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A new approach to texture characterization from dynamic CT scans of the liver is presented.
Images with the same slice position and corresponding to three typical acquisition phases are
analyzed simultaneously. Thereby texture evolution during the propagation of contrast
product is taken into account. The method is applied to recognizing hepatic primary tumors.
Experiments with various sets of texture parameters and two classification methods show that
simultaneous analysis of texture parameters derived from three subsequent acquisition
moments improves the classification accuracy.
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1. Introduction

Computed Tomography (CT) in now a widely applied tool for diagnosis of hepatic
tumors. The visual analysis of image series, acquired usually before a contrast product
injection and during its propagation, enables doctors to detect lesions and to recognize,
to a certain extent, the type of pathology. However, in most cases, visual inspection of
CT scans could not be sufficient for proper image interpretation. Even for experienced
radiologists, the correct differentiation of tumor affected tissue is a difficult task. The
definitive diagnosis often requires invasive procedures like needle biopsy or even
surgery, which carry a risk of complications. New computer-aided image processing
methods (in particular methods of their texture analysis), in combination with effective
classification algorithms, can considerably improve the accuracy of the diagnosis.
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Extracting the information not normally detected by the human eye, those techniques
could reduce or even eliminate the necessity of performing the invasive techniques [1].

An objective and explicit characterization of image regions is one of the crucial
problems to deal with when a computer aided image analysis is performed. One of the
most useful sources of information about analyzed image regions could be their texture
[2]. The texture analysis consists in extracting a set of numerical parameters (so-called
texture features) to characterize Regions of Interest (ROIs) defined in the organs under
study. Each of the texture parameters expresses a specified property of the texture, like
coarseness, homogeneity, or the local contrast. So far, a great variety of texture features
extraction methods has been investigated. The proposed texture parameters are
generally derived from simple (e. g. first order and gradient-based) statistics or more
sophisticated (for example, based on co-occurrence matrices [3] or run-length matrices
[4]) statistical properties of the image. Another possibility encompasses model-based
approaches (e. g. fractals [5] and Markov fields [6]), transform methods (Fourier-based
and Gabor-based [7], or wavelets [8]) or mathematical morphology operations [9]. The
proposed methods of texture analysis, appropriately adapted for a particular clinical
problem, have successfully been applied to a broad range of imaging modalities and
diagnostic problems such as: classification of brain tumors (Magnetic Resonance
Imaging) [10], solid breast nodules (ultrasound) [11], botulism on trabecular bone (X-
ray radiograms) [12], coronary plaques (intravascular ultrasound) [13], or focal liver
lesions, (Computed Tomography) [14]. An exhaustive review of the methods and their
medical applications can be found in [1].

The first application of texture analysis for characterization of pathologically
changed regions of liver tissue in tomographic images was presented in [15]. In the
work it was shown that values of the gray level distribution derived from the run-length
matrix were significantly different in normal and malignant tissue. Chen et al. [16]
proposed an automatic diagnostic system for CT liver image classification that was able
to automatically find, extract the liver boundary and to further classify its two major
malignant lesions. The system used an artificial neural network in combination with
fractal and co-occurrence features. A similar approach (the back-propagation neural
network based on first order and co-occurrence features) was applied to recognizing a
normal and abnormal liver [17]. In [18] the combination of four different fractal
dimension estimators (corresponding to the power spectrum method, box counting
method, the morphological fractal estimator and the kth-nearest neighbor method) and
the fuzzy C-Means algorithm were applied to differentiate normal liver parenchyma
from hepatocellular carcinoma. Recently, Gletsos et al. [14] presented a system that
used co-occurrence descriptors and three sequentially placed feed-forward neural
networks for classification of normal and pathological liver regions. Finally, in [19] a
computer-aided diagnostic system to classify focal liver lesions by an ensemble of
neural network and statistical classifiers was proposed. This system used first order
statistics, co-occurrence matrix and gray-level difference matrix features, Laws’ texture
energy measures, and fractal dimension estimators to characterize four different types of
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liver tissue. All aforementioned systems were applied to non-enhanced CT scans and
did not consider dynamic CT.

In our investigations [20], texture classification of the hepatic metastasis was
performed on the basis of dynamic CT. Images corresponding to three acquisition
phases (non-enhanced images and after a contrast product injection, in arterial and
portal phases) were analyzed separately. It was shown that considering the acquisition
moments could improve the classification accuracy. In [21], for the first time, three CT
scans with the same slice position and corresponding to three acquisition moments were
analyzed simultaneously. The preliminary results showed that taking into account
texture evolution when the contrast product is propagated led to a considerably better
image recognition.

The remaining sections of the paper are organized as follows: in the next section the
process of classifier induction based on image data is described and the method of
construction of multi-phase feature vectors is presented. The third section contains the
description, and results of the performed experiments in which two methods of
classification (Dipolar Decision Trees and Support Vector Machines) were applied in
recognition of two main primary hepatic tumors. The obtained results are discussed at
the end of the section. Short conclusions and future plans follow in the last section.

2. Texture classification

The first step in applying any computer-aided diagnostic tool based on the classifiers is
preparation of the learning set, which will be used to generate the classifier. The
learning set is created from the database of images for which the diagnosis is known.
When the classifier is built it can be applied in prediction of new Regions of Interest.

2.1. Classifier induction based on the image database
In figure 1, the schematic process of classifier induction based on previously gathered
and described by the doctor-specialist image database is summarized. After the visual
detection of pathological regions, ROIs are drawn inside the lesions. The localization of
the concerned Regions of Interest can be performed manually or semi-automatically
with the employment of adequate segmentation procedures. The tissue characterization
of each ROI is then performed. It consists in calculation of the sets of texture
parameters that will create feature vectors (each corresponding to an individual region)
of a learning set. For each image region, the equivalent vector also includes the label
(class) corresponding to the verified diagnosis. Sometimes the feature selection is then
performed in order to choose the most relevant features, eliminate the redundant ones,
reduce the dimensionality of feature vectors and limit the further computation time.
Different approaches for feature selection towards multiphase liver CT images are
investigated in [22]. Finally, the classifier is induced from the learning set composed of
the labeled feature vectors. After its generation, the classifier can be used in recognition
of unknown image regions. Figure 2 presents schematic process of classifier application
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to the recognition of ROI. For a given image, a Region of Interest is traced but now the
class of the concerned ROI is not known. The same set of features as it was utilized
during the process of classifier induction is then calculated for this image region.
Applying a set of previously generated classifiers allows us to make a decision and
associate one of the classes with the analyzed ROI.
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Fig. 1. Induction of the classifiers from the preprocessed database of images [20]. C and H stand
for exemplary liver tissue classes: cirrhosis and hepatocellular carcinoma, respectively
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Fig. 2. Application of the classifiers to the recognition of unknown Region of Interest. C and H
stand for exemplary liver tissue classes: cirrhosis and hepatocellular carcinoma, respectively

2.2. Texture evolution during propagation of contrast material
In clinical practice, when medical imaging is performed, diagnosis often bases on
simultaneous analysis of image groups, in which each image presents in a different way
the same part of the analyzed organ. Consecutive image series can be acquired with
different acquisition parameters (e. g. repetition time and echo time for MRI) or
different phases of contrast material propagation (for example – in CT of abdominal
organs). When liver disorders are concerned, three scan series are usually acquired: the
first – before the injection of the contrast product, the following two series are realized
on contrast-enhanced images, in arterial and portal phases of contrast propagation.
Radiologists commonly exploit an evolution of the tissue region appearance in the three
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consecutive images (corresponding to the three aforementioned acquisition phases) as a
discrimination factor in the hepatic tumor diagnosis.

When designing a computer-aided system for diagnosis of hepatic tumors, an
analogous idea was adapted. Not only texture characteristics of the considered region
are analyzed, but also their changes in the three acquisition moments. Figure 3 presents
the scheme of construction of “multiphase” feature vectors. Three images in the picture
present the same liver slice in the three acquisition moments (N – no contrast, A –
arterial phase, P – portal phase). The same region of interest (with the same position and
size) is then traced on the three images. Next, three groups of texture features are
calculated (each feature vector corresponds to one of the three regions of interest).
Finally, three vectors are concatenated in one “multiphase” vector, containing the
parameters corresponding to the three acquisition moments.
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Fig. 3. Construction of the “multiphase” feature vectors describing the evolution of liver tissue
appearance in the three consecutive images, corresponding to three acquisition phases: N (no
contrast), A (arterial phase), P (portal phase). In each image, two Regions of Interest were traced:
Cx for cirrhotic liver and Hx for liver affected by hepatocellular carcinoma, where index x
corresponds to one of the three aforementioned acquisition phases

3. Experiments

The proposed approach to a multiphase texture characterization was applied in the
classification of liver tumors in dynamic Computed Tomography. Three classes of ROIs
were being recognized: the normal liver and its two main primary malignant lesions:
hepatocellular carcinoma and cholangiocarcinoma.

3.1 Experimental setup
A database of 495 images (165 images for each acquisition phase) from 22 patients was
gathered in Eugene Marqius Center, the University Hospital in Rennes, France. The
acquisitions were performed with a GE HiSpeed CT device and the standardized
acquisition protocol was applied: helical scanning, with slice thickness 7 mm. For each
patient, an appropriate amount of the contrast material was chosen (about 100 ml), and
the injection was performed at 4 ml/s. The acquisition of the images in the arterial phase
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started about 20 seconds after the contrast product injection. Images corresponding to
the portal phase were acquired with delay of 50-60 s. All images had a size of 512x512
pixels with 8-bit gray levels and were represented in DICOM format.

For each tissue type and each acquisition phase 150 non-overlapped circular regions
of interest of radii of 30-70 pixels were chosen. They were manually placed avoiding
the biggest vessels. In questionable cases, when the radiological report did not a precise
enough lesion location, the expert was asked to position the ROI. All the cases were
confirmed by a histopathological analysis. Figure 4 presents examples of analyzed
regions of interest corresponding to the analyzed classes of tissue in the three
acquisition phases.

no contrast arterial phase portal phase

Normal liver

Hepatocellular

carcinoma

Cholangiocarcinoma

Fig. 4. Examples of analyzed textures extracted from hepatic CT images

3.2 Texture characterization and classification methods
In the presented experiments the following groups of texture features were extracted:
- 4 first order parameters (calculated from the gray level histogram) (FO),
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- entropy of image after filtering it with 14 pairs of zero-sum 5x5 Laws’ filters
(Laws),
- 8 Run-Length Matrix features (RLM),
- 11 Co-occurrence parameters (COM),
- 35 parameters obtained with all of the aforementioned methods.

Co-occurrence Matrices and Run-Length Matrices were created for 4 standard
directions of pixel pairs (pixel runs): 0°, 45°, 90°, and 135°. For these two methods, the
number of gray levels was reduced from initially used 256 to 64. When creating Co-
occurrence Matrices 5 pixel distances were taken into account (1, 2, 3, 4 and 5).
Features obtained for different directions and different distances were averaged. For
image filtration, 24 Laws’ filters were considered. The sum of elements of every
convolution matrix was equal to zero. Pairs of filtered images corresponding to the
applied masks and their rotations were added. Images corresponding to symmetric
masks were multiplied by two.

Four experiments were performed for each of aforementioned sets of features. In the
first three ones, feature vectors corresponding to three acquisition phases (N, A, P) were
analyzed separately. In the last one, “multiphase” feature vectors (created for three
regions of interest corresponding to the three images in subsequent acquisition
moments) were analyzed simultaneously. In each case, two classification methods were
used for texture recognition: Dipolar Decision Trees (DDT) [23] and Support Vector
Machines (SVM) [24]. The learning sets used for classifier induction were composed of
75 observations corresponding to each acquisition phase (225 observations in total).
Test sets of equal number of feature vectors were used for classifier validation. For
Dipolar Decision Trees, the weights of mixed dipoles were 1, 10, 100, 500 and 1000,
while the weights of pure dipoles were equal to one. For Support Vector Machines, two
kernel functions were used: polynomials with a degree ranging from 1 to 6, and Radial
Basis Functions with parameter gamma ranging from 10–6 to 10–1. For each of the cases,
the best classification result was chosen. Tables 1 and 2 present the accuracy obtained
for DDT and SVM classification methods, respectively.

3.3 Discussion
As it can be seen in Tables 1 and 2, the classification quality was generally high. For
each classifier, the best results were obtained for groups of all texture features (in all
cases the classification accuracy was greater than 90% for Support Vector Machines
and was about 99% for Dipolar Decision Trees). For each case, a higher accuracy was
observed for Dipolar Decision Trees (the highest differences in the classification
accuracy could be noticed for RLM set of features, even more than 40% in the arterial
phase). Finally, it can be observed that regardless of the texture analysis method and
regardless of the classification method, the classification quality is significantly
increased, when the feature vectors are composed of parameters from three subsequent
acquisition moments (N + A + P). The highest classification accuracy (99.53%) was
obtained for the group of all 35 texture features with Dipolar Decision Tree.
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Table 1. Classification accuracy (%) obtained with DDT for different groups of texture features

no contrast (N) arterial phase (A) portal phase (P) N + A + P
FO 90.16 ± 1.31 85.82 ± 1.48 90.40 ± 1.69 98.76 ± 0.73

Laws 91.13 ± 0.84 92.27 ± 1.25 88.33 ± 2.20 95.11 ± 1.19
COM 96.36 ± 0.88 94.29 ± 1.79 94.87 ± 0.83 99.67 ± 0.37
RLM 95.53 ± 1.02 93.89 ± 1.28 95.45 ± 1.59 99.73 ±.0.42

all features 99.11 ± 0.74 98.89 ± 0.44 99.18 ± 0.62 99.53 ± 0.86

Table 2. Classification accuracy (%) obtained with SVM for different groups of texture features

no contrast (N) arterial phase (A) portal phase (P) N + A + P
FO 82.46 ± 0.59 71.11 ± 0.69 74.44 ± 0.90 89.42 ± 0.91

Laws 79.38 ± 1.24 71.42 ± 1.59 66.27 ± 1.08 82.44 ± 1.20
COM 86.80 ± 0.63 78.71 ± 0.31 76.27 ± 0.66 91.47 ± 0.55
RLM 71.02 ± 0.89 51.42 ± 0.66 56.50 ± 1.14 71.82 ± 1.87

all features 91.02 ± 0.86 90.09 ± 0.56 90.00 ± 0.83 95.87 ± 0.93

4. Conclusions

In the work a new method of characterization of the texture from multiphase CT images
was presented. Images with the same slice location and corresponding to three typical
acquisition moments were analyzed simultaneously. In this way the texture evolution
during the propagation of the contrast product was taken into account. The method was
applied to recognizing normal liver and its two main primary tumors. Experiments with
various sets of texture parameters and two classification methods showed that a
simultaneous analysis of texture parameters derived from three subsequent acquisition
moments considerably improved the classification accuracy.

In the future, the work on recognition of the tumor affected liver tissue based on
multiphase CT will be continued. The methods of extracting other “multiphase”
parameters will be investigated. An enlargement of the image database and introduction
into it of new types of hepatic tissue (other types of tumors) is also planned. Finally, an
analogous idea of texture characterization will be adapted for description of cerebral
tumors (gliomas) in Magnetic Resonance Imaging. In this case an evolution of the
texture parameters during propagation of the contrast material and their relation to
changes of the acquisition parameters will be studied. This work has already begun in
collaboration with the University Hospital in Caen (France).

Acknowledgement
The authors thank Dr. A Carsin and Dr. Y. Rolland for their clinical contribution to this study.
This work was supported by the grant W/WI/1/05 from Białystok Technical University



23

References

1. Bruno A., Collorec R., Bézy-Wendling J., Reuzé P., Rolland Y.: Texture analysis in
medical imaging, In: Roux C., Coatrieux J. L. (Eds.): Contemporary Perspectives in
Three-dimensional Biomedical Imaging, IOS Press, 1997, 133-164.

2. Haralick R. M.: Statistical and structural approaches to texture, Proc. IEEE, 1979, 67,
786-804.

3. Haralick R. M., Shanmugam K., Dinstein I.: Textural features for image classification.
IEEE Transactions on Systems, Man and Cybernetics, 1973, 3:610-621.

4. Galloway M. M.: Texture analysis using gray level run lengths. Computer Graphics and
Image Processing, 1975, 4:172-179.

5. Chen C., Daponte J. S., Fox M. D.: Fractal feature analysis and classification in medical
imaging, IEEE Transactions on Medical Imaging, 1989, 8, 133-142.

6. Cross G. R., Jain A. K.: Markov random fields texture models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1985, 5(1):25-39.

7. Clausi D. A., Jernigan M. E.: Designing gabor filters for optimal texture separability.
Pattern Recognition, 2000, 33:1836-1849.

8. Mallat S. G.: A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,
11(7):674-693.

9. Haralick R., Sternberg S. R., Zhuang X.: Image analysis using mathematical morphology.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 9(4):532-550.

10. Herlidou-Meme S., Constans J. M., Carsin B., Olivié D., Eliat P. A., Nadal-Desbarats L.,
Gondry C., Le Rumeur E., Idy-Peretti I., de Certaines J.D.: MRI texture analysis on
texture test objects, normal brain and intracranial tumors. Magnetic Resonance Imaging,
2003, 21, 989-993.

11. Joo S., Yang Y. S., Moon W. K., Kim H. C.: Computer-aided diagnosis of solid breast
nodules: use of an artificial neural network based on multiple sonographic features. IEEE
Transactions on Medical Imaging, 2004, 23(10), 1292-1300.

12. Chappard D., Chennebault A., Moreau M., Legrand E., Audran, M., Basle M. F.: Texture
analysis of X-ray radiograms is a more reliable descriptor of bone loss than mineral
content in a rat model of localized disuse induced by the Clostridium botulinum toxin.
Bone, 2001, 28(1), 72-79.

13. dos Santos Filho E., Yoshizawa M., Tanaka, A., Saijo, Y., Yambe T., Nitta, S.: Toward a
neuro-fuzzy system for automatic segmentation and characterization of intravascular
ultrasound images. SICE Annual Conference, 2003, Vol. 2, 1586-1589.

14. Gletsos M., Mougiakakou S. G., Matsopoulos G. K., Nikita K. S., Nikita A. S., Kelekis
D.: A computer-aided  diagnostic system to characterize CT focal liver lesions: design and
optimization of a Neural Network classifier, IEEE Transactions on Information
Technology in Biomedicine, 2003, 7(3), 153-162.

15. Mir A. H., Hanmandlu M., Tandon S. N.: Texture analysis of CT-images, IEEE
Engineering in Medicine and Biology, 1995, 5, 781-786.

16. Chen E. L., Chung P. C., Chen C. L., Tsai H. M., Chang C. I.: An automatic diagnostic
system for CT liver image classification. IEEE Transactions on Biomedical Engineering,
1998, 45(6), 783-794.



24

17. Husain S. A., Shigeru E.: Use of neutral networks for feature based recognition of liver
region on CT images, Proc. of the IEEE Signal Processing Society Workshop, 2000, Vol.
2, 831-840.

18. Sariyanni C. P. A., Asvestas P., Matsopoulos G. K., Nikita K. S., Nikita A. S. Kelekis D.:
A fractal analysis of CT liver images for the discrimination of hepatic lesions: A
comparative study, Proc. of the 23rd Annual EMBS International Conference, 2001,
1557-1560.

19. Valavanis I., Mougiakakou S. G., Nikita K. S., Nikita A.: Computer aided diagnosis of
CT focal liver lesions by an ensemble of neural network and statistical classifiers, Proc. of
the IEEE International Joint Conference on Neural Networks, 2004, Vol. 3, 1929-1934.

20. Krętowski M., Bezy-Wendling J., Duda D.: Classification of hepatic metastasis in
enhanced CT images by dipolar decision tree, Proc. of 19th GRETSI, 2003, 327-330.

21. Duda D., Krętowski M., Bézy-Wendling J.: Texture-based classification of hepatic
primary tumors in multiphase CT. Proc. of 7th MICCAI, LNCS Vol. 3217, Springer-
Verlag, 2004, 1050-1051.

22. Duda D., Krętowski M., Bézy-Wendling J.: Texture analysis in medical image
classification. Statistics and Clinical Practice, Lecture Notes of ICB Seminars, Vol. 70,
2005, 83-89.

23. Bobrowski L., Krętowski M.: Induction of multivariate decision trees by using dipolar
criteria, LNCS Vol. 1910, Springer-Verlag, 2000, 331-336.

24. Vapnik V.: The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.


