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Abstract

In this short paper, accelerated three-dimensional computer simulations of vascular trees development, preserving
physiological and haemodynamic features, are reported. The new computation schemes deal: (i) with the geometrical
optimization of each newly created bifurcation; and (ii) with the recalculation of blood pressures and radii of vessels
in the whole tree. A significant decrease of the computation time is obtained by replacing the global optimization by
the fast updating algorithm allowing more complex structure to be simulated. A comparison between the new
algorithms and the previous one is illustrated through the hepatic arterial tree.
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1. Introduction

The capability to model living systems is be-
coming more and more important due to the fast
growing knowledge in all areas from cell to func-
tion. Modeling provides new ways to better un-
derstand complex interactions between elementary
mechanisms and behaviors of the whole organ. It
often leads to meaningful simulations in which the
level of details (or, in other words, the complexity
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of the models) is controlled. Effective methods for
the modeling of anatomically-based structures
and physiologically-based processes are required
to enable advances in integrative physiology as
well as in virtual reality. However, as it is shown
here for the vascular system, they must be compu-
tationally tractable to be of practical significance.

Several models of the vascular network have
been proposed (reader may refer to [1] for a
detailed survey). These models allow structural
and functional features to be changed and patho-
logical vascular modifications to be rendered.
They range from the early 2-D models [2] to more
recent surface-based ones [1] or to fully 3-D mod-
els [3,4] with different objectives such as realistic
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representations for rendering applications [l1],
physiological interpretation [3] or organ-based de-
scriptions like coronary arterial trees [4,5]. The
present contribution is a continuation of the work
described in [6]. Here our objective is to signifi-
cantly reduce the computation time, in order to
generate trees with more than 10000 extremities,
in a reasonable time. We concentrate on the most
critical (i.e. the most time consuming) steps,
mainly involved in the network optimization. A
brief review of the organ growth features is pro-
vided in Section 2 while acceleration cues are
detailed in Section 3. An application to the liver
arterial tree is displayed in Section 4 and further
discussed.

2. Model description

The first step to create a realistic model of a
vascular tree consists in specifying both the organ
3-D shape and the properties according to which
the tree develops. Macro-cells are uniformly dis-
tributed inside the organ volume. A macro-cell is
an element of tissue characterized by some geo-
metrical (like the size and the spatial position) and
haemodynamic properties (the blood flow for in-
stance). Several classes of macro-cells can be
defined and can lead to regions having different
vascular properties.

The organ growth is modeled as the result of an
hyperplasia process (increased number of macro-
cells). The changes in the number of macro-cells
occur at discrete time moments called cycles. In
each cycle, a macro-cell has a certain probability
(Prp) to give birth to a new macro-cell of the same
class, or to die (Prp). Both probabilities depend
on the cell type (class) and the cell age. For
instance if healthy and tumoral macro-cells are
specified, the pathological ones should have a
greater Pry (details about the way initial Pry and
Prp, values are chosen and evolve are given in [3]).
For each ‘mother’ macro-cell, a few randomly
chosen spatial positions of a ‘daughter’ cell in the
neighborhood are tested against the local con-
straint of maximal density. A new macro-cell is
created only if a proper position is found.

The bounding shape expands periodically, when

the corresponding volume is almost filled by
macro-cells. An empty space, which appears dur-
ing the organ growth, is occupied by new macro-
cells in consecutive cycles. The growth continues
until the organ reaches its adult size.

The tree develops to respond to the needs of the
expanding tissue. Consequently, the apparition of
a new macro-cell leads to the development of a
new vessel. Conversely, when a macro-cell disap-
pears, the corresponding vessel retracts and disap-
pears too. Each macro-cell is perfused by exactly
one vessel of the vascular tree.

This vascular tree model has a binary structure.
It means that interconnections (anastomoses) are
not taken into account. Each vessel is represented
by a rigid tube and can divide into two other
branches creating a bifurcation (Fig. 1). The ves-
sels are defined by their length (/), radius (R) and
blood flow rate (Q). Each extremity of the vascu-
lar tree is connected to a macro-cell, which is the
place of exchange between the tissue and the
blood supplied by the vessel.

Two main physical laws have to be taken into
account for the design of realistic vascular trees.
The law of matter preservation has to be fulfilled
at each bifurcation and is given by:

Qb= Q1+ Qr (1)

where Qy is the blood flow in the parent vessel
and Q, and Q, are blood flows in the left and right
daughter branches. It is a rather obvious prop-
erty: the quantity of blood, which enters a bifur-
cation, has to leave it.

bifurcation point

lerb /
l,R

irrigated
macro-cell

Fig. 1. A bifurcation irrigating a macro-cell. P, pressure at the
extremity of the left vessel; Q,, blood flow at the extremity of
the left vessel; P,, O, Py, O, corresponding values for the
right and the bifurcation vessel.
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In the model, the blood is assumed to be a
Newtonian fluid with constant viscosity (u).!
Hence Poiseuille’s law is applied to calculate the
pressure difference (AP) between the two extremi-
ties of a vessel. It depends on the blood flow rate,
the length and the radius of the vessel:

8ul

AP=Q

(@)

Another constraint deals with the decreasing
vessel radii in the tree (bifurcation law). It gives
the relationship between the radius of the parent
vessel (R,) and the radii of its two daughter
branches (R, and R)):

R} =R+ R A3)

In [7], y=6, «=140/0Q, and f=1+0,/0,
were proposed, which were derived from the min-
imal volume principle, but in other papers [§—10]
o= pf =1 and y varies from 2.55 to 3. The choice
of proper parameters («, /5, y) is not an easy task,
but the general expression (Eq. (3)) was confirmed
both by morphometrical analyses and theoretical
studies.

3. Vascular tree optimization

It is a widely acceptable fact that the growth
and functional behavior of vascular system is
governed by some optimality principles, but the
definition of the target function which should be
minimized (or maximized) is still an open problem
(e.g. four different optimality principles were ex-
amined in [11]). In the present model, it is as-
sumed that the target function depends only on
the radii and lengths of vessels. It is also assumed
that the function is additive, and thus summed
over all vessels in the tree (for instance the volume
of vascular tree can be minimized).

New macro-cells appear and are supplied by the
vascular system in a sequential manner. Therefore,
they are connected to the vascular tree one by one.

!'In fact the blood has a Newtonian behavior only in vessels
whose caliber is higher than 100 um, but even for smaller
vessels Poiseuille’s law can be considered as a good approxi-
mation.

The geometrical optimization of a bifurcation is
separated from the global optimization of the tree.
The choice of the bifurcation point is done locally
and, with this known geometry, the whole tree is
then optimized. It is assumed that the influence of
moves of the bifurcation point on the remaining
vessels is relatively small and can be neglected
during the local optimization. This approximation
allows the computational complexity to be signifi-
cantly reduced leading to the simulation of com-
plex trees in a very short time. Another approach
was presented by Karch et al. [4], where all vessel
parameters are recomputed during the optimiza-
tion of a single bifurcation.

3.1. Geometrical optimization of a single
bifurcation

The perfusion process of a new macro-cell starts
by choosing a set of candidate vessels. The dis-
tance between all vessels and the macro-cell is
calculated and only the closest ones are consid-
ered. For each candidate vessel, a new bifurcation
is temporarily created and the macro-cell is per-
fused. Given the spatial positions (coordinates)
and the physiological properties of the newly cre-
ated vessels, a branching point, which minimizes
the volume, is searched. To optimize the bifurca-
tion, the 2-D method proposed in [7] was extended
to the 3-D case. When the optimal structure is
found, pressures and radii of the whole tree have
to be recalculated (the global optimization is ap-
plied) and then crossing between vessels is checked
and candidates are excluded accordingly. In the
next step, for each remaining candidate vessel, the
volume of the whole tree is computed and the
solution corresponding to the minimal value is
chosen. The optimal vessel is used to permanently
connect the macro-cell to the tree.

3.2. Optimization of the whole tree

Assuming that the geometry of the vascular tree
is set, the optimized tree (to be determined) must
fulfill the following constraints:

e constant pressure (P.;) at the extremities, and
the blood flow depending on the macro-cell
class,
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e Poiseuille’s law at each vessel,
e matter preservation and bifurcation law at each
bifurcation.
The fully optimized vascular tree is defined as
the optimized tree with a given pressure P, at the
entry of the tree.

3.3. A bifurcation irrigating two cells

In such a situation, the strategy proposed in [3],
for irrigating a new macro-cell, can be used. First
P =P.=P_y, and Q,, Q, are initialized, depend-
ing, respectively on the class of cells with R, =
R.=R,,; in both vessels. Then it is possible to
compute the pressure at the bifurcation point
imposed by each of the vessels:

8ul,
P]:P1+le7 4)
8ul.
r=P .
b r + Qr nR? (5)

Computing P} and Pi with Egs. (4) and (5)
provides different values. To get the same pres-
sure at the bifurcation point, the radius of the
vessel with lower pressure at the end is changed.
To simplify the notation, let suppose P} > P% and
then the pressure at the bifurcation point is equal
to P,=P!. Hence the new radius of the right
vessel can be calculated using Eq. (6).

8ul,
n(Pb - Pr)

After changing the radius in one of the vessels,
the radius (R)) of the bifurcation vessel can be
computed using the bifurcation law and, then, the
pressure at the entry of the bifurcation vessel can
be deduced:

Ri= 70 (6)

8uly,
n(Ry)"

This way, the optimized bifurcation is obtained.

Pﬁmry= Pb+ (Ql + Qr)

@)

3.4. A bifurcation with two sub-trees

Let us consider the situation where two sub-
trees connected in a bifurcation have to be opti-
mized. Like in the previous case, pressures are

calculated at the bifurcation point imposed by the
left sub-tree, P}, and by the right one, P% (we
assume that PL > PY). In [3] the pressure at the
bifurcation is then averaged based on the blood
flow Eq. (8).

b PO+ PO,
= ———————
Q1+ Qr

Another possibility is to increase/decrease the
pressure in one of the sub-trees (like the case with
two cells). For example, one can decide to choose
P, = P. and increase the pressure in the right
sub-tree. This operation is relatively easy to per-
form, because the sub-tree is optimized. It only
needs to multiply all the radii in the sub-tree by a
same coefficient [3] computed by using the pres-
sure P, at the extremities. Then, new radii of
vessels of the right sub-tree are obtained by the
following transformation:

end
N ] ©
Pb - Pcell
When such a transformation is applied, the
corresponding pressures are adjusted. Then, the
radius of the bifurcation vessel and the pressure at
the end of that vessel can be computed. By apply-

ing the described procedure, the optimized sub-
tree starting at the bifurcation point is obtained.

®)

3.5. Ensuring the given pressure at the entry of
the tree

Using the procedures described above, the opti-
mization of the tree is carried out starting from
the extremities and proceeding up to the root. At
the end, the optimized tree with the entry pressure
depending on the initial radius (R,,) is obtained.
But to get the fully optimized vascular tree, one
needs to get the exact entry pressure given as one
of the model parameters.

In the previous subsection, it has been shown
how to fit the pressure in the sub-tree when it is
optimized. In fact it is enough to apply the afore-
mentioned procedure (multiplying all the radii) to
the root node of the tree, using this preset entry
pressure.
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Fig. 2. Optimization by updating. (a) Triangles represent sub-trees. A new bifurcation is added to a fully optimized tree. (b) Pressure
is computed at each node along the path from the bifurcation point up to the root, given P, at the root. (c) Then all radii of the
tree are changed to assure the P, value of pressure given as one of the model parameter.

3.6. Updating optimization versus global
optimization

When the fully optimized tree is available, it is
possible to add/delete a macro-cell to/from the tree
(Fig. 2a) and to update it only locally. After adding
the new (optimized) bifurcation to the tree, the
path can be tracked from the bifurcation point up
to the root, and the pressure can be adjusted at
each node, using the described above method (Fig.
2b). At the root of the tree, the same procedure as
used during the global optimization is applied to
ensure the right entry pressure (Fig. 2c). We called
this method optimization by updating.

3.7. Is it possible to speed up the updating
algorithm?

The weak point of the updating algorithm is that
in some sub-trees, the pressure and the radius are
modified many times. Some nodes of the vascular
tree are visited repeatedly to perform several oper-
ations. Multiplying coefficients by each other and
then using the result to adjust the radius and the
pressure can be performed in the same task. Hence
instead of ‘multiplying’ all the nodes in the sub-tree
by the coefficient during the fitting phase, it is

stored at the root node of this sub-tree. And when
the last step is carried out on the whole tree,
this available information at the nodes is jointly
processed. This algorithm is referred to as ‘fast
updating’.

4. Application to the liver arterial tree

The presented model was implemented in
C+ + using Microsoft Visual C+ + 6.0. In
order to exemplify the whole procedure a hepatic
arterial tree is simulated (Fig. 3). Table 1 summa-
rizes the main parameters used to initialize the
model.

The 3-D bounding shape of the liver is recon-
structed from CT-scan images (Siemens Somaton,
120 slices with 1 mm thickness). Then, in order to
simulate the organ growth, mathematical mor-
phology operations (erosion/dilation) combined
with shifting are applied to the shape.

During the first trials, the tree was simulated
without restricting the number of candidate ves-
sels and several statistics regarding the perfusion
process were collected. In 96% of the cases, the
minimal volume position was obtained using only
the five closest vessels. Hence, in order to elimi-
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Fig. 3. Various stages of the development of the liver arterial tree model (after the first growth cycle and after the last one).

nate unnecessary computations, the number of
candidate vessels is now limited to five.

To validate the proposed improvements in the
optimization of vascular trees, the same condi-
tions and parameters set is applied to generate a
structurally-equivalent tree (25163 nodes or,
equivalently, 12582 macro-cells). Table 2 gives
the total execution time for the different optimiza-
tion methods. The whole tree is built in about 3 h
(using a PC-type computer, PIII 600 MHz) when
the global optimization after each perfusion of a
macro-cell is used. When the updating strategy is
used this time is reduced by 40% and the fast
updating procedure leads to a three times faster
optimization. In comparison, in [4] the computing
time for a tree with 4000 macro-cells is approxi-
mately 10 h on a DEC-Alpha 21164/333 MHz, to
get similar vascular trees. The main concepts of
the model presented in [3] and the extension de-
scribed here are close to those reported in [4]. The
vessels (rigid tubes forming a binary tree) grow to
irrigate macro-cells distributed into a 3-D organ

(static shape in [4], growing in [3,5]). In both
cases, blood is considered as a Newtonian fluid
whose flow is governed by the Poiseuille’s law.
Similarly, two optimization levels are distin-
guished: a geometrical optimization of the new
bifurcation (minimizing the volume of blood
added), and a more global process consisting in
re-computing (in slightly different ways) radii of
the tree after addition of a new cell. The advances
presented in [4] deal with the extension of the 2-D

Table 1
Main model parameters used in the simulation of the hepatic
arterial tree

Number of growth shape cycles 15
Volume growth (cm?) 88 — 1500
Number of macro-cells 12 000
Hepatic artery pressure (mmHg) 98

Blood pressure at the macro-cell (mmHg) 50

Blood flow at the macro-cell (ml/min) 0.033

y parameter of the bifurcation law 2.7
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Table 2
Comparison of the total simulation times with the proposed
methods

Optimization method Time (min) %
Global 187 100
‘Updating’ 107.5 57.5
‘Fast updating’ 62.6 335

model first presented in [2], and the introduction
of terminal flow variability which influences the
structure and the geometry of the vascular tree.
This property could be compared to the one we
used in [3], where several classes of cells, with
different geometrical and physiological proper-
ties coexist in a same organ, leading to various
kinds of wvascular regions (hyper-vascularized/
normal for example).

Although the model relies on simplified prop-
erties, its branching patterns and morphometric
features observed through visual rendering as
well as slice CT-scanner simulations and texture
measurements are consistent with in-vitro and
in-vivo experiments [12]. As far as future works
are concerned, several physiologically-based im-
provements can be expected by taking into ac-
count the blood flow distribution heterogeneity
(possibly related to specific metabolic needs
[13]), shear stress participating to the growth
process [14], microcirculation mechanisms for
the remodeling or revascularization of the net-
works. Here one can notice that additional
anatomical and physiological data are required,
but they are more difficult to collect than data
measured on other vascular system like coronary
trees [15,16].

5. Conclusions and future research

The present algorithm provides better compu-
tational performances for the simulation of arte-
rial tree growth in three dimensions. It can be
used for preliminary studies aimed at evaluating
the impact of variable or parameter changes on
a statistical basis.

In medical practice, the most common way to
observe and characterize the vascular network
modifications is to acquire images (CT scan,
MRI, and Ultrasound ...). Vascular trees simu-
lated by the model can be used to form physio-
logically sound images as it has been shown in
[12].

Apart from the many improvements that can
be introduced into the model (e.g. anostomoses,
elasticity of the vessel walls, pulsative feature of
the blood flow ...), various enhancements of the
above algorithm are in progress including more
realistic shape constraints, improved boundary
conditions, multiple connected trees (e.g. arterial
and venous). More effective algorithms to detect
potential intersections and crossings between
vessels during the growth process have to be
designed along with the adaptive corrections.
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