
ACTIONS OF LIE SUPERALGEBRAS ON SEMIPRIME ALGEBRAS WITH
CENTRAL INVARIANTS

Piotr Grzeszczuk†∗ and Ma lgorzata Hryniewicka ‡

†Faculty of Computer Science, Bialystok University

of Technology, Wiejska 45A, 15-351 Bia lystok, Poland

E-mail: piotrgr@pb.edu.pl

‡Institute of Mathematics, University of Bia lystok,

Akademicka 2, 15-267 Bia lystok, Poland

E-mail: margitt@math.uwb.edu.pl

Abstract

Let R be a semiprime algebra over a field K of characteristic zero acted finitely
on by a finite dimensional Lie superalgebra L = L0 ⊕ L1. It is shown that if
L is nilpotent, [L0, L1] = 0 and the subalgebra of invariants RL is central, then
the action of L0 on R is trivial and R satisfies the standard polynomial identity
of degree 2 · [

√
2dimK L1 ]. Examples of actions of nilpotent Lie superalgebras with

central invariants and with [L0, L1] 6= 0, are constructed.

1 Preliminaries

If R is an algebra over a field K of characteristic 6= 2 and σ is a K-linear automorphism
of R such that σ2 = 1, let D0 = {δ ∈ EndK(R) | δ(rs) = δ(r)s + rδ(s) and δσ(r) =
σδ(r) for all r, s ∈ R} and D1 = {δ ∈ EndK(R) | δ(rs) = δ(r)s+ σ(r)δ(s) and δσ(r) =
−σδ(r) for all r, s ∈ R}. Then D0⊕D1 is a Lie superalgebra and the elements of D0 and
D1 are respectively, derivations and skew derivations of R. The superbracket on D0⊕D1

is defined as [δ1, δ2] = δ1δ2 − (−1)ijδ2δ1, where δ1 ∈ Di, δ2 ∈ Dj and i, j ∈ {0, 1}. If
L = L0⊕L1 is a Lie superalgebra, we say that L acts on R if there is a homomorphism
of Lie superalgebras ψ : L → D0 ⊕ D1, where ψ(Li) ⊆ Di, for i = 0, 1. Throughout
the paper we will simply assume that L ⊆ D0 ⊕D1 identifying the elements of L0 and
L1 with their images under ψ. It is well known that the homomorphism ψ induces an
associative homomorphism from the universal enveloping algebra U(L) to EndK(R) and
its image is finite dimensional if and only if the derivations and skew derivations from
L0 and L1 are algebraic. In this case we will say that L acts finitely on R. Letting G
be the group {1, σ}, we can form the skew group ring H = U(L) ∗ G and H is now a
Hopf algebra acting on R. When L acts on R, we define the subalgebra of invariants

∗The first author’s research was supported in part by KBN Grant No. 1 P03A 032 27 and by the
grant S/WI/3/2009 of Bialystok University of Technology.
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RL to be the set {r ∈ R | δ(r) = 0, for all δ ∈ L} . Depending upon the context, the
symbol [ , ] may represent either the superbracket on L, or the commutator map
[r, s] = rs− sr, where r, s belong to an associative algebra. Inductively, we let L1 = L
and Ln+1 = [Ln, L] and we say that L is nilpotent if there exists a positive integer N
such that LN = 0. If R (resp. L) is an associative algebra (resp. Lie superalgebra) we
will let Z(R) (resp. Z(L)) denote its center. For an element a ∈ R, and automorphism
σ of R, ada (resp. ∂a) stands for the inner derivation (inner σ-derivation) adjoint to a,
i.e., ada(x) = ax− xa (∂a(x) = ax− σ(x)a).

2 Main result

The main aim of this paper is to prove the following theorem.

Theorem 1. Let a finite dimensional nilpotent Lie superalgebra L = L0 ⊕ L1 acts
finitely on a semiprime K-algebra R, where K is a field of characteristic zero. If RL

is central and [L1, L0] = 0, then R satisfies the standard polynomial identity of degree
2 · [
√

2dimK L1 ].

It generalizes a result from [1] concerning the actions of nilpotent Lie algebras of
characteristic zero on semiprime algebras. On the other hand, in [4] it is proved that
if a pointed Hopf algebra H acts finitely of dimension N on a semiprime algebra R
and the action is such that LH 6= 0 for any nonzero H-stable left ideal L of R and
RH ⊆ Z(R), then R satisfies PI of degree 2[

√
N ]. In Theorem 1 we prove for nilpotent

Lie superalgebras with [L0, L1] = 0, that the dimension of the action of U(L) ∗ G
depends only on the dimension of L1. The key role will be played by the following easy
observation: In characteristic zero the invariants of nilpotent Lie algebras acting on
central simple algebras are never proper simple central subalgebras.

Lemma 2. Let R be a finite dimensional central simple F-algebra acted on by a nilpotent
Lie F-algebra L, where F is a field of characteristic zero. If RL is a central simple F-
algebra, then R = RL. In this case the action of L on R must be trivial.

Proof: Since L acts by F-linear transformations, any derivation from L is inner. Sup-
pose that the action of L on R is not trivial. Then we can take a nonzero derivation
δ = ada ∈ Z(L), where a ∈ R. For any adb ∈ L we have ad[a,b] = [ada, adb] = 0, so
[a, b] ∈ Z(R) = F. If [a, b] = λ 6= 0, then [a, λ−1b] = 1. Note that the elements a
and λ−1b generate in R a subalgebra isomorphic to the Weyl algebra A1(F), but it is
impossible since R is finite dimensional. Consequently, [a, b] = 0 for any adb ∈ L and
hence a ∈ RL. In particular, ada acts trivially on CR(RL), the centralizer of RL in R.
On the other hand the subalgebra RL is simple and Z(RL) = F, so by Theorem 2 (p.
118) in [5] R ' RL ⊗F CR(RL) ' RL · CR(RL). Consequently, R = RL · CR(RL). It
implies that ada acts trivially on R, a contradiction. Therefore the action of L on R is
trivial.

Suppose that a finite dimensional nilpotent Lie superalgebra L = L0 ⊕ L1 acts
finitely of dimension N on an algebra R. Then by RL0 we denote the largest subspace
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of R on which any derivation from L0 acts nilpotently, that is

RL0 = {r ∈ R | δN (r) = 0, ∀δ ∈ L0}.

It is clear that RL0 is a subalgebra of R and RL0 is stable under the automorphism
σ. Furthermore, it is well known that (after eventual extension of the field of scalars)
the algebra R is graded (with finite support) by the dual of the Lie algebra L0 with
RL0 as the identity component of the grading. Therefore, if the algebra R is semiprime
(semisimple), then RL0 is also semiprime (resp. semisimple). In [3] (Lemma 12) it is
proved that

Lemma 3. The subalgebra RL0 is L-stable. In particular L acts on RL0 by nilpotent
transformations.

In the next Proposition we consider the case of action of a nilpotent Lie superalgebra
on a finite dimensional G-simple algebra.

Proposition 4. Let a nilpotent Lie superalgebra L = L0⊕L1 acts on a G-simple finite
dimensional K-algebra R, where K is a field of characteristic zero. If RL is central and
[L0, L1] = 0, then L0 = 0.

Proof: First we will consider the case when L acts on R by nilpotent transformations,
that is R = RL0 . Suppose that L0 6= 0 and take a nonzero derivation δ from the center
of L0. Since [L0, L1] = 0, it is clear that δ is in the center of L. Let k > 1 be such
that δk(R) = 0 and V = δk−1(R) 6= 0. Then V is invariant under the action of L, and
since L acts via nilpotent transformations it is clear that V L = V ∩ RL ⊆ Z(R). On
the other hand if r, s ∈ R, then the Leibniz rule gives

0 = δk(δk−2(r)s) = kδk−1(r)δk−1(s).

It means that (V L)2 = 0, so the center of R contains nilpotent elements. This is
impossible since R is semisimple. The obtained contradiction shows that L0 = 0.

Consider the general case. The above gives us immediately that RL0 = RL0 and
consequently the algebra RL0 is semisimple. Thus, any its ideal I is idempotent, i.e.,
I2 = I. Note that if I is G-stable, then the Leibniz rule, applied to any ∂ ∈ L1, gives
∂(I) = ∂(I2) ⊆ ∂(I)I+σ(I)∂(I) ⊆ I. Hence any G-stable ideal I of RL0 is also L-stable
and 0 6= IL ⊆ Z(R). Thus I contains invertible elements. Consequently, RL0 is also
G-simple.

We will split considerations into two cases. First suppose that the automorphism σ
is inner, and let q ∈ R be such that σ(x) = q−1xq, for x ∈ R. In this case any ideal of
R is σ-stable, so R must be a simple algebra. Moreover it is easy to see that any skew
derivation ∂ from L1 must be inner. Indeed, since ∂σ = −σ∂, we obtain that

q−1∂(x)q = σ(∂(x)) = −∂(σ(x)) = −∂(q−1xq) =

= −∂(q−1)xq − q−1∂(x)q − q−1σ(x)∂(q).

Since q∂(q−1) = −∂(q)q−1,

∂(x) = −1

2
q∂(q−1)x− 1

2
σ(x)∂(q)q−1 =

1

2
∂(q)q−1x− σ(x)

1

2
∂(q)q−1.
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This immediately gives, that ∂(x) = bx − σ(x)b, where b = 1
2∂(q)q−1. Consequently,

any mapping from L0 ∪L1 is Z(R)-linear. We will show that the algebra RL0 is simple
and the centers of RL0 and R coincide. Since the automorphism σ has order two,
q2 ∈ Z(R). Thus for any δ = ada ∈ L0,

δ(q) = δ(σ(q)) = σ(δ(q)) = q−1(aq − qa)q = qa− aq = −δ(q),

so δ(q) = 0. This implies that q ∈ RL0 , the restriction of σ to RL0 is inner and hence
the algebra RL0 is simple. Since the action of L on R is inner, Z(R) = Z(R) ∩RL0 ⊆
Z(RL0). We will show that Z(RL0) ⊆ Z(R). To this end, since RL ⊆ Z(R), it
suffices to show that Z(RL0) ⊆ RL1 . Take any z ∈ Z(RL0), and ∂ = ∂b ∈ L1, where
b = 1

2∂(q)q−1. Notice that b ∈ RL0 . Indeed, by assumption [δ, ∂] = 0 for any δ ∈ L0

and by the above q ∈ RL0 , so

δ(b) =
1

2
δ(∂(q)q−1) =

1

2
δ(∂(q))q−1 +

1

2
∂(q)δ(q−1) =

1

2
∂(δ(q))q−1 = 0.

It means that b ∈ RL0 and

∂(z) = bz − σ(z)b = bz − zb = 0,

so z ∈ RL1 . It proves that Z(RL0) = Z(R). By Lemma 2 the action of L0 on R must
be trivial.

Finally suppose that the automorphism σ is outer. Since R is G-simple, the algebra
R must be either simple or R = I ⊕σ(I) for some minimal ideal I. In the first case, by
the Skolem-Noether Theorem, σ is not an identity map on Z(R). In the second case
Z(R) = Z(I)⊕σ(Z(I)). Thus in both cases σ acts non identically on Z(R). Now since
the center of RL0 contains Z(R), the restriction of σ to RL0 is also outer. Consequently,
one can choose a nonzero element c ∈ Z(R) such that σ(c) 6= c. Then (c − σ(c))2 is
nonzero and belongs to the field Z(R)σ. Thus c − σ(c) is invertible. Now let ∂ ∈ L1

and x ∈ R. Notice that

∂(x)c+ σ(x)∂(c) = ∂(xc) = ∂(cx) = ∂(c)x+ σ(c)∂(x).

In particular, we have

∂(x) = (c− σ(c))−1∂(c)x− σ(x)(c− σ(c))−1∂(c) = ∂b(x),

where b = (c−σ(c))−1∂(c). Thus L1 acts on R via inner σ-derivations and in particular
every mapping from L is Z(R)σ-linear. We will prove that Z(RL0)σ = Z(R)σ. Similarly
as above, it suffices to show that Z(RL0)σ ⊆ RL1 . Take any ∂ = ∂b ∈ L1, where
b = (c − σ(c))−1∂(c) for some c ∈ Z(R). Since L0 acts trivially on the center of R,
one obtains that b ∈ RL0 . Now it is clear that ∂b acts trivially on Z(RL0)σ, and
consequently Z(RL0)σ ⊆ RL1 .

Consider skew group rings R ∗ G and RL0 ∗ G. Since both of R and RL0 are G-
simple, and σ is outer on R and RL0 , the rings R∗G and RL0 ∗G are simple. Moreover
it is clear that Z(R ∗ G) = Z(R)σ and Z(RL0 ∗ G) = Z(RL0)σ. Thus R ∗ G and
RL0 ∗G are central simple Z(R)σ-algebras. Notice that the action of L0 on R can be
extended to an action on R ∗G, via the formula δ(a+ bσ) = δ(a) + δ(b)σ. In that case
(R ∗G)L0 = RL0 ∗G Again applying Lemma 2 we obtain that L0 must act trivially on
R and the proof is complete.
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Corollary 5. Let a nilpotent Lie superalgebra L = L0 ⊕ L1 acts on a G-simple finite
dimensional K-algebra R with center Z, where charK = 0. If RL ⊆ Z and [L0, L1] = 0,
then dimZG R ≤ [Z : ZG] · 2dimK L1. Moreover, in this case R satisfies the standard
polynomial identity of degree 2 · [

√
2dimK L1 ].

Proof: By Proposition 4, L0 = 0. Thus L is spanned by a family {∂1, . . . , ∂n} of inner
skew derivations such that ∂2j = 0 and ∂i∂j + ∂j∂i = 0. It is clear that every ∂j is

ZG-linear. Let us consider a chain

V0 = R ⊇ V1 ⊇ · · · ⊇ Vn

of subspaces of R, where Vj = ker ∂1 ∩ · · · ∩ ker ∂j for j = 1, . . . , n. Then Vn ⊆ RL ⊆ Z
and ∂j maps Vj−1 into Vj . Moreover, it is clear that dimZG Vj−1 = dimZG(ker ∂j ∩
Vj−1) + dimZG ∂j(Vj−1) ≤ 2 · dimZG Vj . Thus

dimZG R ≤ 2n · dimZG Vn ≤ [Z : ZG] · 2dimK L1 .

Since R is G-simple, the algebra R must be either simple or R = I⊕σ(I) for a minimal
ideal I of R. Then I is certainly a simple algebra. The above inequality implies that
dimZ R ≤ 2dimK L1 in the first case, and dimZ(I) I ≤ 2dimK L1 in the second case. The
result follows now by the Amitsur-Levitzki Theorem.

If R is semiprime we let Q = Q(R) to denote the symmetric Martindale quotient
ring. Its center, known as the extended centroid of R, we denote by C. The following
properties of Q in the case when R is acted on by a Hopf algebra are proved in [3].

Lemma 6. Let R be a semiprime H-module algebra such that the H-action on R
extends to an H-action on Q and any nonzero H-stable ideal of R contains nontrivial
invariants. Then

1. the ring CH = C ∩QH is von Neumann regular and selfinjective.

2. If a nonempty subset S ⊆ CH \ {0} is closed under a multiplication, then the
localization QS of Q at S is semiprime and Z(QS) = CS.

3. If H acts finitely on Q and S = CH \M , where M is a maximal ideal of CH ,
then the H-action on Q extends to an H-action on QS and (QH)S = (QS)H ,
(CH)S = (CS)H = CS ∩ (QS)H is a field contained in the center of QS.

We can now prove the main result of the paper.

Proof of Theorem 1: Let H = U(L) ∗ G. By ([2], Corollary 6) every H-invariant
non-nilpotent subalgebra of R contains nonzero invariants. Thus we can apply the
results from [4]. Let M be a maximal ideal of CH = C ∩QH and put S = CH \M . By
the above lemma and [4] it follows that (CS)H is a field and QS is a finite dimensional,
G-simple (CS)H -algebra. Using Corollary 5 we obtain that QM satisfies the standard
polynomial identity of degree 2 · [

√
2dimK L1 ]. Since it holds for any maximal ideal M

of CH , the ring Q, and consequently R, satisfies the standard polynomial identity of
degree 2 · [

√
2dimK L1 ].
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3 Examples

In this section we construct examples of actions of nilpotent Lie superalgebras with
central invariants and with [L0, L1] 6= 0. We start with general properties of inner
derivations and skew derivations of an algebra R with an automorphism σ of order
two. Then R = R0 ⊕R1 is Z2-graded, where R0 = {x ∈ R | σ(x) = x} and R1 = {x ∈
R | σ(x) = −x}. For any inner derivation δ of R, the condition δσ = σδ is equivalent to
that δ is induced by some a ∈ R0. To see that, we let δ be induced by a = a0 + a1 ∈ R.
Then

(1) δ(x) = ax− xa = (a0x− xa0) + (a1x− xa1).

This immediately implies that

δ(σ(x)) = (a0σ(x)− σ(x)a0) + (a1σ(x)− σ(x)a1)

and
σ(δ(x)) = (a0σ(x)− σ(x)a0)− (a1σ(x)− σ(x)a1).

Since δ and σ commute, the previous equations imply that a1σ(x) − σ(x)a1 = 0.
Replacing x by σ(x) yields a1x− xa1 = 0. Equation (1) now becomes

δ(x) = a0x− xa0 = ada0(x).

In the same manner we can show that for any inner skew derivation ∂ of R, the condition
∂σ = −σ∂ is equivalent to that ∂ = ∂b for some b ∈ R1.

Lemma 7. Let R be an algebra over a field K of characteristic 6= 2 and σ be a K-linear
automorphism of R of order 2. Let u ∈ R be invertible and σ(u) = −u. Let R̃ be the
K-algebra M2(R), the 2× 2 matrices over R. Then the map ϕ : R→ R̃ given by

ϕ(x) =

(
x 0
0 u−1σ(x)u

)
is an injective homomorphism of algebras, satisfying σ̃ϕ = ϕσ (where σ̃ is a compo-
nentwise extension of σ to R̃).

If a Lie superalgebra L = L0 ⊕ L1 acts on R by inner derivations and inner σ-
derivations with RL = K, then L acts on R̃ by inner derivations and inner σ̃-derivations
with

R̃L =

{(
α βu

γu−1 λ

)
∈ R̃ | α, β, γ, λ ∈ K

}
.

Proof: Notice that

(σ̃ϕ)(x) = σ̃(

(
x 0
0 u−1σ(x)u

)
) =

(
σ(x) 0

0 u−1xu

)
= (ϕσ)(x).

In order to prove the second part, observe that for all inner derivation ada ∈ L0 and

the inner skew derivation ∂b ∈ L1 of R and for every matrix x̃ =

(
x11 x12
x21 x22

)
∈ R̃ the

following equations hold

adϕ(a)(x̃) =

(
a 0
0 u−1au

)
· x̃− x̃ ·

(
a 0
0 u−1au

)
=

(
ada(x11) ada(x12u

−1)u
u−1 ada(ux21) u−1 ada(ux22u

−1)u

)
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and

∂ϕ(b)(x̃) =

(
b 0
0 −u−1bu

)
· x̃− σ̃(x̃) ·

(
b 0
0 −u−1bu

)
=

=

(
∂b(x11) ∂b(x12u

−1)u
σ(u−1)∂b(ux21) σ(u−1)∂b(ux22u

−1)u

)
.

¿From the above equations it follows that x̃ ∈ R̃L if and only if the elements x11,
x12u

−1, ux21 and ux22u
−1 belong to RL. Under the assumption that RL = K, we now

easily obtain the assertion of the lemma.

We start our construction from the algebra R = M2(K) of 2 × 2 matrices over a
field K of characteristic 0. Let σ be the inner automorphism of order 2 of R induced
by the diagonal matrix diag(1,−1) and let ∂b1 and ∂b2 be the inner σ-derivations of R
induced by

b1 =

(
0 1
1 0

)
∈ R1 and b2 =

(
0 1
−1 0

)
∈ R1,

respectively. It can be easily checked that

b1
2 = −b22 = 1 and b1b2 + b2b1 = 0.

As a result, the skew derivations ∂b1 and ∂b2 span an abelian Lie superalgebra L =
L0 ⊕ L1 where L0 = 0 and L1 = SpanK{∂b1 , ∂b2}. ¿From the explicit formulas for ∂b1
and ∂b2

∂b1

((
x11 x12
x21 x22

))
=

(
x21 + x12 x22 − x11
x11 − x22 x21 + x12

)
and

∂b2

((
x11 x12
x21 x22

))
=

(
x21 − x12 x22 − x11
x22 − x11 x21 − x12

)
it follows immediately that RL = K.

Using Lemma 7, applied to the invertible element u = b2, we have an embedding of
R into R̃ = M2(R), according to the formula

ϕ(x) =

(
x 0
0 b2

−1σ(x)b2

)
.

Put

b̃1 = ϕ(b1) =

(
b1 0
0 b1

)
∈ R̃1 and b̃2 = ϕ(b2) =

(
b2 0
0 −b2

)
∈ R̃1

and consider the additional matrices

b̃3 =

(
0 b2
−b2 0

)
∈ R̃1 and b̃4 =

(
0 b2
b2 0

)
∈ R̃1.

It is not hard to check that

b̃1
2

= −b̃2
2

= b̃3
2

= −b̃4
2

= 1 and b̃ib̃j + b̃j b̃i = 0
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for all i 6= j. As before, the inner skew derivations ∂
b̃1

, ∂
b̃2

, ∂
b̃3

and ∂
b̃4

span an abelian

Lie superalgebra L̃ = L̃0⊕ L̃1, where L̃0 = 0 and L̃1 = spanK{∂b̃1 , ∂b̃2 , ∂b̃3 , ∂b̃4}. Lemma

7 says that the subalgebra of invariants R̃L under the action of L consists of all matrices

of the form

(
α βb2
γb2 λ

)
where α, β, γ, λ ∈ K. Furthermore, a simple calculation shows

that

∂
b̃3

(

(
α βb2
γb2 λ

)
) =

(
β − γ (λ− α)b2

(λ− α)b2 β − γ

)
and

∂
b̃4

(

(
α βb2
γb2 λ

)
) =

(
−β − γ (λ− α)b2

(α− λ)b2 −β − γ

)
.

This immediately implies that R̃L̃ = K.

Applying Lemma 7 for the invertible element u = b̃4 we have the next embedding
of R̃ into the algebra RRR = M2(R̃), the 2× 2 matrices over R̃ according to the formula

ϕ(x̃) =

(
x̃ 0

0 b̃4
−1
σ̃(x̃)b̃4

)
.

Put

Bi = ϕ(b̃i) =

(
b̃i 0

0 b̃i

)
∈ RRR1 and B4 = ϕ(b̃4) =

(
b̃4 0

0 −b̃4

)
∈ RRR1

for i = 1, 2, 3 and consider the additional matrices

• A1 =

(
0 ã1
−ã1 0

)
∈ RRR0 and C1 =

(
0 ã1
0 0

)
∈ RRR0, where ã1 =

(
1 1
−1 −1

)
∈ R̃0,

• A2 =

(
0 ã2 + 1

−ã2 + 1 0

)
∈ RRR0 and C2 =

(
0 ã2 + 1
0 0

)
∈ RRR0, where ã2 =(

0 b1b2
b1b2 0

)
∈ R̃0,

• A3 =

(
ã3 − ã1 0

0 ã3 + ã1

)
∈ RRR0, where ã3 =

(
b1b2 b1b2
−b1b2 −b1b2

)
∈ R̃0,

• B5 =

(
0 d̃5
b̃5 0

)
∈ RRR1, B6 =

(
0 b̃4
−b̃4 0

)
∈ RRR1 and B7 =

(
0 b̃4
b̃4 0

)
∈ RRR1, where

d̃5 =

(
b1 + b2 b1 + b2
−b1 − b2 −b1 − b2

)
, b̃5 =

(
−b1 + b2 −b1 + b2
b1 − b2 b1 − b2

)
∈ R̃1,

• D5 =

(
0 d̃5
0 0

)
+B7 ∈ RRR1 and D6 =

(
0 b̃4
0 0

)
∈ RRR1.

Notice that if NNN0 = spanK{adC1 , adC2 , adA3} and NNN1 = spanK{∂B1 , ∂B2 , ∂B3 , ∂B4 ,
∂D5 , ∂D6}, then NNN = NNN0⊕NNN1 is a 9-dimensional Lie superalgebra of nilpotency class 4
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(see Table 1). Lemma 7 asserts that the subalgebra of invariants RRRL̃ under the action

of L̃ consists of all matrices of the form

(
α βb̃4
γb̃4 λ

)
where α, β, γ, λ ∈ K. Moreover,

∂D5(

(
α βb̃4
γb̃4 λ

)
) =

(
γd̃5b̃4 − β − γ (λ− α)(b̃4 + d̃5)

(α− λ)b̃4 γb̃4d̃5 − β − γ

)
=

=

(
γ(ã3 − ã1)− β − γ (λ− α)(b̃4 + d̃5)

(α− λ)b̃4 γ(ã3 + ã1)− β − γ

)
.

As a result we obtain that RRRNNN = K.
Notice also that if MMM0 = spanK{adA1 , adA2 , adA3} and MMM1 = spanK{∂B1 , ∂B2 , ∂B3 ,

∂B4 , ∂B5+B7 , ∂B6}, then MMM = MMM0 ⊕MMM1 is a nilpotent Lie superalgebra of nilpotency
class 6 (see Table 2). We have

∂B5+B7(

(
α βb̃4
γb̃4 λ

)
) =

(
γd̃5b̃4 + βb̃4b̃5 − β − γ (λ− α)(b̃4 + d̃5)

(α− λ)(b̃4 + b̃5) βb̃5b̃4 + γb̃4d̃5 − β − γ

)
=

=

(
(γ − β)(ã3 − ã1)− β − γ (λ− α)(b̃4 + d̃5)

(α− λ)(b̃4 + b̃5) (γ − β)(ã3 + ã1)− β − γ

)
.

This implies immediately that RRRMMM = K.
Finally, observe also that MMM is an subalgebra of a nilpotent Lie superalgebra LLL =

LLL0⊕LLL1 of nilpotency class 6, where LLL0 = [LLL1,LLL1] = spanK{adA1 , adA2 , adA3} and LLL1 =
spanK{∂B1 , ∂B2 , ∂B3 , ∂B4 , ∂B5 , ∂B6 , ∂B7} (see Table 2). Obviously, RRRLLL = K. Starting
with the algebra RRR, the invertible element u = B7 and the Lie superalgebra LLL, and
again applying the above procedure, we can produce successive examples.
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[·, ·] adC1 adC2 adA3 ∂B1 ∂B2 ∂B3 ∂B4 ∂D5 ∂D6

adC1 0 0 0 0 −2∂D6 2∂D6 0 ∂B2+B3 0

adC2 0 0 0 2∂D6 0 0 2∂D6 −∂B1−B4 0

adA3 0 0 0 −2∂B2+B3−2∂B1−B42∂B1−B4−2∂B2+B3 0 0

∂B1 0 −2∂D6 2∂B2+B3 0 0 0 0 2 adC1 0

∂B2 2∂D6 0 2∂B1−B4 0 0 0 0 −2 adC2 0

∂B3 −2∂D6 0 −2∂B1−B4 0 0 0 0 2 adC2 0

∂B4 0 −2∂D6 2∂B2+B3 0 0 0 0 2 adC1 0

∂D5 −∂B2+B3∂B1−B4 0 2 adC1 −2 adC2 2 adC2 2 adC1 2 adA3 0

∂D6 0 0 0 0 0 0 0 0 0

Table 1: operation table of NNN

[·, ·] adA1 adA2 adA3 ∂B1 ∂B2 ∂B3 ∂B4 ∂B5 ∂B6 ∂B7

adA1 0 −2 adA3 0 0 −2∂B6 2∂B6 0 0 −2∂B2+B3 0

adA2 2 adA3 0 0 2∂B6 0 0 2∂B6 0 2∂B1−B4 0

adA3 0 0 0 −2∂B2+B3−2∂B1−B42∂B1−B4−2∂B2+B3 0 0 0

∂B1 0 −2∂B6 2∂B2+B3 0 0 0 0 2 adA1 0 0

∂B2 2∂B6 0 2∂B1−B4 0 0 0 0 −2 adA2 0 0

∂B3 −2∂B6 0 −2∂B1−B4 0 0 0 0 2 adA2 0 0

∂B4 0 −2∂B6 2∂B2+B3 0 0 0 0 2 adA1 0 0

∂B5 0 0 0 2 adA1 −2 adA2 2 adA2 2 adA1 0 −2 adA3 0

∂B6 2∂B2+B3−2∂B1−B4 0 0 0 0 0 −2 adA3 0 0

∂B7 0 0 0 0 0 0 0 0 0 0

Table 2: operation table of LLL
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