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ABSTRACT. Let M be an irreducible left module over a g-skew polynomial
ring R[z; o, d]. We give sufficient conditions for the complete reducibility of M
considered as a module over the coefficient ring R. We apply it to irreducible
modules over smash product R#H, where H is a Hopf algebra generated by
skew primitive elements.

1. INTRODUCTION

For a given extension R C S of associative rings (with the same unity), it is
natural to ask whether (or when) irreducible left S-modules are completely reducible
as R-modules. This question has a positive answer for several classes of “finite type”
extensions: for example,

n
(i) finite normalizing extensions R C Y Rs; ([2]),
i=1
(i) fixed rings of a finite group actions R® C R, with |G|~ € R ([8]),

(iii) rings graded by finite groups Ry C @gec R, (D).

In this paper we study some extensions of “infinite type”; namely, we consider
modules over g-skew polynomial rings. We show that, under certain conditions, for
a given left R[z; 0, d]-module M its socle Soc(gM) over R is also a module over the
ring R[z;0,0]. Our conditions imply in particular that if ¢ is not a root of 1, then:

1. finite dimensional irreducible R[z;o,d]-modules are completely reducible
over R;

2. if R is left socular (e.g., left artinian or right perfect), then irreducible left
RJx; 0, 6]-modules are completely reducible over R.

As a consequence of our results on modules over g-skew polynomial rings, we
obtain a description of certain modules over smash products R#H, where H is a
Hopf algebra generated by skew primitive elements. Namely, we show that if H is
a character Hopf algebra (see [5]) over the field k of characteristic 0, and x"(g) is
not an n'" primitive root of 1 (n > 1) for any character skew g-primitive element
h € H, then

3. every finite dimensional irreducible left R# H-module is completely re-
ducible as a left R-module;
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4. if R is left socular, then irreducible left R# H-modules are completely re-
ducible as left R-modules. Thus J(R) C J(R#H), where J is the Jacob-
son radical.

On the other hand, we should also point out that in the case where H is fi-
nite dimensional and pointed, there is a strong relationship between the Jacob-
son radicals of R and the crossed product R#H; namely, it is proved in [7] that
J(R#H) ™ 2 C 7(R) - (R#H).

We will now introduce the terminology and notation that will be used throughout
the paper. Let R be an associative ring and ¢ be an automorphism of R. Then the
additive map §: R — R is a o-derivation if

d(ab) = 6(a)b+ o(a)d(d)

for all a,b € R. Suppose that ¢ is a nonzero central (o,d)-constant in R, i.e.,
0(q) = g and 6(q) = 0. If do = god, then ¢ is called a g-skew o-derivation. If in
addition R is a k-algebra, we assume that ¢ € k*. The following g-Leibniz Rules
hold in R and R[z;0,d]:
d(adb) = i (n) o™ (a)6™ " (b) and z"a = Zn: (n> o™i @)z
=0 q i=1 q

for all a,b € R and n > 0. The Gaussian g-binomial coefficient (?)q is defined as
the evaluation at ¢ = ¢ of the polynomial function
1) n\ (-1t =1 (i =)

i),  (E-1E'-1)...t-1)

We will use the following g-Pascal identity:

() = () e () = (0o = ()

for n >4 >0 (cf. [3]).

We will say that the ring R has g-characteristic zero if 14+g+---4¢"™ is invertible
in R, for any integer m > 1. If in addition R is a k-algebra, then either ¢ is not a
root of unity or ¢ = 1 and chark = 0.

If r € R, then a left R-module M is said to be r-torsion free if rm # 0 for all
nonzero m € M. If for any m € M there exists an integer n = n(m) such that
r"m = 0, then M is called an r-torsion module.

A submodule E of an R-module M is said to be essential if EN X # 0 for
any nonzero submodule X C M. It is well known that the intersection of all
essential submodules of an R-module M is equal to the sum of all irreducible
submodules of M and is called the socle of M, denoted by Soc(M). Finally,
Sing(M) will be the singular submodule of M; that is, Sing(M) = {m € M |
anng(m) is essential in gpR}.

2. M-SEQUENCES AND ESSENTIAL SUBMODULES

Let R[z;0,0] be a ¢g-skew polynomial ring and M a left R[z; 0, d]-module. Let F
be an essential R-submodule of M and 0 # m € E. By an m-sequence we mean a
sequence r = {ry, },>0 of elements of R satisfying the following properties:

1° o"™(rp)z™m € E for all n > 0 and o°(rs)z*m # 0 for some s;
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2° if 0" (r, )2 im € B, then 1,1 = 7p;

3° if o"Tl(r,)2"m & E, then r, 11 € Rry, and 0™ (r,41)2" im € E\ {0}.
The smallest integer s such that o®(rs)z°*m # 0 we denote by degr and call the
degree of r.

Lemma 1. If a € R and o%(a)z®m # 0 for some s > 1, then there exists an
m-sequence v = {ry }n>0 such that ro = a and degr < s.

Proof. The sequence r we define inductively starting with ro = --- = r;_1 = a,
where i is the smallest integer such that o%(a)z’m ¢ E. If such an i does not exist,
the constant sequence r = {a} satisfies the desired property. Next suppose that
j>i—1andrg,...,r; are given. If 671 (r;)z7Tim € E, then we put 7j41 = 7;.
If 671 (r;)27 T m ¢ E, then by essentiality of E there exists 0 # ¢ = o/T1(+/) € R
such that
0 # co? ™ (r))a T tm = o7t (1'r;)zd T im € E.

In this situation we put r;j41 = r'r;. Clearly the sequence r satisfies conditions
1° — 3°, and from the construction it follows immediately that degr < s. ([l

An m-sequence r = {r, },>0 is said to be weak if r; = r;4; for some j > degr.
If rj # 7rj4q for all j > degr, we call r a strict m-sequence. Note that if r is strict
and j > degr, then o7 (r;)a’m # 0. Indeed, if 07 (r;)z?m = 0, then o7 (r;_1)z'm
must equal 0, and hence r; =r;_;.

Lemma 2. Suppose that every m-sequence in R is strict. Then:

(1) if a €R is such that 0 # az'm € E, then o(a)z''m € E;

(2) if r = {rp}n>0 is an m-sequence and | > degr, then o?(r))z’m =0 for all

J<l

(3) ann(x/*tim) C o~ (ann(zm)) for all j > 0.
Proof. 1. Suppose that 0 # az'm € E and o(a)z'T'm € E. By Lemma [l we can
take an m-sequence r such that 7o = 0 ~!(a) and degr < I. Then r; = brg = bo~!(a),
where b € R. Notice that

o) m = o' (b)o(a)z'm € E.

Hence r; = r;41, contradicting our assumption that every m-sequence in R is strict.

2. Suppose that o’ (r;)a’m # 0 for some j < [. From the definition of an
m-sequence it follows that we can choose a,b € R such that r = ar; = brj.
Then 0 # o7 (r;)z?m = 07 (a)o?(rj)a’m € E. On the other hand, o+ (r))z/Ttm =
oIt (b)oi T (rj41)27 ™ m € E, which is impossible by 1.

3. Suppose a € R is such that o(a)z/*'m = 0. By item 1, it follows that either
ar’m = 0or ax’m € E. If ax’m ¢ E, then there exists r € R such 0 # raz’m € E.
But in this situation 0 = o(ra)z’"'m € E. By item 1 we obtain that az?m must
be equal to 0; thus ann(z/*tm) C o~ (ann(z7m)). O

Corollary 3. If every m-sequence in R is strict, then R contains an infinite strictly
descending chain of left ideals

ann(m) 2 o~ Y(ann(zm)) 2 --- 2 o '(ann(zlm)) 2 - -
Proof. Lemma B(3) implies that o~‘(ann(z'm)) C o~ (¢~ (ann(2!~'m)) for any
I > 0. To see that the inclusion is strict, it is enough to consider an m-sequence
r of degree <1 — 1. Then Lemma B2) yields that r, € o~ (=1 (ann(2!~'m)), but

clearly r; € o~!(ann(z'm)). O
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Lemma 4. If R contains a weak m-sequence, then there exists an element r € R
and a nonnegative integer n such that

1. 0#o0™(r)z"m € E and o™ (r)z"tim € E,

2. rm=o(r)am=---=oc""(r)z" ! =0.

Proof. Let | > deg(r) be the smallest integer with respect to the equality r; = r;41.
Then ¢! (r;)z'm # 0. Otherwise, if o' (r;)2!m = 0, then from the definition it follows
that Ul(rl_l)aclm € E, and hence r;_1 = 7;. Next consider the smallest integer n
with respect to o™(r;)a™m # 0. It is clear that n < [. Note that if j < [, then
1, = s;r; for some s; € R. Thus o’ (r))a’m = 07 (s;)o?(rj)a’m € E. Therefore
r = r; and n satisfy the lemma. O

Lemma 5. Let M be a g-torsion free left Rlx; o, 6]-module and r € R, m € M be

such that

n—l(

rm=c(r)zm=---=0 )z tm = 0.

Then o8 (r)a'm =0 if i + j < n —1, and o™ (r)z"m = (—1)"q

n(n—1)
2

" (r)ym.
Proof. First we show that if 4, j are nonnegative integers and ¢ + j < n — 1, then
al§7 (r)xim = 0.

Suppose that ¢?47 (r)zim # 0 and take 4,j such that the sum i + j is possibly
minimal. Next take j possibly minimal. By assumption it follows that j > 0, so

o7 () m = 0 and 067 (r)z'm = 0.
Thus
0 =2(c'6? 1 (r)z'm) = "1 (1) im + 5067 (r)ztm
= qlotd’ (7‘)azim7
a contradiction. The above implies, in particular, that if ¢ + 7 = n — 1, then

0 = 2(c'o? (r)a'm) = o167 (r)a"im 4 ¢l T (r) ' m.

Hence
o™(r)z"m = —¢" to" o (r)a"  im = ¢ g 2™ 26% (r) ™ 2 m
== ()" R g8 (m = (~1) g 6 (r)m.
([l
For 1 < 4,j < n let a;; = (iyl)qq("_i)j, where (’jl)q denotes the Gaussian

g-binomial coefficient (see () in the Introduction). Let

()t () 0 ]
(a2 () ()" 0
D,, = det[a;;] = det .
M (6),a (3),4° (n) "
L), (3, ("3, ("D, |

—-n

n3
Lemma 6. D, =q¢ s (14+q¢+---+4q").
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Proof. Notice that by using the g-Pascal identity,
i+ 2 i 1) 1+1 i 1) TIN5 mio1)s
ai+1,j=< ] )q( 1)J:<‘_1) q( 1)]+( ‘ >q]q( 1)j
J /g J q J /g
4+ 1 il 1)
= <Z > q(n ? 1)J _|_az]
J=1/,
The above implies that
N 5 . -
(D"t ()2 0 e 0

O 2 G (5),85
D,, = det

where

Who1=det | ...
¢ (") (e (D)
(g)q (g)q et (nﬁl)q

Again applying the ¢-Pascal identity, one immediately obtains that

[ (5,20 . 0 ]
0 (), (5
Wn—l = det .
o ("7 ("), (no2),a"
Lo ("), ("2"), (nl2), |

2
— qn72q2(n73)q2(n74) o q2 “Dys = qn 74n+4Dn_2.

Thus

Dn = (1 + q)q”“”‘;” Dn—l - qn272n+2Dn—2
with D; = 1+ ¢ and Dy = ¢(1 4+ ¢ + ¢?). The lemma now follows by an easy
induction. O

Proposition 7. Let M be a left R[x;o,d]-module which is D,-torsion free for all
n = 1. Let E be an essential R-submodule of M such that for every m € E, the
ring R contains a weak m-sequence. Then

Ena'E={meFE|xme E}

is also essential as an R-submodule.
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Proof. Notice that if e € E and ze € F, then for every r € R,
are = o(r)ze+d(r)e € E.

Thus ENz~'E is an R-submodule of M.

Suppose that £ Nz~ 'E is not essential. Then there exists a nonzero element
m € E such that (ENz~'E)N Rm = 0. Since R contains a weak m-sequence, by
Lemma [ we can take r € R and n > 0 such that

rm=o(r)am=--- =" }(r)z" 'm =0,
0#o™(r)a"m € E and "' (r)z""'m € E.
For 1 <4,j < n, let a;; = (1?1) ¢~ and x; = " 17969 (r)2" I m. Apply-

ing the g-Leibniz rule for ¢ = 1,2,...,n — 1, we obtain
i+l
0= xi+1(an_i(r)x"_im) = Z <Z+ ) Ji+1_j5j0"_i(r)x"+l_jm
o
i+1 /.
= - (z + 1) q(n—i)jan-irl—j(;j(r)xn+1—jm
7=0 J q
i+1
= (Tn+1 (r)x”"Hm —+ Z al-jxj.
j=1
i+1
Thus > a;;z; = —o"T(r)a" m € E. Moreover, for i = n we have
j=1

n
0 =" rm = o™ (r)2"m + Z anjzj + 6" (r)ym,
j=1
n
SO anjr; € E. Now it is clear that for any j = 1,2,...,n the element D,z; € F,
j=1
where D,, is the determinant from LemmalGl We note that D,z = D,o"6(r)z"m €
FE, so
z(Dpo™(r)z™m) = Do (r)z" im + D, do™ (r)az"m
= D, (r)a"'m + D,q"0"S(r)z"m € E.

On the other hand, by Lemma Bl o”(r)z"m = (—1)"qw d"(r)ym and M is D,,-
torsion free; thus
0# Dpo™(r)z"m € (ENz 'E) N Rm,

a contradiction. Therefore F Nz~ 1F is an essential submodule of M. O

Corollary 8. Let M be a left R[x;0,d]-module which is D,-torsion free for all
n > 1. Suppose that for every essential R-submodule E of M and 0 # m € E,
the ring R contains a weak m-sequence. Then Soc(grM) is an R[z; o, d]-module. In
particular, if M is simple as an R[x; 0, §]-module, then either Soc(gM) =0 or gM
is completely reducible.

Proof. Let m € Soc(gM). If E is an essential submodule of g M, then by Propo-
sition [l E Nz~ 'E is also essential, so m € ENz~'E. Hence xm € E. Therefore
Soc(gM) is an R[z; 0, §]-module. O
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3. APPLICATIONS

In this section we describe situations in which our condition on the existence of
weak m-sequences is automatically satisfied.

Let A be a well ordered set of ordinal numbers with the least element 0. For
a ring R one can define a chain of ideals {S,}aca as follows: Sy = 0; if a € A,
then Sat1/Sa = Soc(R/Sa), the left socle of R/S,. If 8 € A is a limit number,

set Sg = |J Sa. Recall that a ring R is said to be left socular (cf. [1]) if every
a<f
nonzero left R-module contains a simple submodule. If R is left socular, the set A

can be chosen such that R = S, for some o« € A. Note that the class of socular
rings contains left artinian rings and right perfect rings.

If Ais a k-algebra, then A-module M is locally finite dimensional if every finitely
generated submodule of M is finite dimensional.

Proposition 9. Let M be a left Rlx; o, d]-module and E its essential R-submodule.
Suppose that one of the following conditions s fulfilled:

1. R is left socular;

2. R is a left noetherian k-algebra and M is locally finite dimensional as a
klx]-module;

3. dimg M < oo;

N
4. there exists an integer N such that dN*1(r) € 3 Rd’(r) for allr € R;

7=0
5. M is x-torsion; i.e., for any m € M there exists n = n(m) such that
z"m = 0;
6. R is a k-algebra, 0 = idr and M is locally finite dimensional as a k[x]-
module.

Then for any nonzero m € E the ring R contains a weak m-sequence.

Proof. 1. Suppose that R is left socular. Let v be the smallest ordinal such that
S., contains an m-sequence {r;};>o. It is clear that 7 is not a limit ordinal. Note
that if a € S,_1, then o'(a)z'm = 0. Otherwise, we have an m-sequence {r]};>0
with 7 = a € S, 1. Since Rr; D Rry,,, one obtains that r; € S, for all /. This
contradicts minimality of ~.

Let o: R — R/Sv,l be the canonical homomorphism. Since Rrqg 2 Rrqy 2 -+ 2
Rr; O ---, we have a chain

©(Rro) D @(Rr1) D -+ D p(Rr) D -

of cyclic submodules of a semisimple module S, /S,_1. Since p(Rry) is contained in
a finite direct sum of simple modules, this chain terminates. On the other hand, if
@(Rr;) = @(Rri41), then there exist 7’ € R and a € S, such that r; = r'r;41 +a.
By the above, o!*1(a)z!*1m = 0, so

o' ()2 im = o' () T (r140) 2 T im € E.

From the definition of an m-sequence it follows that r; = r;;1. Therefore the
sequence r is weak.

2. Suppose that every m-sequence in R is strict. Corollary [3 tells us that the
chain of left ideals

ann(m) 2 o~ Y(ann(zm)) 2 --- 2 o !(ann(zlm)) D -
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is strict. Since dim spanp(m,zm,x?m,...) < oo, there exists an integer ¢ such that
x"m € spang(m,zm, x*m, ..., x'm) for all n > t. Then

ann(m, xm, z*m, ..., x'm) C ann(z"m)

o0
for n > t, and consequently () ann(xz'm) = ﬂ ann(z'm). Set I = ﬂ ann(x'm)
1=0 1=0 1=0

and take r € I. For any [ > 1, r € ann(z'm), so

o7l (r) € o7 (ann(z'm)) € o~V (ann(z! " m));

hence o~1(r) € ann(z'~1m). Then it follows that 0 ~1(1) C I, and so I C o(I). The
ring R is left noetherian, so the chain I C o(I) C 02(I)... must stop. It implies
immediately that o(I) = I.

Next we claim that there exists an increasing sequence { f(n)},>0 of nonnegative
integers such that

f(n)
o ﬂann(:z:lm) ¢ m ann(z/m).
1=0 J>f(n)

We proceed by induction. By Corollary Bl we can put f(0) = 0. Assume n > 0
f(n) )

and let @ € () ann(x'm) be such that o(a)z'm # 0 for some i > f(n). Since
1=0

s—1
I is o-stable, a ¢ I, so there exists s > f(n) such that a € () ann(x'm) and
1=0
az®m # 0. Take b € R such that 0 # baxz®m € E. If every m-sequence is strict,
then by Lemma (1), o(ba)z*t'm ¢ E. Since F is essential, one can choose ¢ € R

such that 0 # o(cba)z*T'm € E. Again by Lemma (1), cbaz®m = 0, so cba €

ﬂ ann(z'm). Since o(cba)z*Ttm # 0, we have o (ﬂ ann(z'm) | € () ann(zim).

1=0 1=0 j>s
Thus it suffices to put f(n + 1) = s. This proves the claim.
f(n)
But now, if f(n) > ¢, then I = () ann(z'm) = ﬂ ann(z'm). Since I is o-stable,
1=0 1=0

o -
m ann(z'm) | C ﬂ ann(z'm) C ﬂ ann(z/m),
=0 =0

J>f(n)

contradicting the definition of f(n). Thus R contains a weak m-sequence.
3. Let P = ann(M). Then dimp(R/P) < co and P C ann(z'm) for any .
Note that the mapping a + ann(zlm) — o l(a ) + o~ (ann(xlm)) provides an

isomorphism of vector spaces R/ann(z!m) ~ R/o~!(ann(z!m)). Thus
dimp R/o "' (ann(2z'm)) < dimp(R/P).

From Corollary Bl it follows that R contains a weak m-sequence.
4. Let r = {r, }n>0 be a strict m-sequence with degr < N. Then o7 (ry41)z/m
=0forall j < N and oV (ryy1)2V T 1m # 0. By Lemmal5]

j J(J*l)(sj(r)m

0= aj(rNH)xjm =(-1)¢q
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for all j < N. Thus

N(N +1
0’N+1('I“N+1):L‘N+1m _ (_1)N+1 ( 5 )5N+1(,’,N+1)m
N .
S Z R¢? (TN+1)m =0,
7=0

a contradiction. Consequently, in this situation, every m-sequence is weak.

5. This follows directly from Corollary [3

6. Suppose o = idg. If every m-sequence in R is strict, Corollary Bl says that the
chain ann(m) 2 ann(xm) 2 --- 2 ann(a™m) 2 --- is strict. But this contradicts
our assumption that spanp{m,zm,...,z'm...} is finite dimensional. ]

Recall that an automorphism o of the ring R is said to be of locally finite order
if for every r € R, there exists an integer n = n(r) > 0 such that o”(r) = r. If
the ring R is left socular, then nonzero left R-modules contain simple submodules.
Therefore Proposition [@ condition 1, and Corollary B give us

Corollary 10. If R is a left socular ring of q-characteristic zero, then simple left
R[z;0,0]-modules are completely reducible as left R-modules. Thus the Jacobson
radical J(R) is contained in the Jacobson radical J(R|x;c,0]). Moreover, if the
automorphism o has locally finite order, then

J(R[z;0,0]) = T(R)[z;0,9].

Proof. Since simple R[z;o,d]-modules are completely reducible as R-modules, we
have J(R) C J(R]x;0,6]). Suppose that ¢ has locally finite order. We know that
J(R|z;0,8]) N R is a quasi-regular ideal of R, so J(R[z;0,d6]) N R C J(R) and
consequently J(R[z;0,0]) N R = J(R). This implies that J(R) is d-stable and

-~

R[z;0,0]/T (R)[x;0,0] ~ (R/ T (R))[x; 7, 4],

where  is an induced automorphism and § is a g-skew &-derivation of R/J(R),
respectively. Now it remains to prove that if R is semiprimitive and socular, then
S = R[z;0,4] is semiprimitive. To this end, suppose that J(S) # 0 and let n be
the minimum of degrees of nonzero polynomials from J(S). The set {0} U {a |
azx™ + g(x) € J(5), where degg(x) < n} is a nonzero ideal of R. In particular, it
contains a minimal left ideal of the form I = Re, where e is a nonzero idempotent.
Let f(z) = ex™ + g(z) € J(S) and m > 0 be such that 0™ (e) = e. By eventually
replacing f(z) by f(z)z¥, where k is such that deg f(z)z* is divisible by m, we
have in the Jacobson radical of S a nonzero polynomial f(x) = ex! + h(z) such
that e is a nonzero idempotent, o'(e) = e, and deg h(z) < [. It is well known that

J(eSe) = eJ(S)e. Therefore
ef(x)e = ex'e + eh(z)e = ex! + h(z) € J(eSe),

where h(z) € eSe. Let eg(z)e € eSe be a quasi-inverse for ef(z)e. Then eg(z)e
has a positive degree s in x and

ef(z)e + eg(a)e = cf (x)eg(x)e.

Since e is the identity element in eSe, the right-hand side of the above equality has
degree n + s > max{n, s} > deg(ef(z)e + eg(z)e). Thus J(S) = 0. O
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In [6] the authors considered the so-called “finite Jacobson radical” Jyin(R)
of a k-algebra R, defined as the intersection of all the annihilators of all finite
dimensional irreducible (left) R-modules. Thus by Proposition [ condition 3, and
Corollary [ we have

Corollary 11. Let R be a k-algebra with a q-skew o-derivation §. If R has q-
characteristic zero, then every finite dimensional irreducible left R[x;o,d]-module
is completely reducible as a left R-module. Thus

We note that R can be viewed as a left R[z; o, §]-module with the action defined

(Z a;z’).r = Z ai5i(7").

The R[z;0,d]-submodules of R are precisely the left ideals of R which are stable
under §. Recall that § is said to be locally algebraic if R is locally finite dimensional
as a left k[r]-module. Moreover in this case, if m € R, then o~ !(anng(z!m)) =
anng (6! (0~!(m)). Thus if R satisfies descending chain condition on left annihila-
tors, then Corollary [ guarantees that for any essential left ideal E and a nonzero
element m € F, the ring R contains a weak m-sequence. Therefore we can apply

Propositions [7, B and Corollary [§ to obtain the following.

Corollary 12. Let R be a k-algebra of q-characteristic zero, with a q-skew o-
derivation §. Suppose that one of the following conditions is fulfilled:

(1) R satisfies dcc on left annihilators;
(2) R is left noetherian and § is locally algebraic;
(3) ¢ is locally nilpotent;

N
(4) there exists an integer N such that for any v € R, §N*1(r) € 3 R&I(r);

§=0
(5) 0 =idg, g =1 and the derivation § is locally algebraic.
If M is a left R[x;0,d]-module, then the singular submodule Sing(rM) over R is
also an R[x;o,0]-submodule. The left socle Soc(rR) of R and left singular ideal
Sing(rR) are d-invariant. In addition, if R contains a minimal left ideal and R
does not contain proper §-stable two-sided ideals, then R is a semisimple artinian
ring.
Proof. Let m € Sing(gM) and L = anng(m). If L is an essential left ideal of R,
then by Proposition[, L =LN§ (L) ={r € L|d(r) € L} is essential. It is also
clear that o(L) is essential, and for every r € L,
o(r)yzm = xrm — §(r)m = 0.

~

Hence o(L) C anng(axm) and xm € Sing(gM). Consequently, Sing(rM) is an
R[z; 0, §]-submodule of M.

If R contains a minimal ideal, then Soc(gR) is a nonzero and J-stable ideal of
R. Therefore if R is é-simple, then R = Soc(gR). Since R has unity, R is a finite
direct sum of minimal left ideals. O

Let H be a Hopf algebra with comultiplication A and with the group G of
group-like elements, i.e., G ={g € H | A(g) = g® g}. For g € G, let

Ly={hecH|A(h)=h®1+goh}
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be the subspace of g-primitive (skew primitive) elements. It is clear that the group
G acts on H by the conjugations h9 = g~ 'hg and that the subspace L = ®g€G L,
is G-stable under this action. Following [5], recall that an element h € H is said
to be a character element if there exists a character x: G — k* such that for all
g€G,
9~ hg = x(9)h.

If h is a nonzero character element, then the character x is uniquely determined
by the above equality, and x = x" is called a weight of h. A Hopf algebra H is
called a character if the group G is abelian and H is generated as an algebra with
unity by character skew primitive elements. This is a large class of Hopf algebras
containing, among others, quantum planes, Drinfeld-Jimbo quantized enveloping
algebras Uy (g), and G-universal enveloping algebras of Lie color algebras.

If R is an associative algebra acted on by a character Hopf algebra H, then any
character skew primitive element h € L, actson R as a x"(g)-skew g-derivation. In
this situation, any left module M over the smash product R#H is a module over
the skew polynomial ring R]x; g, h], where the action of  coincides with the action
of h, i.e., xz.m = hm. Therefore, we are in a position to apply Propositions [7] @ and
Corollary B to actions of character Hopf algebras.

Theorem 13. Let H be a character Hopf algebra over the field k of characteristic
0 and suppose that Xh(g) is not an n'" primitive root of unity (n > 1) for any
character skew primitive element h € Ly and g € G. Let R be an associative
H-module algebra. Then:

(1) Every finite dimensional irreducible left R#H-module is completely
reducible as a left R-module. In particular, Jtin(R) C Tfin(R#H).

(2) If R is left socular, then irreducible left R#H-modules are completely re-
ducible as left R-modules. Thus J(R) C J(R#H).
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