) = d(f)α, therefore dn(f)α = 0 and

0 6= cα = (n!)qσ
−1(γ1)σ−2(γ2) . . . σ−n(γn)fα ∈ Rα ∩Rd.

The induction hypothesis now implies that there exists γn+1 ∈ Rd such that 0 6= γn+1cα ∈
Rdα.

However

γn+1cα = γn+1((n!)qσ
−1(γ1)σ−2(γ2) . . . σ−n(γn)f − x1x2 . . . xndn(f))α

= (n!)qγn+1σ
−1(γ1)σ−2(γ2) . . . σ−n(γn)fα.

Therefore, if we let γ = (n!)qγn+1σ
−1(γ1)σ−2(γ2) . . . σ−n(γn), it follows that 0 6= γfα ∈

Rdα. �

The next result, along with the corollary that will follow it, proves one half of Theorem
13 and Corollary 14.

Theorem 5. Let d be a regular q-skew locally nilpotent σ-derivation of an algebra R with
finite Goldie dimension. If q is not a root of unity or R has characteristic 0 and q = 1, then
the subalgebra of constants Rd has finite Goldie dimension and

dimRd Rd 6 dimRR.

Proof. It is enough to show that if Rdb1 ⊕ · · · ⊕ Rdbn is a direct sum of left ideals of Rd

then the sum Rb1 + · · · + Rbn is also direct. We proceed by induction. Suppose that the
sum Rb1 + · · ·+Rbk is direct and (Rb1 ⊕ · · · ⊕Rbk) ∩Rbk+1 6= 0, where n > k > 1.

Since the left ideals Rbj are d-invariant, there exists c ∈ R such that

0 6= cbk+1 ∈ (Rb1 ⊕ · · · ⊕Rbk)d = (Rb1)d ⊕ · · · ⊕ (Rbk)d.

Thus cbk+1 = r1b1 + · · · + rkbk, where r1, . . . , rk ∈ R and r1b1, . . . , rkbk ∈ Rd. Applying
Lemma 4, there exist nonzero elements λ1, . . . , λk ∈ Rd such that if we let λ = λk . . . λ2λ1,
we have
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(1) λ1r1b1 ∈ Rdb1, λ2λ1r2b2 ∈ Rdb2, . . . , (λk . . . λ2λ1)rkbk ∈ Rdbk,
(2) not all elements from the chain λr1b1, λr2b2, . . . λrkbk are zero.

Thus 0 6= λcbk+1 =
k∑

j=1

λrjbj ∈ Rdb1 ⊕ · · · ⊕Rdbk.

Applying Lemma 4 once again, there exists γ ∈ Rd such that 0 6= γλcbk+1 ∈ Rdbk+1, so

0 6= γλcbk+1 ∈ (Rdb1 ⊕ · · · ⊕Rdbk) ∩Rdbk+1,

which contradicts the assumption that the sum Rdb1 + · · ·+Rdbn is direct. �

We can now use Proposition 1 to extend Theorem 5.

Corollary 6. Let d be a q-skew locally nilpotent σ-derivation of R such that q is not a
root of unity or R has characteristic 0 and q = 1. If the subalgebra of constants Rd is
σ-semiprime and R has a finite Goldie dimension, then the Goldie dimension of Rd is finite
and

dimRd Rd 6 dimRR.

Proof. Suppose S is a ring containing a direct sum of ideals V ⊕W such that r. annS(V ⊕
W ) = 0. In this situation, dimS S = dimV V + dimW W . If we let A,B be the ideals of R
constructed in Proposition 1, it follows that dimRR = dimAA+ dimB B.

Next, let I = r. annRd(Ad ⊕ Bd). Since B = Bd, it follows that BI = 0, hence I ⊆ A.
As a result, I ⊆ Ad ∩ r. annRd(Ad). Therefore I is a σ-stable ideal of Rd of square 0 and
the σ-semiprimeness of Rd implies that I = 0. Our observation in the previous paragraph
now implies that dimRd Rd = dimAd Ad + dimBd Bd. Since dimB B = dimBd Bd, in order
to prove our result, it suffices to show that dimAd Ad 6 dimAA.

Proposition 1 showed that the restriction of d to A is regular. Since dimAA 6 dimRR, we
know that dimAA is finite, therefore we can apply Theorem 5 to conclude that dimAd Ad 6
dimAA. �

We now begin the work needed to prove the second half of Theorem 13 and Corollary 14.
For any a ∈ R, if we let n = deg(a), then it is clear that

l. annRd(a) ⊆ σ−1(l. annRd(d(a))) ⊆ · · · ⊆ σ−n(l. annRd(dn(a)))

⊆ σ−n−1(l. annRd(dn+1(a))) = Rd.

Lemma 7. If 0 6= a ∈ R, then there exists λ ∈ Rd such that λa 6= 0 and

l. annRd(λa) = σ−1(l. annRd(d(λa))) = · · · = σ−n(l. annRd(dn(λa))),

where n = deg(λa).

Proof. Let n = min{deg(λa) | λ ∈ Rd & λa 6= 0} and choose λ ∈ Rd such that deg(λa) = n.
By the observation before this lemma, it suffices to show that σ−n(l. annRd(dn(λa))) ⊆
l. annRd(λa).

If γ ∈ σ−n(l. annRd(dn(λa))), we need to show that γ ∈ l. annRd(λa). Observe that

0 = σn(γ)dn(λa) = dn(γλa),

so deg(γλa) 6 n− 1. By the minimality of n, we see that γλa = 0, hence γ ∈ l. annRd(λa).
�
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We say that an element a ∈ R of degree n is special if

l. annRd(a) = σ−1(l. annRd(d(a))) = · · · = σ−n(l. annRd(dn(a))),

where n = deg(a). Let Sn denote the set of all special elements of degree n. Observe
that the proof of Lemma 7 showed that the nonzero elements of minimal degree in any left
Rd-submodule of R are special.

A ring R with a q-skew locally nilpotent σ-derivation d is said to be specially homo-
geneous if, for any nonzero a ∈ R,

Ra ∩ Sn 6= ∅ =⇒ Ra ∩ Sk 6= ∅ for all k > n.

In this case, any principal left ideal Ra must contain special elements of degree k, for all
k > deg(a).

Proposition 8. If the subalgebra of constants Rd is left nonsingular, then R is specially
homogeneous.

Proof. It is enough to show that if a nonzero element a ∈ R is special of degree n > 0,
then there exists an element r ∈ R such that ra ∈ Sn+1. Since d is regular, there exists a
nonzero element c = d(x) ∈ Rd, such that d(x)a 6= 0. Using that a is special, we see that
σnd(x)dn(a) 6= 0 and it follows that

dn+1(xa) =

n+1∑
j=0

(
n+ 1

j

)
q

σn+1−j(dj(x))dn+1−j(a)

=

(
n+ 1

1

)
q

σnd(x)dn(a) 6= 0.

Hence deg(xa) = n+ 1.

SinceRd is left nonsingular and 0 6= σnd(x)dn(a) ∈ Rd, we know that l. annRd(σnd(x)dn(a))
is not essential in Rd. Therefore there exists a nonzero left ideal L of Rd such that
L ∩ l. annRd(σnd(x)dn(a)) = 0. Notice that for any nonzero l ∈ L, lσnd(x)dn(a) 6= 0.
Therefore

dn+1(σ−n−1(l)xa) = ldn+1(xa) =

(
n+ 1

1

)
q

lσnd(x)dn(a) 6= 0,

hence deg(σ−n−1(l)xa) = n+ 1.

By Lemma 7, there exists a nonzero λ ∈ Rd, such that λσ−n−1(l)xa is special. It now
suffices to show that λσ−n−1(l)xa has degree n+ 1. From the above, it now follows that

dn+1(λσ−n−1(l)xa) =

(
n+ 1

1

)
q

σn+1(λ)lσnd(x)dn(a).

As a result, deg(λσ−n−1(l)xa) < n + 1 if and only if σn+1(λ)lσnd(x)dn(a) = 0. However,
since σn+1(λ)l ∈ L, the only way it can annihilate σnd(x)dn(a) on the left is for it to
be 0. Thus σn+1(λ)l = 0, which implies that λσ−n−1(l) = 0. But this contradicts our
assumption that λσ−n−1(l)xa is special, hence λσ−n−1(l)xa is indeed a special element of
degree n+ 1. �

If we now let S = d(R) ∩Rd, recall that d being regular means that r. annRd(S) = 0.
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Lemma 9. If a ∈ R is special and t ∈ l. annR(a), then there exists an integer m = m(t) > 1
such that Smt ⊆ R · l. annRd(a).

Proof. Suppose that deg(a) = n and deg(t) = l. Then deg(ta) 6 n+ l, hence 0 = dl+n(ta) =(
l+n
n

)
q
σn(dl(t))dn(a). Since a ∈ Sn and σn(dl(t)) ∈ l. annRd(dn(a)), we have dl(t)a = 0.

Given s1, s2, . . . , sl ∈ S, there exist x1, x2, . . . , xl ∈ R1 such that sj = σ−j(d(xj)), for
j = 1, 2, . . . , l. By Lemma 3, the element

t̂ = (l!)qσ
−1d(x1)σ−2d(x2) . . . σ−ld(xl)t− x1x2 . . . xndl(t)

has degree smaller than l and it is clear that t̂a = 0. By induction on deg(t), there is an

integer m̂ such that Sm̂t̂ ⊆ R · l. annRd(a). We now have

(l!)qs1s2 . . . slt = t̂+ x1x2 . . . xld
l(t),

hence
Sm̂+lt ⊆ Sm̂t̂+R · l. annRd(a) ⊆ R · l. annRd(a).

�

We continue with

Corollary 10. If a and b are special elements of R such that l. annRd(a) = l. annRd(b),
then l. annR(a) = l. annR(b).

Proof. It suffices to show that l. annR(a) ⊆ l. annR(b) and, to this end, let t ∈ l. annR(a).
By Lemma 9, there exists m > 1 such that

Smt ⊆ R · l. annRd(a) = R · l. annRd(b).

As a result, Smtb = 0. Since r. annRd(S) = 0, we also know that r. annR(S) = 0, hence
tb = 0. �

In our final two lemmas, we will assume that d is regular and R is specially homogeneous.

Lemma 11. If L is an essential left ideal of Rd, then RL is an essential left ideal of R.

Proof. Suppose not; if RL is not essential in R, let a ∈ R be of minimal degree such that
RL ∩Ra = 0. Observe that a ∈ Sn, for some n > 1, and since 0 6= dn(a) ∈ Rd, there exists
b ∈ Rd such that 0 6= bdn(a) ∈ L ∩ Rdn(a). By replacing a by σ−n(b)a, without loss of
generality, we may assume that dn(a) ∈ L.

Let r ∈ R such that rdn(a) ∈ Sn; then 0 6= dn(rdn(a)) = dn(r)dn(a) ∈ Rd. Therefore, by
Lemma 4, there exists a nonzero element λ ∈ Rd such that 0 6= λdn(r)dn(a) = λ∗dn(a) for
some λ∗ ∈ Rd. Since

dn(σ−n(λ∗)a) = λ∗dn(a) = dn(σ−n(λ)rdn(a)),

it is clear that σ−n(λ∗)a and σ−n(λ)rdn(a) are special of degree n and produce the same
result when plugged into dn. Therefore, they have the same left annihilator in Rd. Further-
more,

deg(σ−n(λ∗)a− σ−n(λ)rdn(a)) < n,
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and, by the minimality of n, we have

RL ∩R · (σ−n(λ∗)a− σ−n(λ)rdn(a)) 6= 0.

Finally, let s ∈ R be such that 0 6= s(σ−n(λ∗)a−σ−n(λ)rdn(a)) ∈ RL. Since dn(a) ∈ L, it
follows that sσ−n(λ∗)a ∈ RL∩Ra = 0. By Corollary 10, σ−n(λ∗)a and σ−n(λ)rdn(a) have
the same left annihilator in R. Thus sσ−n(λ)rdn(a) = 0, which results the contradiction
s(σ−n(λ∗)a− σ−n(λ)rdn(a)) = 0. �

One additional lemma is required before we can prove our main results.

Lemma 12. If I = Rda is a uniform left ideal of Rd, then RI = Ra is a uniform left ideal
of R.

Proof. Suppose RI is not uniform; then from among all x, y ∈ RI with Rx∩Ry = 0, choose
x, y such than deg(x) + deg(y) minimal. Therefore x and y are special and, without loss
of generality, we may assume that deg(x) 6 deg(y). By Lemma 3, Rx contains a special
element z such that deg(z) = deg(y) = m.

Since dm(z) and dm(y) are nonzero elements of (RI)d = (Ra)d, Lemma 4 asserts that
there exist elements α, β ∈ Rd such that 0 6= αdm(z) ∈ Rda and 0 6= βdm(y) ∈ Rda. It
follows, since Rda is uniform, that there exist λ1, λ2 ∈ Rd such that λ1αd

m(z) = λ2βd
m(y) 6=

0.

By replacing z by σ−n(λ1α)z and y by σ−1(λ2β)y, without loss, we may assume that
Rz ∩ Ry = 0, deg(z) = deg(y), and dm(z) = dm(y). Since z and y are special and produce
the same result when plugged into dn, they have the same left annihilator in Rd. Certainly
deg(y − z) < deg(y) and it now follows, by the minimality of deg(x) + deg(y), that Rx ∩
R(y − z) 6= 0. Next, let r1, r2 ∈ R such that r1x = r2(y − z) 6= 0. Thus r2y = r1x + r2z ∈
Rx ∩Ry = 0, hence r2y = 0. By Corollary 10, z and y have the same left annihilator in R,
therefore r2z = 0. This immediately leads to the contradiction r1x = 0. �

We can now prove the first of our two main results.

Theorem 13. Let d be a locally nilpotent q-skew σ-derivation of R, where q is not a root
of unity or R has characteristic 0 and q = 1, such that

(1) d is regular,
(2) R is specially homogeneous.

Then R has finite Goldie dimension if and only if Rd has finite Goldie dimension and
dimRR = dimRd Rd.

Proof. Observe that Theorem 5 covers one half of this result, while not requiring that R
be specially homogeneous. For the other half, we will assume that Rd has finite Goldie
dimension and we need to show that dimRR = dimRd Rd. If we let n = dimRd Rd, then
there exist ai ∈ Rd such that Rda1 ⊕ · · · ⊕Rdan is a direct sum of uniform left ideals of Rd

which is also an essential left ideal of Rd.
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It follows, from Lemmas 11 and 12, that Ra1 + · · ·+Ran is a sum of uniform left ideals of
R which is an essential left ideal of R. Therefore, it suffices to show that the sum is actually
direct. If the sum is not direct, then we can reorder the ai such that there exist ri ∈ R with

0 6= r1a1 = r2a2 + · · ·+ rnan.

Applying Lemma 4, as in the proof of Theorem 5, there exists γ ∈ Rd such that each
γri ∈ Rd and

0 6= γr1a1 = γr2a2 + · · ·+ γrnan.

However, this contradicts that the sum Rda1 + · · ·+Rdan is direct, therefore dimRR is also
equal to n. �

We can now use Propositions 1 and 8 along with Theorem 13 to prove our second main
result.

Corollary 14. Let d be a locally nilpotent q-skew σ-derivation of an algebra R where q is
not a root of unity or R has characteristic 0 and q = 1. If

(1) Rd is σ-semiprime and
(2) Rd is nonsingular,

then R has finite Goldie dimension if and only if Rd has finite Goldie dimension and
dimRR = dimRd Rd.

Proof. Observe that Corollary 6 covers one half of this result, while not requiring that Rd

be nonsingular. For the other half, we will assume that Rd has finite Goldie dimension and
we need to show that dimRR = dimRd Rd. As in the proof of Corollary 6, we can let A,B
be the ideals constructed in Proposition 1 and it suffices to show that dimAA = dimAd Ad.

When d is restricted to A, Ad is nonsingular and Proposition 8 tells us that A is specially
homogeneous. Since dimRd Rd is finite, so is dimAd Ad, therefore we can apply Theorem 13
to conclude that dimAA = dimAd Ad. �
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