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Abstract

Let R be a semiprime algebra over a field K of characteristic zero acted finitely
on by a finite dimensional Lie superalgebra L = Lo & L;. It is shown that if
L is nilpotent, [Lg, Li] = 0 and the subalgebra of invariants R” is central, then
the action of Ly on R is trivial and R satisfies the standard polynomial identity
of degree 2 - [v2dimx L1] Examples of actions of nilpotent Lie superalgebras with
central invariants and with [Lg, L1] # 0, are constructed.

1 Preliminaries

If R is an algebra over a field K of characteristic # 2 and ¢ is a K-linear automorphism
of R such that 02 = 1, let Dy = {6 € Endg(R) | 6(rs) = §(r)s + rd(s) and do(r) =
od(r) for all ;s € R} and Dy = {0 € Endg(R) | d(rs) = d(r)s + o(r)d(s) and do(r) =
—od(r) for all ,s € R}. Then Do@ D; is a Lie superalgebra and the elements of Dy and
D are respectively, derivations and skew derivations of R. The superbracket on Dy&® D1
is defined as [01,d2] = 6162 — (—1)¥ 6281, where §1 € D;, 0o € Dj and i,j € {0,1}. If
L = Lo® L, is a Lie superalgebra, we say that L acts on R if there is a homomorphism
of Lie superalgebras ¢: L — Doy & D;, where ¢(L;) C D;, for ¢ = 0,1. Throughout
the paper we will simply assume that L C Dy @ D7 identifying the elements of Ly and
L, with their images under . It is well known that the homomorphism ¢ induces an
associative homomorphism from the universal enveloping algebra U (L) to Endg (R) and
its image is finite dimensional if and only if the derivations and skew derivations from
Loy and L are algebraic. In this case we will say that L acts finitely on R. Letting G
be the group {1,0}, we can form the skew group ring H = U(L) * G and H is now a
Hopf algebra acting on R. When L acts on R, we define the subalgebra of invariants
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R® to be the set {r € R|§(r) =0, for all § € L}. Depending upon the context, the
symbol [ , | may represent either the superbracket on L, or the commutator map
[r,s] = rs — sr, where r, s belong to an associative algebra. Inductively, we let L! = L
and L"T! = [L" L] and we say that L is nilpotent if there exists a positive integer N
such that LY = 0. If R (resp. L) is an associative algebra (resp. Lie superalgebra) we
will let Z(R) (resp. Z(L)) denote its center. For an element a € R, and automorphism
o of R, ad, (resp. 0,) stands for the inner derivation (inner o-derivation) adjoint to a,
ie., ady(x) = ar — za (04(x) = ax — o(x)a).

2 Main result
The main aim of this paper is to prove the following theorem.

Theorem 1. Let a finite dimensional nilpotent Lie superalgebra L = Lo @ L1 acts
finitely on a semiprime K-algebra R, where K is a field of characteristic zero. If R”
is central and [Ly, Lo] = 0, then R satisfies the standard polynomial identity of degree

2. (Va0 L],

It generalizes a result from [1] concerning the actions of nilpotent Lie algebras of
characteristic zero on semiprime algebras. On the other hand, in [4] it is proved that
if a pointed Hopf algebra H acts finitely of dimension N on a semiprime algebra R
and the action is such that L # 0 for any nonzero H-stable left ideal L of R and
RH C Z(R), then R satisfies PI of degree 2[v/N]. In Theorem 1 we prove for nilpotent
Lie superalgebras with [Lg, L1] = 0, that the dimension of the action of U(L) * G
depends only on the dimension of L. The key role will be played by the following easy
observation: In characteristic zero the invariants of nilpotent Lie algebras acting on
central simple algebras are never proper simple central subalgebras.

Lemma 2. Let R be a finite dimensional central simple F-algebra acted on by a nilpotent
Lie F-algebra L, where F is a field of characteristic zero. If RY is a central simple F-
algebra, then R = R™. In this case the action of L on R must be trivial.

Proof: Since L acts by F-linear transformations, any derivation from L is inner. Sup-
pose that the action of L on R is not trivial. Then we can take a nonzero derivation
6 = ad, € Z(L), where a € R. For any ad, € L we have adj, = [ad,,ady] = 0, so
[a,b] € Z(R) = F. If [a,b] = A # 0, then [a,A\"'b] = 1. Note that the elements a
and A\~!b generate in R a subalgebra isomorphic to the Weyl algebra A (F), but it is
impossible since R is finite dimensional. Consequently, [a,b] = 0 for any ad, € L and
hence a € RY. In particular, ad, acts trivially on CR(RL ), the centralizer of R” in R.
On the other hand the subalgebra R” is simple and Z(R*) = F, so by Theorem 2 (p.
118) in [5] R ~ RF ®p Cr(RF) ~ RY - Ogr(RY). Consequently, R = RY - Ogr(RY). Tt
implies that ad, acts trivially on R, a contradiction. Therefore the action of L on R is
trivial. O

Suppose that a finite dimensional nilpotent Lie superalgebra L = Lg @ Ly acts
finitely of dimension N on an algebra R. Then by Ry, we denote the largest subspace
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of R on which any derivation from Ly acts nilpotently, that is
R, ={reR|éY(r)=0, Véc Ly}

It is clear that Ry, is a subalgebra of R and Rp, is stable under the automorphism
o. Furthermore, it is well known that (after eventual extension of the field of scalars)
the algebra R is graded (with finite support) by the dual of the Lie algebra Ly with
Ry, as the identity component of the grading. Therefore, if the algebra R is semiprime
(semisimple), then Ry, is also semiprime (resp. semisimple). In [3] (Lemma 12) it is
proved that

Lemma 3. The subalgebra Ry, is L-stable. In particular L acts on Rr, by nilpotent
transformations.

In the next Proposition we consider the case of action of a nilpotent Lie superalgebra
on a finite dimensional G-simple algebra.

Proposition 4. Let a nilpotent Lie superalgebra L = Lo® Ly acts on a G-simple finite
dimensional K-algebra R, where K is a field of characteristic zero. If R* is central and
[Lo,Ll] == 0, then L[) =0.

Proof: First we will consider the case when L acts on R by nilpotent transformations,
that is R = Rp,. Suppose that Lo # 0 and take a nonzero derivation § from the center
of Ly. Since [Lg, Li] = 0, it is clear that § is in the center of L. Let k > 1 be such
that 0*(R) = 0 and V = 6*"1(R) # 0. Then V is invariant under the action of L, and
since L acts via nilpotent transformations it is clear that V¥ = V' N RF C Z(R). On
the other hand if r,s € R, then the Leibniz rule gives

0= 6"(6"2(r)s) = k" ()" (s).

It means that (V*)2 = 0, so the center of R contains nilpotent elements. This is
impossible since R is semisimple. The obtained contradiction shows that Ly = 0.

Consider the general case. The above gives us immediately that R = Rp, and
consequently the algebra R is semisimple. Thus, any its ideal I is idempotent, i.e.,
I? = I. Note that if I is G-stable, then the Leibniz rule, applied to any 0 € Ly, gives
O(I) = 0(I?) CO(I)I+o(I)0(I) C I. Hence any G-stable ideal I of R%0 is also L-stable
and 0 # IV C 2 (R). Thus I contains invertible elements. Consequently, R0 is also
G-simple.

We will split considerations into two cases. First suppose that the automorphism o
is inner, and let ¢ € R be such that o(z) = ¢ 'zq, for € R. In this case any ideal of
R is o-stable, so R must be a simple algebra. Moreover it is easy to see that any skew
derivation O from L; must be inner. Indeed, since do = —0d, we obtain that

¢ 'o(x)qg = 0(8(x)) = —0(o(x)) = —0(q "zq) =
=—0(¢ aq— ¢ 'O(x)g— ¢ ' o(x)(q).
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This immediately gives, that d(z) = bx — o(z)b, where b = 10(g)g~*. Consequently,

any mapping from Lo U L; is Z(R)-linear. We will show that the algebra R is simple
and the centers of RY and R coincide. Since the automorphism ¢ has order two,
q®> € Z(R). Thus for any § = ad, € Lo,

5(q) = 6(c(q)) = o(5(q)) = ¢ "(aq — qa)q = qa — ag = —5(q),

so 0(q) = 0. This implies that ¢ € R0 the restriction of o to R0 is inner and hence
the algebra R0 is simple. Since the action of L on R is inner, Z(R) = Z(R) N Rl C
Z(RM). We will show that Z(R) C Z(R). To this end, since RX C Z(R), it
suffices to show that Z(RI°) C RIt. Take any z € Z(R), and 0 = 0, € L1, where
b= %8(q)q*1. Notice that b € R0, Indeed, by assumption [§,d] = 0 for any & € Lo
and by the above ¢ € R, so

506) = 360@)g™) = 36(0(@)a™ + 29(@3(a™) = 1(6(a)a™ = 0.
It means that b € R™ and
d(z) =bz—o(2)b=">bz—2b=0,

so z € RF1. Tt proves that Z(R*0) = Z(R). By Lemma 2 the action of Ly on R must
be trivial.

Finally suppose that the automorphism o is outer. Since R is G-simple, the algebra
R must be either simple or R = I @ o(I) for some minimal ideal I. In the first case, by
the Skolem-Noether Theorem, o is not an identity map on Z(R). In the second case
Z(R)=Z(I)®o(Z(I)). Thus in both cases o acts non identically on Z(R). Now since
the center of R contains Z(R), the restriction of o to R is also outer. Consequently,
one can choose a nonzero element ¢ € Z(R) such that o(c) # c¢. Then (c — o(c))? is
nonzero and belongs to the field Z(R)?. Thus ¢ — o(c) is invertible. Now let 0 € Ly

and x € R. Notice that
d(z)c+ o(x)d(c) = d(zc) = d(cx) = I(c)x + o(c)0(x).
In particular, we have
O(w) = (¢ = o(c) () — o(w)(c — o(c) ' D(c) = By(w),

where b = (c—o(c))~1d(c). Thus L acts on R via inner o-derivations and in particular
every mapping from L is Z(R)?-linear. We will prove that Z(R%°)? = Z(R)°. Similarly
as above, it suffices to show that Z(R)° C R1. Take any 0 = 9, € Ly, where
b= (c—o(c))~td(c) for some ¢ € Z(R). Since Lg acts trivially on the center of R,
one obtains that b € RI°. Now it is clear that J, acts trivially on Z(R)? and
consequently Z(RF0)7 C Rt

Consider skew group rings R * G and R x G. Since both of R and R are G-
simple, and ¢ is outer on R and R0, the rings R G and R %G are simple. Moreover
it is clear that Z(R * G) = Z(R)° and Z(R x G) = Z(R")°. Thus R * G and
R % G are central simple Z(R)%-algebras. Notice that the action of Ly on R can be
extended to an action on R x G, via the formula §(a + bo) = d(a) + §(b)o. In that case
(R*G)lo = R0 x G Again applying Lemma 2 we obtain that Lo must act trivially on
R and the proof is complete. O
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Corollary 5. Let a nilpotent Lie superalgebra L = Ly @ L1 acts on a G-simple finite
dimensional K-algebra R with center Z, where charK = 0. If R* C Z and [Lg, L1] = 0,
then dimge R < [Z : Z2¢] - 24« - Moreover, in this case R satisfies the standard
polynomial identity of degree 2 - [v/2dimk L1],

Proof: By Proposition 4, Ly = 0. Thus L is spanned by a family {0y, ...,0,} of inner
skew derivations such that 8? = 0 and 0;0; + 0;0; = 0. It is clear that every 0; is

ZG linear. Let us consider a chain
Ww=R2V1i2---2V,

of subspaces of R, where V; =kerd;N---Nkerd; for j =1,...,n. Then V,, C RlCz
and 0; maps Vj_; into V;. Moreover, it is clear that dimzc V;_1 = dimzc(ker9; N
Vi—1) +dimzc 0j(Vj—1) < 2-dimze Vj. Thus

dimzec R < 2" -dimzc V,, < [Z: ZG] . odimg Ly

Since R is G-simple, the algebra R must be either simple or R = I @ o () for a minimal
ideal I of R. Then I is certainly a simple algebra. The above inequality implies that
dimz R < 24imx L1 ip the first case, and dimz I < 2dimx L1 ip the second case. The
result follows now by the Amitsur-Levitzki Theorem. O

If R is semiprime we let @ = Q(R) to denote the symmetric Martindale quotient
ring. Its center, known as the extended centroid of R, we denote by C. The following
properties of @ in the case when R is acted on by a Hopf algebra are proved in [3].

Lemma 6. Let R be a semiprime H-module algebra such that the H-action on R
extends to an H-action on QQ and any nonzero H-stable ideal of R contains nontrivial
wmvariants. Then

1. the ring CH = C N QY is von Neumann reqular and selfinjective.

2. If a nonempty subset S C CH \ {0} is closed under a multiplication, then the
localization Qg of Q at S is semiprime and Z(Qg) = Cs.

3. If H acts finitely on Q and S = CH \ M, where M is a maximal ideal of CH,
then the H-action on Q extends to an H-action on Qg and (Q™)s = (Qs),
(CH)s = (Cs) = CsN (Qs)™ is a field contained in the center of Qg.

We can now prove the main result of the paper.

Proof of Theorem 1: Let H = U(L) * G. By (]2], Corollary 6) every H-invariant
non-nilpotent subalgebra of R contains nonzero invariants. Thus we can apply the
results from [4]. Let M be a maximal ideal of C = CN Q" and put S = C* \ M. By
the above lemma and [4] it follows that (Cs) is a field and Qg is a finite dimensional,
G-simple (Cg)-algebra. Using Corollary 5 we obtain that @ satisfies the standard
polynomial identity of degree 2 - [v/2dimx L1]. Since it holds for any maximal ideal M
of CH the ring @, and consequently R, satisfies the standard polynomial identity of

degree 2 - [v/2dimk L], O
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3 Examples

In this section we construct examples of actions of nilpotent Lie superalgebras with
central invariants and with [Lg, L1] # 0. We start with general properties of inner
derivations and skew derivations of an algebra R with an automorphism o of order
two. Then R = Ry @ Ry is Za-graded, where Rg = {x € R | o(x) = 2} and R; = {z €
R | o(x) = —x}. For any inner derivation ¢ of R, the condition do = ¢ is equivalent to
that § is induced by some a € Ry. To see that, we let § be induced by a = ag+ a1 € R.
Then

(1) d(z) = ax — za = (apr — zag) + (a1x — xay).
This immediately implies that

d(o(z)) = (ago(z) — o(z)ap) + (ar10(x) — o(x)ar)
and

o(d6(x)) = (apo(x) — o(x)ag) — (ar0(x) — o(x)ay).
Since § and o commute, the previous equations imply that ajo(z) — o(x)a; = 0.
Replacing z by o(z) yields a1z — xa; = 0. Equation (1) now becomes

0(z) = apr — wag = adg, ().

In the same manner we can show that for any inner skew derivation 0 of R, the condition
0o = —o0d is equivalent to that 0 = 0, for some b € R;.

Lemma 7. Let R be an algebra over a field K of characteristic # 2 and o be a K-linear
automorphism of R of order 2. Let u € R be invertible and o(u) = —u. Let R be the
K-algebra Ms(R), the 2 X 2 matrices over R. Then the map ¢: R — R given by

plr) = (‘8 u_lc?(x)u>

is an injective homomorphism of algebras, satisfying 6o = @o (where ¢ is a compo-
nentwise extension of o to R).

If a Lie superalgebra L = Lo @ L1 acts on R by inner derivations and inner o-
derivations with R* = K, then L acts on R by inner derivations and inner o-derivations

with
R* = {<7u_1 )\) €R|a,ﬁ,'y,)\€K}.
Proof: Notice that

~ o (x 0 _ (o(z) 0 _

@0 =55 yrmeye) = (T 1) =00
In order to prove the second part, observe that for all inner derivation ad, € Ly and

the inner skew derivation 0y, € L1 of R and for every matrix T = <i11 i12> € R the
21 22

following equations hold

ad_ ) (7) = a 0 ~ ~ f(a 0 B adg(x11) adg(z12uHu
@\ =\ 0w law) TTN0 wlau) T utad, (uwar) uwadg(uxeou™)u
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and

=} ) rml )

_ (U( (1) A (z12u™Hu )

T \o(u ™) (uzer) o (u ) (urseuu

JFrom the above equations it follows that z € RL if and only if the elements x11,
12w, uzoy and uxgou! belong to RY. Under the assumption that RY = K, we now
easily obtain the assertion of the lemma. O

We start our construction from the algebra R = M>(K) of 2 x 2 matrices over a
field K of characteristic 0. Let o be the inner automorphism of order 2 of R induced
by the diagonal matrix diag(1,—1) and let dp, and O, be the inner o-derivations of R

induced by
01 0 1
b = (1 O> € Ry and by = (1 0) € Ry,

respectively. It can be easily checked that
b1? = —by® = 1 and byby + baby = 0.

As a result, the skew derivations 0y, and Oy, span an abelian Lie superalgebra L =
Lo ® Ly where Lo = 0 and Ly = Spang{0y,, 0, }. (From the explicit formulas for 0y,

and Op,
0y T11 212 [ T21 T X122 T22 — X11
P\ w21 w2 11 — T2 P21 + T12
o, 11 T12 _ [T21 —x12 X22 —T11
2\ \@21 722 T2 —T11 T2 — T12
it follows immediately that RV = K.

Using Lemma 7, applied to the invertible element u = by, we have an embedding of
R into R = M>(R), according to the formula

#le) = (g b2_100(56)b2) '

and

~ by O ~ ~ b 0 ~
b1 = p(b1) = (01 b1> € Ry and by = p(bs) = <02 —bz) € Ry

and consider the additional matrices

~ (0 b ~ ~ (0 b ~
by = (—bg 0) € Ry and by = <b2 0) € R;.
It is not hard to check that

512:_();2:[;32:—542:1andeib;%—g;'gi:O
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for all ¢ # j. As before, the inner skew derivations 8b~1 , 81;2 , 81% and 8& span an abelian
Lie superalgebra L =Lo®Ly, where Ly = 0 and L; = spanK{ﬁb~1 , 8b~2 , 813}, , 86; }. Lemma
7 says that the subalgebra of invariants RL under the action of L consists of all matrices

of the form (,yog 6§2> where a, 3,7, A € K. Furthermore, a simple calculation shows
2

9, (<£2 5)\b2>) = (( Aﬁ_a;bg ()\B_QV)b2>

a~( «Q 5b2 ) — _/8_7 ()\_a)bQ
bit\vb2 A (@=Nby —B-7v )"
This immediately implies that RL =K. B
Applying Lemma 7 for the invertible element u = by we have the next embedding

of R into the algebra R = M3(R), the 2 x 2 matrices over R according to the formula

(% 0
W*(o bz‘lambz)'

B; = gp(l;) = (bi [}Q> € Ry and By = go(b~4) = <b4 O~> €Ry

that

and

for i = 1,2,3 and consider the additional matrices

o A= (_(271 %1) € Ry and C; = (8 ‘61> € Ry, where a; = <_11 _11) € Ry,

. 0 az +1 (0 ax+1 -
Ay = (—a~2+1 0 ) € Ry and Cy = <0 0 > € Ry, where ay =

o A; = <a3 — o 0 ~> € Ry, where a3 = < biba b ) € Eo,

0 a~3+a1 —b1b2 —b1b2
0 ds 0 by 0 by
Bs=1[=< €eRy, Bg= ~ € Ry and By = | ~ € Ry, wh
° 5 <b5 0> 1 6 <—b4 0) 1 aq 7 <b4 0) 1, where
~ [ bi+b b1 + by ~  [=bi+by —bi+b =
d5_<—b1—b2 —51—b2>’ b5_<b1_b2 51—52>ER1’

(0 dy _ (0 by
D5—<0 O)+B7€R1&DdD6—<O 0>€R1.

Notice that if Ny = spang{adc,,adc,,ads,} and N1 = spang{9g,,0B,,0Bs,0B,,
Ops,0pg }, then N = No @ N is a 9-dimensional Lie superalgebra of nilpotency class 4
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(see Table 1). Lemma 7 asserts that the subalgebra of invariants RL under the action

of L consists of all matrices of the form ( (Z~ 2 )1\74) where «, 8,7, A € K. Moreover,
b4

o ([ Bbs - ydsby =B =7 (A= a)(ba+ds)\ _
S \vbs A (@ — A)by Youds — B —
_(wa@—a)—B-v (A—a)(bi+ds)
(o — A)by V(az+a)—B—-v)

As a result we obtain that RN = K.

Notice also that if My = spang{ada,,ada,,ads,} and M, = spang{9p,,0p,, 0,
OBy, 0Bs+B,, 0By}, then M = My & M is a nilpotent Lie superalgebra of nilpotency
class 6 (see Table 2). We have

omon ([ - Bba\\ _ (dsbi+Bbibs —B—~  (A—a)(bi+d5) | _
5-+Br vby A (a — X)(bg + bs) Bbsby + vbads — B —

([ =B@-a)—B-y  (A—a)(bi+ds)
(a = A)(ba + b5) (y=B)az+a)-B—-v)

This implies immediately that RM = K.

Finally, observe also that M is an subalgebra of a nilpotent Lie superalgebra L =
Lo® L of nilpotency class 6, where Lo = [L1, L] = spang{ada,,ada,,ada,} and L1 =
spang {05, ,0B,, 055, 0B, 085, OB,, OB, } (see Table 2). Obviously, RF = K. Starting
with the algebra R, the invertible element u = By and the Lie superalgebra L, and
again applying the above procedure, we can produce successive examples.
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’ [ ] H adc, ‘ adc, ‘ ada, ‘ OB, ‘ 0B, ‘ 0B, ‘ 0B, ‘ Ops ‘ODG‘
adcl 0 0 0 0 _28D6 28D6 0 832_;,_33 0
ad02 0 0 0 28D6 0 0 26D6 —831_34 0
ad A, 0 0 0 —20B,+Bs|—20B,-B,20B, —B,—20B,+Bs 0 0
0B, 0 —20pg| 20B,+ B4 0 0 0 0 2ade, | 0
0B, | 20p, 0 20B,-B, 0 0 0 0 —2adg,| 0
0B, | —20p, 0 |-20B,-B, 0 0 0 0 2ad¢g, | O
0B, 0 —20p;| 20By+Bs 0 0 0 0 2ade, | 0
ODs ||[—0By+B50B, — B, 0 2ade, | —2adg, | 2ade, | 2ade, | 2ada, | O
ODg 0 0 0 0 0 0 0 0 0
Table 1: operation table of N
’ [ ] H ad 4, ‘ ad 4, ada, ‘ 0B, ‘ 0B, ‘ 0Bs ‘ OB, ‘ 0B; ‘ 0Bs 837‘
ad 4, 0 —2ada, 0 0 —20pB, 20p, 0 0 |—20B,+Bs 0
adA2 2 adA3 0 0 2636 0 0 2(936 0 2831_34 0
adA3 0 0 0 —2832+B3—2831_342831_34—2832+33 0 0 0
631 0 —2836 2882+B;5 0 0 0 0 2 adAl 0 0
632 2836 0 2831_34 0 0 0 0 —2 adA2 0 0
833 —2336 0 —2831734 0 0 0 0 2&d,42 0 0
334 0 —2836 28B2+33 0 0 0 0 2ad,41 0 0
0B; 0 0 0 2ada, | —2ada, | 2ada, | 2adgy, 0 —2ada, | O
0Bg 20By+Bs|—20B,-B, 0 0 0 0 0 —2ada, 0 0
0B- 0 0 0 0 0 0 0 0 0 0
Table 2: operation table of L
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