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Abstract
This paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is
one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives
improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and
iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates
that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global
approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU
approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with
efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed
simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and
CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases,
the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on
a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and
speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed
what suggests that data size boundaries for evolutionary DT mining are fading.

Keywords Evolutionary data mining · Big data · Decision trees · Parallel computing · Graphics processing unit (GPU) ·
CUDA

1 Introduction

In the last decade, the term Big Data has become extremely
popular in business, industry, and science [14]. It refers
to storing and handling of large or complex datasets that
are almost impossible to manage using traditional tools.
With such ever-growing volumes and velocity of data, new
mining and knowledge discovery techniques need to be
developed. Extracting and retrieving desired information
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and patterns from enormous quantity of data, known as
Big Data Mining, give huge opportunities as well as great
challenges [72].

This paper focuses on decision trees (DTs) which are one
of the most established and well explored machine learning
techniques. During the last 50 years of their applications
[42], DTs have been mainly induced using greedy heuristics
like a top-down approach [54]. Recent involvement of
evolutionary algorithms (EAs) into the trees induction [2]
can be seen as a breath of fresh air. Their main advantage
is the global approach in which a tree structure, tests
in internal nodes and predictions in leaves are searched
simultaneously [38]. As a result, the generated trees are
significantly simpler and at least as accurate as the greedy
alternatives.

However, direct addressing the evolutionary DT induc-
tion to big data may be unachievable, as the population-
based and iterative methods can be simply too demand-
ing. To make it feasible, some forms of parallel or dis-
tributed processing are required. For this reason, we have
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focused on graphics processing units (GPUs) to provide
parallelization of evolutionary DT induction. GPUs of
modern graphics cards/accelerators are known to afford
massive computing resources at a relatively low cost.
NVIDIA CUDA programming model [58], which sup-
ports general-purpose computation on GPUs (GPGPU), is
applied.

In this paper, we design and implement a novel
multi-GPU approach and attempt to define the scalabil-
ity bounds of global induction of DTs. The main EA
loop (selection, genetic operators, etc.) is performed on
a CPU, while the fitness related calculations are isolated
and performed on GPUs. This way, the GPUs handle
compute-intensive jobs, while the evolutionary flow con-
trol and communication tasks are left to the CPU. We
apply a data-parallel decomposition strategy [27]. Data
is spread, first, between the GPUs and next, inside each
GPU over computational cores. With efficient memory
and device resources utilization as well as by incorpo-
rating the knowledge of DT induction and evolutionary
parallelization, we manage to achieve stunning improve-
ment in the algorithm speed. Moreover, the ability to ana-
lyze large-scale data of various characteristics has become
possible.

The proposed approach is applied to a system called
Global Decision Tree (GDT) that provides a possibility for
evolutionary induction of various classification, regression
and model trees [38]. The GDT system can be applied in
many real-life applications, such as finance [17] or medicine
[20]. The acceleration of the GDT would allow large-scale
data processing and could provide a competitive solution
to greedy state-of-the-art algorithms also in terms of DT
induction time.

This paper is organized as follows. Section 2 provides
a brief background on DTs and surveys the most closely
related works. This section also includes a description
of the GDT system. In the next section, our multi-GPU
approach as well as its implementation are described in
detail. Experimental validation of the proposed solution on
artificially generated and real-life datasets is presented in
Section 4. In the last section, we conclude the paper and
outline possible future work.

2 Evolutionary induction of decision trees

In the beginning, basic information about decision trees,
methods in their induction and evolutionary algorithms are
presented. Then, related works concerning the paralleliza-
tion of evolutionary algorithms and induction of decision
trees are given. Finally, the Global Decision Tree system is
briefly described.

2.1 Decision trees

Decision trees (DTs) [36] represent one of the key
knowledge discovery methods [1, 6]. They are directed
acyclic graphs built of nodes and branches [42]. The
branches connect the nodes in a hierarchical manner. The
first node is a root node (see Fig. 1). It does not have
any parent/predecessor node. There are internal nodes
and terminal nodes. Each internal node has at least two
child/descendant nodes. Moreover, any internal node is
associated with a test that can be performed on one or
multiple attributes. The outcome of the test is represented
by a branch.

The terminal nodes are called leaves and each such a
node keeps the prediction value. In the case of classification
trees, class labels are kept in the leaves. The majority of the
tree-based inducers involve a single attribute in each test of
the internal nodes. Such trees are referenced as univariate
and they use axis-parallel hyperplanes to split the feature
space.

There are also algorithms that apply multivariate tests
based mainly on linear combinations of multiple attributes.
The oblique split causes a linear division of the feature space
by a non-orthogonal hyperplane. DTs, which allow multiple
features to be tested in a node, are potentially smaller than
those that are limited to single univariate splits, but have
much higher computational cost and are often difficult to
interpret [9].

The popularity of DTs can be explained by their easy
application, effectiveness as well as fast operation. The
hierarchical structure of tree-based approaches, in which the
relevant tests from one node to the next one are applied
one after the other, is similar to the human decision-making
process. All this makes DTs natural and easy to understand,
even for an inexperienced analyst. However, despite 50
years of research on DTs, some open issues still remain
[42]. One of the emerging issues is to meet ever-growing
computational demands (the execution times and resource
utilization), especially when applied to big data.

Fig. 1 An example of univariate decision tree
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2.2 Induction of decision trees

Inducing an optimal DT from a dataset is an NP-complete
[30] problem. Therefore, to induce decision trees in
practice, various heuristics have been introduced. One of
the most common examples are greedy algorithms. Such
algorithms make the locally optimal splits at each node
(using a defined goodness of split criterion) with the intent
of finding a global optimum. The top-down approach [54] is
the most popular method of decision tree induction. Starting
from the root node, the best test is searched locally based
on the given splitting criterion. The training instances are
next redirected to newly created nodes and this procedure
is repeated for each node until some stopping-rule is met.
In addition, the application of post-pruning [22] is often
performed to avoid (or at least to limit) the negative effects
of overfitting to the training data and to improve the
generalizing power of the predictive model.

CART [8] and C4.5 [52] are considered the two most
popular top-down based DT inducers. In the first inducer,
the goodness of split is measured by the Gini index or
the Twoing criterion, whereas the C4.5 solution uses the
gain ratio criterion. The CART algorithm generates binary
trees, while the C4.5 also accepts the multi-way splits.
The greedy strategy applied in both inducers is generally
fast and efficient in many practical problems. However, it
does not ensure that the globally best solution is searched.
One of the attempts to reduce sub-optimal solutions is
proposed in look-ahead algorithms like APDT [56]. Another
alternative is the application of ensemble classifiers, like
Random Forests [7] which induce a collection of trees
called the forest. To make a final prediction, a majority
voting is performed where each tree has a single vote.
Such a technique of the ensemble prediction decreases
the error [70], but at the same time, it increases the
model complexity and makes the solution more difficult
to understand and interpret. There were also studies that
addressed the problem of the tree complexity (size), e.g., by
a constrained number of leaf nodes [66] or by building a
customized tree for each test instance that consists of only a
single path from the root to a leaf node [61].

One of the alternative techniques that can be used to
solve difficult computational problems are evolutionary
algorithms (EAs) [69]. EAs belong to a family of
metaheuristic methods that are inspired by biological
mechanisms of evolution and are also known to be effective
at escaping local optima. The strength of such an approach
in context of DTs lies in a global search for the tree
structure and the tests in the internal nodes. The typical
EA operates on a population of individuals (trees) that
represents possible solutions to the target problem. In

each evolutionary iteration, individuals are modified with
genetic operators such as mutation and crossover, and
evaluated according to the fitness function (see Fig. 2).
Next, individuals are reproduced to a new population
of offspring whereas individuals with higher fitness are
reproduced more often. The evolutionary loop is stopped
when the convergence criteria are satisfied.

One of the first attempts to apply the global approach to
DT was investigated in genetic programming (GP) commu-
nity. In [37], LISP S-expressions (corresponding to DT with
only nominal tests) were evolved. Currently, recognized
population-based alternatives include EAs primarily [3].
However, in the literature, we may find other examples, like
ant/bee colony optimizations [13, 40], differential evolution
[5] or evolution strategy [4]. The review of global inducers
of DTs [3] shows many benefits of such an approach, like
finding more suitable models with new hidden patterns that
are overlooked by the greedy solutions. However, the global
DT induction is much more computationally demanded and,
therefore, it takes relatively more time in comparison to the
popular top-down methods.

2.3 Related works

2.3.1 Parallelization of EA

EAs can be accelerated using different parallelization
techniques [16]. There are at least three basic parallel
approaches on CPU architectures: master-slave model,
island model and a cellular one. In the master-slave
model, the management is centralized. The master processor

Fig. 2 Flowchart of the typical evolutionary algorithm
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spreads the tasks (e.g., data chunks or individuals) over
the slaves that process in parallel. Then, the results are
collected by the master. On the other side, the island
model is a distributed approach where individuals (or groups
of individuals) can evolve independently, and infrequent
migrations take place using some communication topology.

There are also different decomposition techniques in EAs
parallelization [23]. In each evolutionary iteration, there are
some algorithm parts where the individuals from the current
population are considered separately. Thus, it is one of the
ways to spread the computations over multiple processors.
It is one of the traditional decomposition techniques and
it is called a population approach (or a control approach)
[16]. The main drawback of this solution is large population
necessity in order to retain good scalability to very
large datasets. In addition, high inter-processor data traffic
may be a problem when distributed-memory systems are
used, whereas shared-memory systems can suffer from
insufficient number of available processors and memory
access contention [27, 72].

2.3.2 GPU parallelization of EA

Recent research on the parallelization of EAs has seemed
to focus on GPUs as the implementation platform [62].
The GPUs are popular parallel computing hardware
because of their wide availability, relatively low cost
and high computing power. GPU-accelerated solutions
[11, 31] use mainly data parallel approach that is the
second decomposition technique. The parallel evaluation of
instances is considered much more scalable to the dataset
size than the population approach. It focuses on spreading
the entire dataset into chunks that are processed by multiple
processors in parallel. However, despite the decrease of
the communication overhead, some issues with high inter-
processor data traffic (e.g., during the results reduction) can
still remain. There are also algorithms that parallelize EAs
using both decomposition techniques as well as additional
dimensions of parallelization [11].

GPGPU has also been successfully used with other
strategies for EAs parallelization [29, 35]. In the island
model, the group of individuals in subpopulations dis-
tributed between islands were evolved in parallel [43]. In
the BioHEL system [24], the authors proposed a two-
dimensional parallelization. Both the rules and the instances
in the training dataset were processed in parallel (coarse-
grained strategy). GPGPU was also applied to the cellular
EA framework [57]. Individuals were distributed over a
lattice of processing units with the defined neighborhood
topology. The communication only between the nearest
individuals (for selection and reproduction) was possible.

In another study [23], three-dimensional decomposition was
tested (instances, classifiers and attributes). It was showed
that a fine-grained paradigm could be more efficient on
datasets with 10–50 discrete attributes.

2.3.3 Parallelization of DT induction

As regards the induction of DTs, we can find several GPU-
based parallelizations, concerning greedy inducers [41, 49,
59], global ones [31] as well as DT ensembles, e.g. random
forests [44] or gradient boosting DTs [55, 64]. In the
CUDT system [41], the induction time of a typical decision
tree was reduced up to 55 times. In order to find the
locally best splits, a parallel search through the attributes in
each internal node was performed. The solution was later
extended with processing multiple tree nodes in parallel,
providing, however, similar speedups [59].

Concerning the parallelization of ensembles of trees, the
most straightforward approach was used in the CudaRF
system [26], where each CUDA thread was responsible for
building one tree in the forest. Another level of parallelism
was tested for random forest building for data streams
[44]. The authors proposed a GPU-accelerated solution in
which the calculations of the majority class in leaves as
well as the splits in internal nodes were parallelized. It
provided at least 300× faster induction while maintaining
similar accuracy. However, these multi-tree, black-box
solutions are beyond the direct interest of the research
presented in this paper. We focus on a fast construction
of the best single tree which can be interpreted by a data
analyst.

Concerning the evolutionary induction of DTs, a
hybrid MPI+OpenMP approach [18] was investigated for
classification trees. The master-slave paradigm and control
parallelization approach were applied. The population
was evenly distributed to the available slave processors
(computer cluster nodes and further, inside nodes, over
processor cores). This way, the most time-consuming
operations, such as the fitness evaluation and genetic
operators, were executed in parallel on the slave nodes.
The experimental validation showed that such a hybrid
parallelization was able to speed up the induction up to
15× for 64 CPU cores. Similar speedup but on much
larger datasets was achieved using a Spark parallelization
[53]. It was shown that the Spark boosted solution was
able to process really large-scale data, even up to billions
of objects. Moreover, an unmodified Spark solution can
be easily scaled up just by adding more hardware to the
cluster. However, a GPU-based acceleration appeared to
be generally faster but limited by the size of the GPU
memory [34].
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To the best of our knowledge, in the literature, there
are currently two studies that cover GPGPU parallelization
of evolutionary DT induction - one for the classification
trees [31] and one for simple regression trees [32]. In both
cases, the experimental validation on real-life and artificial
datasets showed that the GPU-supported algorithms were
able to reduce the induction time significantly, even up to
two orders of magnitude (in comparison to the original CPU
version). However, this single GPU solution had certain
limitations. The most important one concerns the limited
size of GPU global memory. When the dataset size was
above tens/hundreds of millions of objects, it could not
be loaded into the GPU memory and efficient parallel
processing was not possible [34]. To overcome this inherent
limit, a multi-GPU solution is needed. Another issue to
be faced is that GPU technology is developing so fast
that next generation graphics accelerators enforce constant
modifications of parallel algorithms to exploit full GPGPU
potential.

Our preliminary attempts to create the multi-GPU solu-
tion were presented in the GECCO conference poster [33].
In this paper, the solution is developed further, described in
detail and validated thoroughly. New contributions include,
among others:

• GPU memory access patterns are considered and
optimized GPU kernels are developed;

• more variants of genetic operators are considered;
• an in-depth analysis of the performance of the multi-

GPU solution concerning execution time, speedup as
well as dataset size scalability and scalability on
multiple GPUs is performed;

• both artificial and real-life large-scale datasets are
processed;

• scalability bounds of evolutionary induction of DTs for
large-scale data are identified;

• dataset characteristics impact (size and dimension) on
convergence and speedup is explored as well;

• a non-binding comparison of induction time with a
typical greedy solution is presented.

2.4 Global decision tree system

In this paper, we adapted the Global Decision Tree
system (GDT) [38] as it enables evolutionary induction of
various DTs, and it has been already studied in terms of
parallelism. Another benefit of the GDT system is that it
uses a standard EA framework [47] with an unstructured,
fixed size population, and a generational selection. In this
study, we have deliberately focused only on a univariate
GDT version designed for classification problems to
facilitate understanding and to eliminate less important
details.

2.4.1 Population and selection

Individuals in the population are processed in their actual
form as univariate binary classification trees (without any
additional encoding). The reason for this is that DTs
are quite complex structures, and for a given dataset,
the optimal structure that consists of nodes and splits is
unknown in advance.

The generation of the initial population should be carried
out randomly to include as many different solutions as
possible (providing population diversity and exploration
ability). In the initialization phase, greedy heuristics are
often used due to the large search space [38]. The drawback
of strategy is the possibility to trap EA in local optima. On
the other side, it is considered as an easy way of reducing
computation time. In the GDT system, initial individuals are
generated by using a simple top-down approach, but each
individual is induced using only a random fraction of the
training dataset, to preserve the balance between exploration
and exploitation.

Univariate tests at each non-terminal tree node depend
on the type of the feature. In the case of nominal-valued
features, the mutually exclusive groups are created and
associated with the outcomes. For continuous attributes,
splits with inequality tests and binary outcomes are applied.
Tests are created by randomly selecting two training objects
from different classes (so-called mixed dipole) that are
located in the considered node [38]. Then, a test is randomly
created in order to effectively separate these two objects into
subtrees. The recursive partitioning ends when it reaches
the pure leaf (a leaf with training objects from the same
class) or the number of instances is insufficient (by default,
a minimum number of instances equals 5).

The GDT system uses the linear ranking selection [47]
as a selection mechanism. Moreover, the elitist strategy is
applied. It means that, in each iteration, the best individual
founded so far is copied to the next population. The
evolutionary search ends when a terminal condition is
met: the pre-defined number of generations without fitness
improvement of the best individual or the maximum number
of generations is reached.

2.4.2 Fitness function

The main role of the fitness function is to reflect the goal
of the algorithm. At the same time, it has to drive the
evolutionary search. There can often be more than just
one goal, especially in prediction tasks where not only the
accuracy but also the simplicity of a predictor is desired
[38]. It is common that a highly complex model that works
perfectly on training data may perform worse on unseen
data, due to the over-fitting. Therefore, in real-life systems,
a multi-objective optimization is often applied.
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The GDT system [38] provides various multi-objective
optimization strategies, including weight formula, lexico-
graphic analysis, and Pareto-dominance. In the context of
univariate classification trees, the model accuracy simulta-
neously with the tree complexity (represented as the number
of nodes) is considered. The applied fitness function is max-
imized and is represented as a simple weighted form, as
follows:

Fitness(T ) = Accuracy(T ) − α ∗ (Size(T ) − 1.0), (1)

where Accuracy(T ) is the classification quality of the tree
T estimated on the learning dataset, Size(T ) is the number
of nodes, and α is a user-defined parameter that reflects
the relative importance of the complexity term. A similar
concept may be found in a cost complexity pruning of the
CART system [8].

2.4.3 Genetic operators

Genetic operators control evolutionary search and provide,
at the same time, a necessary diversity and novelty. Two
specialized operators that correspond to crossover and
mutation are proposed in the GDT system. Each one has
several variants [38] that impact the structure of the tree
as well as tests in the split nodes. The general role of the
crossover operator is to mix two existing individuals and
create new solutions (offspring) with certain similarities
to their ‘parents’. To perform the crossover, an exchange
point (node) in each affected individual is randomly chosen.
The typical variant exchanges the subtrees starting in the
selected nodes, which is the equivalent of typical crossover
that can be found in genetic programming [37]. In the case
of non-terminal nodes and the equal number of outcomes,
an exchange of randomly chosen branches or tests is also
possible. An example where individuals exchange subtrees
is illustrated in Fig. 3.

The mutation operates on a single individual. In the GDT
system, it starts with the selection of a node type: a non-
terminal node or a leaf. Both types have an equal probability
of being chosen. Then, the algorithm creates the ranked list
of expected nodes and selects the one that will be affected
using a mechanism similar to the ranking linear selection
[47]. If a non-terminal node type is selected, the ranking
considers two metrics:

• Position of the node (in order to mutate more often the
lower parts of the tree). Changes in the nodes located
near the root (or the root itself) may shift the entire tree
structure, while the mutation of the nodes in lower tree
levels has just a local impact.

• Prediction performance of the node (in order to more
likely mutate the nodes with a high error rate per
instance).

Fig. 3 An example crossover between two individuals and their
resulting offspring. Internal nodes as well as a tree root are represented
by circles, while leafs by rectangles. Bold line represents an univariate
test in the current tree node

If a leaf-node type is selected, then only the second criterion
applies. Pure leaves (with only objects from one class) are
not considered in the ranking. This way, nodes in the lower
parts of the tree and/or the ones with a higher number of
misclassified objects are more often mutated.

There are several variants of mutation provided by GDT,
which influence both the tree structure and the splits. Here,
we include just a brief listing:

• Prune - reduces a subtree into a leaf (acts like a standard
pruning);

• Exchange parent with son - a test of the parent node is
replaced with a test from a random son (pruning of the
internal node);

• Expand - a selected leaf is extended to a sub-tree with a
randomly chosen test (expansion of the tree);

• New test - a test in the internal node is reinitialized using
a new mixed dipole (another attribute can be used);

• Shift threshold - a splitting threshold (on the same
attribute) is shifted.

For the detailed analysis of all variants, please refer to our
previous works [38].
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3Multi-GPU accelerated solution

This section covers the proposed multi-GPU acceleration
for the evolutionary induction of DTs. At first, a brief
introduction to GPGPU and CUDA is given. Next, our
GPU-boosted algorithm is described in detail.

3.1 GPGPU, CUDA

Modern graphics accelerators/cards are equipped with
thousands of tiny computing units, called GPU cores (see
Fig. 4). Each GPU core, though smaller, simpler, and slower
than a CPU core, is tuned to be especially efficient at
the basic mathematical operations. This simplicity allows
many more GPU cores to be crammed into a single
chip. Moreover, current GPU architectures are approaching
terabytes per second memory bandwidth that, coupled with
many computational units, creates an ideal device for
running multiple tasks in parallel.

It is becoming more common that modern graphics
accelerators have an unmatched price/performance ratio
which is simply not achievable using only multi-core CPUs.
Moreover, multiple GPUs can be installed in a single
workstation saving space and energy in comparison to
traditional CPU-based clusters. Thus, not only graphics
applications, but also general-purpose computations on
GPUs (GPGPU) have gained in popularity [63, 67].

Researchers and IT staff have seen the computational
potential of graphics cards in general-purpose computations
for many years [51]. However, the computational power of
GPUs was difficult to exploit without efficient and intelli-
gible development environments. Compute Unified Device
Architecture (CUDA) [65] is a programming interface and
parallel platform that has revolutionized GPGPU. Although
there are some open alternatives (like OpenCL) and CUDA
is vendor-specific, it is the most widespread platform.

In CUDA, a CPU works together with a GPU (a
specialised co-processor to parallel processing). It means
that a part of CPU’s tasks can be delegated to the GPU
and be processed by thousands of threads in parallel
concurrently to the CPU operations. From a programming
perspective, the CPU launches kernels that are the functions
run on the GPU. For each kernel, many threads are
created. By default, all threads execute the same kernel
code. However, each thread has an ID which is used for
taking control decisions and also for calculating memory
addresses. The threads are hierarchically grouped into
thread blocks, which are, in turn, arranged in a grid.

The structure of CUDA GPU memory is also hierarchical
[58]. Several memories with different features (like latency,
bandwidth, read-only access), various scopes (global, local)
and lifetimes are provided. The global memory (residing
in device DRAM) has the largest capacity, is globally
accessible to all threads but has the highest latency. On
the other side, there are registers, shared memory, caches,
etc., that are fast but small on-chip memories. This multi-
level memory allows programmers to further customize the
throughput of many high-performance CUDA applications
[10].

The CPU load reduction using GPGPU is recently widely
adopted in many computational intelligence methods [11,
48, 71]. In evolutionary data mining, high computational
complexity is naturally associated with the using of
iterative and population-based search techniques, especially
when large-scale data is handled. Thus, the application of
GPUs usually focuses on boosting the performance of the
evolutionary search directly [12, 15, 31].

3.2 Multi-GPU approach

The general idea of the GPU-accelerated approach is
illustrated in Fig. 5 and in Listing 1. The CPU controls

Fig. 4 The CUDA hardware architecture. A specialized microproces-
sor (GPU) is situated next to the CPU. The GPU consists of thousands
of small computing units (cores) able to efficiently process many tasks
in parallel concurrently to the CPU. The GPU cores are grouped into

streaming multi-processors (SM)s. The structure of CUDA GPU mem-
ory is also hierarchical. There are registers, shared memory, caches
that are fast but small on-chip memories, while the global memory
(off-chip RAM) has the largest capacity but has the highest latency

5689Multi-GPU approach to global induction...



Fig. 5 General flowchart of the GPU-accelerated approach

the main loop of the evolution process. Also, most of
the algorithm phases that are not time-demanding are
performed on the CPU (like the creation of an initial
population, selection, genetic operators). The most time-
consuming tasks (like error and fitness calculations as well
as dipoles searching) are parallelized on GPUs. Such an
architecture of the GPU-supported implementation ensures
that the behavior of the original EA is not affected.

The initialization and selection steps remain unchanged.
These steps are not parallelized because their execution
times are negligible compared to the total execution time
of the algorithm (less than 1%). Moreover, the initial
population is built only once before the evolutionary loop
on small fractions of the dataset.

We apply the data decomposition strategy [27]. The
whole dataset is spread over the GPUs during the
initialization. On each GPU, a space in the global memory is
allocated to store a received part of the dataset. By default,
the dataset is divided equally between the GPUs, leading to
balancing the workload for homogeneous GPU resources.
The dataset parts are kept on all GPUs till the evolutionary
loop is finished. This way, the GPUs have constant access
to the training objects, and the heaviest CPU-GPUs data
transfer is done only once.

The GPUs are asked to do time-demanded calculations
when a genetic operator is successfully applied. All
available GPUs are requested. First, the CPU performs
relatively fast operations (e.g., concerning changes in a tree
structure). Second, the modified individual is broadcasted
to all GPUs (see Fig. 6). Then, the GPUs are used to help
in the individual evaluation and searching the dipoles. The

Fig. 6 Work spreading over the GPUs. Each GPU processes the same
individual but it is fed by a different chunk of the dataset. At the end,
all GPU send back the partial results to the CPU that merges them to
obtain the desired individual statistics

CPU calls a kernel for each GPU. All GPUs process the
same individual in parallel but operate on different chunks
of the dataset. In the kernel, each GPU propagates the
assigned objects of the training dataset through the tree
starting from the root node to appropriate leaves. The next
level of parallelism is provided inside each GPU where the
dataset chunk is divided further over the blocks and threads.

Finally, each GPU holds a part of the results that are sent
back to the CPU. All received parts are merged with the
overall result which is finally used to update the affected
individual. Each partial result concerns distributions of
classes and randomly selected objects. Based on them, the
CPU calculates errors and prepares pairs of objects for
future dipoles in all leaves. Then, they are propagated from
the leaves toward the tree root to determine the fitness value
finally.

By default, each GPU is controlled by a separate CPU
thread. The CPU threads are created by using OpenMP
directives. When the CPU part is run on a multi-core/multi-
processor environment, particular kernels can be launched
in parallel, eliminating kernel launch overheads. The CPU
threads need to be synchronized (using a critical section)
when the partial results received from one of the GPUs are
added to the overall result.

3.3 Single GPU parallelization

Each GPU is responsible for a chunk of the dataset
assigned by the CPU. This chunk is divided further (at
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Listing 1 Pseudo code of the main evolutionary loop and multi-GPU
loops

two levels) to spread calculations over the cores within
a GPU. At first, the chunk is divided into smaller parts
between different GPU blocks. Inside each GPU block,
the objects (from the assigned fraction of the dataset) are
spread further over the threads. We decided to focus only
on data decomposition strategy (at three levels, in total), as
it is a powerful and flexible (scalable) strategy for deriving
concurrency when operating on large data [27, 31]. Other
decomposition strategies (population-based or a hybrid)
were not able to provide enough parallelism (consequently,
better performance) due to small population sizes that we
consider.

Inside each GPU, the calculations are organized into two
kernel functions (fitnesspre and fitnesspost , see Fig. 7). The
fitnesspre function is called to propagate objects from the
tree root to the leaves (see Listing 2). For each block, a
copy of the evaluated individual is created. Thanks to this,
the threads from different blocks accumulate results in the
separated tree copies. They do not need to synchronize
each other and can work independently. Threads inside
each block are synchronized using atomic operations when
needed. This way, the GPU threads (both inside and outside
the blocks) process the same individual in parallel but
perform calculations on different chunks of the data. Finally,
this kernel outputs the number of objects of each class in
each tree leaf. In addition, two randomly selected objects
of each class are provided in each tree leaf, which is later
required for dipoles. However, the results are scattered over
separated copies of the individual created for each GPU
block.

Fig. 7 Inside each GPU, the data decomposition strategy is also
applied. A part of the dataset assigned to the GPU is spread further
over GPU blocks and threads. Each thread processes different objects
and has a roughly equal amount of work to do
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Listing 2 Pseudo code of the first kernel function

The purpose of the fitnesspost function is to reduce
the partial results from multiple copies of the individual
(see Listing 3). First, it reduces information about the
distributions of classes in the leaves. Moreover, in each
leaf, two objects of each class are randomly selected from
the objects provided by the first kernel function. After the
reduction, the obtained partial results are copied from the
shared memory space to the global memory. Finally, the
GPU sends the obtained tree statistics as well as objects
for dipoles to the CPU. The CPU updates the affected
individual, and if there is any GPU that still processes data,
it waits for the rest of the results.

3.4 Memory and implementation aspects

To provide dataset size scalability and to improve overall
solution performance, we decided not to store the arrange-
ments of objects. Thus, the information which objects fall
into which tree nodes during the evolutionary search is not
accumulated on the CPU side (in contrast to the sequen-
tial version). However, some variants of genetic operators
require mixed dipoles (e.g., reinitialization of a test). That is
why the GPUs provide (by default) two objects from each
class in each tree node. These objects are used by the CPU
to constitute the dipoles. In order to store all objects located
in each tree node on the CPU, GPUs would have to col-
lect, save and finally transfer this information to the CPU. It
would take much more time than drawing and transferring

Listing 3 Pseudo code of the second kernel function

two objects in each tree node by the GPUs to the CPU.
Moreover, the memory size requirements would signifi-
cantly increase that could limit the dataset size scalability of
the solution.

The representation of trees and dataset differs between
the CPU and GPU. On the GPUs, to yield efficient GPU
memory management [65], they are represented by one-
dimensional arrays. The dataset is transferred to the GPUs
only once before the evolution start. Thus, the time of
transformation and sending is negligible even if the dataset
is large. As regards the trees, in each iteration, tens of
individuals are transferred to the GPUs. Before sending,
their flat representation is created based on their references
(pointers) CPU representation. Such a flat representation is
also used during GPU computations. The array index of the
left child of the i-th node equals (2 ∗ i + 1), while for the
right child, it is (2∗ i +2). When considering large datasets,
the time of transformation and transfer of individuals, even
in each iteration, is also negligible [31].

In GPU-accelerated applications, memory access pat-
terns are critical for computational efficiency [45]. Thus,
the choice of an appropriate data layout is an important
issue. In our case, the most frequently read/written data is
the information about the training objects and tree nodes.
At the same time, this information is also the most massive
data. The dataset objects as well as trees are stored in one-
dimensional arrays. For arrays of items, there are two major
layouts: Structure-of-Arrays (SoA) and Array-of-Structures
(AoS) [60]. In SoA, multi-value data (e.g., values of the
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attributes of the dataset) are stored in the separated arrays
(struct dataset{ float tabAttr1[]; float
tabAttr2[]; ...; tabAttrN[];}). In AoS, there
are grouped in a structure: (struct Object{ float
attr1; float attr2; ...; float attrN; };
Object dataset[];.

The choice of data layout is not always obvious; however,
it should primarily minimize the number of memory
transactions on the off-chip (the slowest) global memory. In
the algorithm, we decided to apply the SoA layout which
is usually preferred from GPU performance perspective
because one thread may copy data to cache for other threads.
This is called a coalesced memory transaction when threads
within the same warp access consecutive memory elements
[65]. Such global memory access decreases the number of
memory transactions and, as a result, minimizes DRAM
bandwidth.

Concerning the GPU shared memory, it is applied
when the reduction of tree statistics is performed. Finally,
the merged results are copied from the shared memory
to the global memory space before the fitnesspost ends.
Nevertheless, the size of the GPU shared memory is usually
limited to 48 KB per SM [50]. Thus, the trees of limited
size can be handled by this mechanism. For larger trees, the
algorithm uses the default global memory space. Moreover,
at the beginning of each kernel, frequently used data (trees,
objects) are copied to local variables explicitly.

4 Experiments

In this section, we present experimental analysis of the
proposed multi-GPU approach, performed on artificially
generated and real-life datasets.

4.1 Setup

An artificially generated problem called Chess3x3 with
two classes is used. It has two real-values attributes and
objects arranged on a 3 × 3 chessboard (Fig. 8). It has
a two-dimensional domain with three intervals in each
dimension. We consider five regions labeled as ‘x’ and
four regions labeled as ‘+’. All instances are created using
a random number generator with uniform distribution.
Decision borders are defined analytically. An ideal tree for
this problem has a moderate size: 17 nodes and of which 9
leaves (5 with ‘+’ and 4 with ‘x’).

We deliberately used the synthetic dataset so we can
scale it freely and have full control over the tree induction
process, as we know exactly when the best individual
reaches the optimal or near-optimal solution. We examined
a various number of training objects (from dozens of
thousands to a billion) as well as attributes (from two to

Fig. 8 An example of analyzed Chess3x3 dataset variant and the
corresponding ideal structure of a classification tree

ten thousand), where additional attributes were randomly
generated.

Concerning real-life datasets, two large datasets from the
UCI Machine Learning Repository [21] were tested:

• Suzy dataset (5 million of instances, 18 features, 2
classes) - the physics dataset that concerns the problem
of classification of signal process which produces
supersymmetric particles and a background process
where no detectable particles are produced;

• Higgs dataset (11 million of instances, 28 features, 2
classes) - the physics dataset that has been produced
using Monte Carlo simulations; refers to a classification
problem to differentiate between a signal process which
produces Higgs bosons and a background process
which does not; one of the biggest datasets found in the
UCI repository;

In the experiments, we used 4 NVIDIA Tesla P100 GPU
cards, each equipped with 3 584 CUDA cores and 12 GB
of memory. They were installed in a workstation with the
dual processor Intel Xeon E5-2620 v4 (20 MB Cache)
and 256 GB RAM. Each CPU contained 8 physical cores
running at 2.10 GHz. The host operating system was a 64-
bit Ubuntu Linux 16.04.02 LTS. The sequential algorithm
was implemented in C++ and compiled with the use of
gcc version 5.4.0. The GPU-based parallelization part was
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Table 1 Default GDT parameters

Parameter Value

Population size 64 individuals

Crossover rate 20% assigned to the tree

Mutation rate 80% assigned to the tree

Elitism rate 1 individual per generation

Max generations 10 000

Block/Thread numbers 256×256

implemented in CUDA-C and compiled by nvcc CUDA 9.0
[50] (single-precision arithmetic was applied).

The GDT framework is regular generational EA, thus
parameters such as population size, maximum number of
generations, mutation and crossover probabilities as well as
elitism rate have to be chosen before the evolution starts. We
use a default, recommended set of GDT parameters, which
are briefly listed in Table 1 [38]. For in-depth description
and settings of additional parameters like probabilities
of different mutation and crossover variants and GPU
configurations, please refer to [31, 38].

As this paper aims to assess the size and time
performance of the GPU-based solution, the exact results for
the classification accuracy are not included. However, for
the Chess dataset, the GDT system manages to induce trees
with optimal structures (8 internal nodes and 9 leaves, see
Fig. 8 and perfect (or near-perfect) accuracy, over 99.9%).
Such a result was obtained for all tested combinations
(number of objects and attributes), with the difference
that the number of evolutionary iterations varied. Detailed
information about accuracy performance of the GDT system
can be found in our previous works, e.g. [38]. All presented
results are the averages of 5-10 runs.

4.2 Multi-GPU speedup

This subsection presents the induction times and the
speedup of the GPU-accelerated algorithm on the Chess
dataset with 2 attributes as well as on two real-life datasets.
Table 2 shows results of the algorithm running on 1, 2 or
4 GPUs for Chess datasets with various number of objects
(from 10 thousand to 1 billion). As we can see, with 4 GPUs,
we manage to successfully induce a classification tree for a
12 GB dataset with 1 billion instances in about 4 hours. We
have estimated that the sequential GDT system would need
over a year to calculate such a dataset, and using GDT with
OpenMP parallelization [18] over 16 cores would decrease
this time to a few months.

The huge gap between OpenMP and GPU parallelized
versions, as well as the impact of various number of GPUs
on the tree induction time is visualized in Fig. 9. One

Table 2 Mean induction times of the GPU-accelerated algorithm for
various number of objects (from 10 thousands to 1 billion) of the Chess
dataset running on 1, 2 or 4 GPUs (in seconds, and additionally in
hours/minutes for 4 GPUs)

Dataset size 1 GPU 2 GPUs 4 GPUs

10 000 20 17 15 (<0.5 min)

100 000 24 22 17 (<0.5 min)

1 000 000 44 34 24 (<0.5 min)

5 000 000 197 102 55 (≈ 1 min)

10 000 000 426 210 108 (≈ 2 min)

50 000 000 2512 1348 621 (≈ 10 min)

100 000 000 5067 2716 1285 (≈ 20 min)

1 000 000 000 56961 26747 13538 (≈ 4 h)

can easily see that the multi-GPU approach accelerates the
global induction at least hundreds of times. For 50 million
objects, the speedup almost reaches 3 000× for 4 GPUs,
while the number of CUDA cores in a single Tesla P100
GPU is equal 3 584. In comparison to the OpenMP and
hybrid MPI+OpenMP parallizations [38], the multi-GPU
solution provides at least one order of magnitude better
speedup.

It is clearly visible that using more GPUs in parallel
calculation significantly decreases the computation time;
however, the scale of improvement depends on the size
of a dataset. For smaller datasets (below 10 million), the
scalability is below linear, whereas for the larger datasets,
we can observe linear or even a superlinear speedup (see
Fig. 10). The difference in the obtained acceleration can be
explained by the different ratio of computation time spent in
GPU and CPU to the total evolutionary induction time. For
smaller datasets, besides the most time expensive algorithm
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phase that is parallelized, other algorithm parts (like
GPU memory allocation/deallocation, CPU-GPU memory
transfers, statistics propagation, and CPU calculations)
contribute importantly to the overall execution time as it
was previously observed in [31]. Moreover, smaller datasets
are not able to saturate multiple GPU cores. With larger
datasets, GPU calculations cover almost all the induction
time and thus the time of other operations is unnoticeable.
The value of linear speedup can be taken as the (upper)
scalability bound.

Another scalability issue concerns the size of the dataset
(the number of objects). Figure 9 and Table 2 show that:
(i) the time of computation increases approximately linearly
with the rise of the number of objects, and (ii) the speedup
provided by the solution does not decrease when the size of
the dataset grows. Thus, we can say that the solution also
provides good scalability concerning the dataset size. In this
case, the upper scalability bound results from the available
GPUs’ memory. For a single Tesla P100 GPU card equipped
with 12 GB of memory, it is a little more than 1 billion
of chess3x3 dataset objects (exactly 1 033 000 000 objects
[34]). However, this dataset size limitation is easily shifted
by adding more GPUs. On the other side, this limitation may
be a source of the superlinear speedup observed in Fig. 10.
A single GPU card with almost fully occupied memory can
process less efficient than two half-occupied GPUs.

Concerning the real-life datasets, the time results are
summarized in Table 3. We see that the multi-GPU approach
also scales almost linearly. In order to feel the real difference

Table 3 Mean induction times (10 000 iterations) of the GPU-
accelerated algorithm for two real-life datasets running on 1, 2 or 4
GPUs (in seconds)

Dataset 1 GPU 2 GPUs 4 GPUs

Suzy 1 976 903 480

Higgs 5 025 2 491 1 239

introduced by the GPU-based approach, we should look at
induction times of the original sequential version. We have
estimated that for the Suzy dataset, 10 000 evolutionary
iterations need about two weeks, while for the Higgs dataset,
over a month to calculate. On the other hand, the induction
using 4 GPUs takes only 480 s (8 min) and 1 239 s (20 min),
correspondingly.

4.3 Influence of the data characteristics

In most of the typical validations of the parallel data
mining approaches, a silent assumption is accepted to scale
the datasets by only adding more instances. However, in
real-world applications, such an idealization is not always
possible. A dataset may have a very high number of
attributes that, in some cases, even exceeds the number of
instances, which is a common case e.g., with genomic data
[25]. Therefore, in order to show the impact of the data size
(number of objects) and dimension (number of attributes)
on the convergence and the speedup of the evolutionary
searches, we added randomly generated (noisy) attributes to
the tested dataset and performed analysis. Figures 11 and 12
show the influence of the number of attributes/instances on
the convergence of the best individual during the evolution.
As can be expected, a higher number of attributes or
instances in the dataset increases the number of iterations
required by the GDT system to find the best fitness value
(Fig. 11).

Interestingly, the impact of these two data characteristics
on the algorithm convergence is much different. For the
Chess with 2 attributes, the increase of objects does not
really influence the number of required iterations. However,
when additional random features occur, the dataset size
factor starts to matter. The noise influences drastically
with the rising number of attributes. This is a result of
unproductive or even harmful applications of variation
operators used on the irrelevant attributes. The improvement
of the best individual is much more likely when e.g.,
mutation variant considers tests performed on a meaningful
attribute, but such attributes are drawn less frequently when
the amount of noise rises. From Fig. 11, we can see that
the linear increase in the number of attributes causes at
least a polynomial increase in the number of iterations. It
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is especially visible for the datasets with a higher number
of instances (please note that the number of iterations is
presented on a logarithmic scale).

Similar conclusions can be drawn by analyzing Fig. 12
which illustrates the size of the best individual. The
number of iterations required for GDT to find the best
individual (with a proper size) firmly increases, especially
with the growth of the number of attributes. Nevertheless,
for all tested cases, the GDT solution is capable of
finding the optimal (or near-optimal) solution. In addition,
we managed to verify the efficiency of the multi-GPU
parallelization when the number of attributes grows. The
additional experiments (not included) showed that the
dataset dimension does not influence the performance of the
GPU-based algorithm on condition that the dataset fits into
GPUs memories.

4.4 Top-down vsmulti-GPU comparison

For a general and non-binding comparison, we have also
checked how a typical top-down solution would perform on
the tested datasets. Validation was performed with a Weka
software [28] with the state-of-the-art C4.5 decision tree
learner. We were curious whether the evolutionary GPU-
accelerated solution can be competitive with the sequential
version of the greedy inducer. Table 4 shows the mean
induction times (in seconds) of the sequential GDT, C4.5
algorithm (Weka default implementation under the name of
J48), Spark-accelerated GDT, GPU-accelerated GDT [31]
as well as multi-GPU supported one using 4 GPUs for the
Suzy and different Chess variants.

As we can see, starting from the Chess with 1 million
instances, the proposed solution is much slower than J48.
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However, when the number of instances grows (e.g., for
100 million), it starts to outperform the greedy approach.
Tests for Chess with 1 billion instances as well as for Higgs
dataset were not performed as the J48 algorithm ran out of
memory during the tree induction. Table 4 gives us a general
impression about the speed of the multi-GPU GDT solution,

and we see that our approach is capable of competing with
the sequential greedy inducers but rather for big data.

The obtained induction times seem to be also promising
when compare with the Spark-accelerated version of the
global inducer [34, 53]. The Spark-based solution was
able to process really huge datasets (e.g., 4 billions of

Table 4 Mean induction times (in seconds) of the sequential top-down (J48 algorithm) [28], sequential GDT [38], Spark-accelerated GDT [53],
GPU-accelerated GDT [31] and multi-GPU solution for various datasets

Dataset J48 (Weka) GDT GDT Spark GDT 1 GPU GDT 4 GPUs

Chess 1 000 000 6.5 22 897 1 471 44 24

Chess 10 000 000 93 266 464 2 028 426 108

Chess 100 000 000 1 350 ≈four weeks 4 917 5 067 1 285

Suzy 3 109 ≈two weeks 1 595 1 976 480

5697Multi-GPU approach to global induction...



instances). However, we see that it is much slower (see
Table 4) and provides worse performance per watt as well as
performance per price factors than the multi-GPU solution.
In addition, we have attempted to confront the multi-GPU
solution with the distributed version of the classical
greedy inducer boosted by the well-known Spark’s MLlib
library [46, 68]. MLlib on 64 cores needed about 100
seconds to mine the real-life Suzy dataset. However, DTs
generated by MLlib were clearly overgrown in comparison
with ones generated by GDT (from 5 to 7 times more
number of nodes). Naturally, we understand that other
parallel/distributed version of the top-down inducers could
outperform multi-GPU GDT in terms of speed. Anyway,
we would like to emphasize that our goal was not to race
with greedy inducers but to accelerate the global (EA-based)
approach as that it can be directly applied in big data mining.

The accuracy and complexity of the induced trees by
global and greedy approaches for the Chess dataset are
the same. Both algorithms manage to find an optimal
tree structure and almost perfectly classify the tested
instances. In the case of the Suzy dataset, the estimated
accuracies are practically equal for both the GDT system
and J48. However, the trees generated by the J48 learner
are overgrown (containing even about 8 000 leaves), which
makes it almost impossible to analyse and interpret. The
GDT system provides a much smaller predictor (over
two orders of magnitude). Additional experiments (not
included) have shown that by adjusting α term, the GDT
system can also induce larger trees (with even higher
accuracy). However, we believe that building such a
complex predictor is not what ‘white box’ learners (like
DTs) are designed for.

5 Conclusions

This paper investigates the scalability bounds of the
evolutionary induction of decision trees in the context
of big data. We have demonstrated the importance and
effectiveness of the multi-GPU approach for the large-scale
datasets with different sizes and dimensions. Experimental
validation reveals how the characteristics of the dataset
impact the convergence of evolutionary learning.

Our novel multi-GPU parallelization (that incorporates
the knowledge of the global DT induction and EAs)
is capable of accelerating the induction significantly.
Experiments show that we manage to induce classification
trees for a 12 GB dataset with 1 billion instances in
less than 4 hours and achieve speedup almost 3 000 ×,
to the sequential version, using 4 GPUs. The solution
scales linearly when more GPUs are added. We also
provide a loose, non-binding comparison with the sequential
version of a greedy top-down solution and show that

the GPU-accelerated global approach can be highly
competitive.

We see many promising directions for future research.
We plan to extend our approach to the rest of GDT
framework variants of decision trees, including regression
trees with linear models in the leaves (model trees) [19].
Hybrid parallelizations, such as MPI/CUDA, are also within
the scope of our interest. Then, the number of GPUs will not
be limited by a single workstation, and we suppose that the
obtained speedup allows us to process even bigger datasets
or to deal with data streams [39]. Moreover, additional
levels of population/individual decomposition as well as
computation and data transfer overlapping mechanisms are
interesting directions to explore.
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