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Abstract. In the paper a new evolutionary algorithm for global induc-
tion of linear trees is presented. The learning process consists of searching
for both a decision tree structure and hyper-plane weights in all non-
terminal nodes. Specialized genetic operators are developed and applied
according to the node quality and location. Feature selection aimed at
simplification of the splitting hyper-planes is embedded into the algo-
rithm and results in elimination of noisy and redundant features. The
proposed approach is verified on both artificial and real-life data and the
obtained results are promising.

1 Introduction

Decision trees are, besides decision rules, one the most popular forms of knowl-
edge representation in data mining systems [8] and clones of the classical induc-
tion algorithms are included in almost all exploratory tools. The popularity of
the decision tree approach can be explained by their ease of application, fast
operation and what may be the most important, their effectiveness. Further-
more, the hierarchical structure of a tree classifier, where appropriate tests from
consecutive nodes are sequentially applied, closely resembles a human way of de-
cision making which makes decision trees natural and easy to understand even
for the not experienced analyst.

There are two main types of decision trees [17]: more common univariate
trees, where tests in non-terminal nodes use single features, and linear (oblique)
ones, where splits are based on the dividing hyper-planes. The most known
example of the first group is C4.5 [20] with its commercial version C5.0, whereas
LTree and OC1 [16] can be treated as good representatives of the second group.
There exist also heterogeneous systems, like the well-known CART [3], where
both forms of tests are permitted.

In univariate trees an inequality test is equivalent to partitioning the feature
space with an axis-parallel hyper-plane. However in many real-life problems de-
cision borders are not axis-parallel and the use of only simple tests may lead to
over-complicated classifiers (so called ”staircase effect”). In such a situation, a
piece-wise linear solution offered by an oblique tree is much more natural and
appropriate. The richer representation of linear trees gives one the opportunity
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to find simpler and more accurate classifiers. However, it should be mentioned
that induction algorithms for this type of decision tree are computationally more
complex.

Nature-inspired techniques like evolutionary computation [15] are known to
be especially useful in difficult optimization tasks and they are successfully ap-
plied to various data mining tasks [9]. As for decision tree learning there are two
main approaches to the induction: top-down and global. The first one is based
on a greedy recursive procedure of test searching and sub-node creation until the
stop condition is met. In contrast to this classical method, the global algorithm
searches for both the tree structure and tests at the moment. Evolutionary meth-
ods were applied for both induction types and both tree types. In the framework
of univariate trees, most of the research was concentrated on global induction
(e.g. [11,18,19,14]), whereas for linear trees mainly top-down methods were de-
veloped, where only splitting hyper-planes in internal nodes were evolutionary
searched (e.g. [5,4,12]). In [2] genetic programming was applied to induce classi-
fication trees with limited oblique splits.

In this paper we focused on the global learning of linear decision trees with
embedded feature selection. In real applications, data gathered in operational
databases, which are used as a learning set, often contain irrelevant or redun-
dant features. The overall performance of the decision tree can be improved
by noisy feature elimination and test simplification. Furthermore, the ability to
understand and properly interpret the classifier can be increased.

The rest of the paper is organized as follows. In the next section the proposed
approach is described. Section 3 presents experimental verification with both
artificial and real-life data. In the last section, the paper is concluded and future
research directions are outlined.

2 Evolutionary Algorithm for Global Induction of
Oblique Decision Trees

The structure of the proposed approach follows the typical evolutionary algo-
rithm framework as described in [15]. The algorithm can be seen as a contin-
uation and significant extension of the work presented in [13]. Due to lack of
space, we gave most of our attention to new issues introduced in this work: a
new scheme of applying genetic operators and embedding feature selection into
the induction process.

2.1 Preliminaries

A learning set is composed of M N -dimensional feature vectors xj = [xj
1, ..., x

j
N ]T

(j = 1, ..., M)(xj ∈ RN) belonging to one of K classes. The feature space can
be divided into two regions by a hyper-plane:

H(w, θ) = {x : 〈w,x〉 = θ}, (1)
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where w = [w1, ..., wN ] (w ∈ RN) is a weight vector, θ is a threshold and 〈w,x〉
represents an inner product. A linear decision tree is a binary tree with splitting
hyper-planes in internal nodes and class labels in leaves.

2.2 Genetic Operators

In the majority of evolutionary approaches there are two types of genetic op-
erators applied to individuals: mutation, which affects single chromosome and
cross-over, which enables exchange of genetic information among two chromo-
somes. In a typical setup, a mutation-like operator is applied with equal and
relatively small probability to any gene of the chromosome. In [13] we followed
this scheme and every node of the tree has the same chance of being modified.
However, it seems that this approach is not really appropriate for the non-linear
and hierarchical structure of the decision tree. It is evident that modification of
the test in the root node is very crucial because it affects all descendant nodes,
whereas mutation of a node near leaves has only a local impact. It was also ob-
served that for small trees mutations were very rare and this significantly slowed
down the induction process. Furthermore, mutations of certain nodes, like leaves
with feature vectors from only one class, are not profitable at all and should
be avoided.

A new complex mutation-like operator is introduced to avoid the aforemen-
tioned shortcomings. It is applied with a given probability (default 0.5) to a
tree and it guarantees that at least one node will be mutated. First, the type of
the node (a leaf or an internal node) is randomly chosen with equal probability.
Then the ranked list of nodes is created and a mechanism analogous to rank-
ing linear selection [15] is applied to decide which node will be affected. While
concerning leaves, the number of feature vectors from other classes than the de-
cision assigned to the leaf (i.e. number of objects misclassified in this node) is
used to put them in order. Additionally, homogeneous leaves (with objects only
from one class) are excluded from the list. As a result, leaves which are better in
terms of the classification accuracy are mutated with lower probability. As for
internal nodes, locations (the level) of the node in the tree is taken into account.
It allows us to mutate with higher probability nodes, which are situated on the
lower levels of the tree. In Fig. 1 an example of constructing the ranking lists of
leaves and internal nodes is presented.

When one node is chosen, possibilities of applying different variants of the
mutation are checked and one of them is randomly chosen according to its rel-
evance to the node and to the given probability. Among considered possibilities
are:

– changing the role of the node (i.e. pruning an internal node to a leaf or
replacing a leaf by a sub-tree);

– the dipolar operator introduced in [12]. It starts with the random choosing
of one dipole1 from the set of not-divided mixed dipoles and divided pure

1 A mixed dipole is a pair of feature vectors from different classes, while in pure dipole
both objects belong to the same class.
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Fig. 1. The construction of two ranking lists of nodes (separate list for leaves and
internal nodes) for the mutation operator

ones. If the mixed dipole is drawn, the hyper-plane is shifted to cut it. A
new position is obtained by modification of only one randomly chosen weight
(or threshold). In case of the pure dipole, the hyper-plane is shifted to avoid
separation of objects from the same class and similarly as for mixed dipoles,
only one coefficient is modified.

– the classical modification of a single weight of the hyper-plane; in relation
to feature selection the probability of dropping a feature (i.e. assigning zero
value to a weight) was increased because in the real value representation the
number zero has extremely low probability;

– tests from the node and one of its sons are interchanged. This variant can be
applied only if at least one son of the considered node is also a non-terminal
node.

– one sub-tree can be replaced by another sub-tree from the same node;
– a test can be replaced by an entirely new test, which is chosen in a dipolar

way [12]. One mixed dipole is randomly chosen and a hyper-plane is placed
to split it. More precisely the hyper-plane is perpendicular to the segment
connecting opposite ends of the dipole. The same method is applied for
finding splitting hyper-planes during creation of an initial population.

In the presented system, there is also an operator analogous to the standard
cross-over. One node is randomly chosen in each of two affected individuals and
an exchange encompasses a sub-tree or is limited only to nodes (their hyper-
planes). Additionally if both nodes are non-terminal ones, the typical one-point
cross-over is applied on weight vectors and thresholds. In other cases nodes are
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just substituted. It should be however noted, that according to the results [9]
obtained in the framework of genetic programming, where a solution is also en-
coded in a tree-like structure, the context-insensitive cross-over operator has a
rather destructive effect on the offspring. For that reason, the cross-over opera-
tor is applied with relatively low probability (default value is equal 0.2) in our
system.

The application of a genetic operator to a tree makes its part rooted in the
modified node invalid in relation to locations of the input feature vectors. For this
reason renewed determination of the locations is necessary. This process can lead
to a situation where certain nodes in the sub-tree are empty (or almost empty)
and have to be removed. Additionally maximization of fitness is performed by
pruning lower parts of the sub-tree on the condition it improves the value of the
fitness.

The problem which is directly connected with feature selection is “under-
fitting” the training data [6], which often occurs near the leaves of the tree.
The number of feature vectors used to search for a splitting hyperplane has
to be significantly greater than the number of features used. In the presented
system, the maximal number of features in a test is restricted using the number
of available training objects (default value is 5 objects for each non-zero feature
weight).

2.3 Fitness Function

A key issue for any decision tree induction algorithm is finding the appropri-
ate balance between the re-classification accuracy and the generalization power
related to the classifier complexity. In the classical top-down approach, the over-
fitting problem is mitigated by applying a post-pruning algorithm, but such a
method has only a limited possibility to restructure the tree [7]. In contrast,
the proposed evolutionary algorithm represents the global approach, where the
search for an optimal tree structure is a built-in element of the process, thanks
to a suitably defined fitness function. The fitness function, which is maximized,
has the following form:

Fitness(T ) = QReclass(T ) − α · (Comp(T ) − 1.0), (2)

where QReclass(T ) is the re-classification quality, Comp(T ) is the complexity
measure of the tree T and α is the relative importance of the complexity term
(default value is 0.005) and a user supplied parameter. Subtracting 1.0 eliminates
the penalty related to the complexity of the classifier when the tree is composed
of only one leaf - the root node.

The complexity term Comp(T ), which is crucial for effective feature selec-
tion, should reflect both the tree size (the number of nodes) and the complexity
of tests. This can be obtained by expressing Comp(T ) as a sum of test complex-
ities in the internal nodes and the number of leaves (for any leaf we assume that
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the complexity is equal 1.0). For the hyper-plane H(w, θ) the test complexity
Comp(w) can be defined as follows:

Comp(w) = (1 − β) + β
n(w)
N

, (3)

where n(w) is the number of non-zero weights in the hyper-plane and β is a user
supplied parameter designed for controlling the impact of test complexity on the
tree size (default value = 0.5). When n(w) = N the test complexity is equal 1,
which means that no feature is eliminated from the test. If this condition is met
for all tests, Comp(T ) is equal to the number of nodes.

It should be noted that, when concerning a specific dataset, by tuning α and
β parameters better results can be obtained in terms of accuracy or classifier
complexity.

3 Experimental Results

Two groups of experiments are performed to validate the proposed approach
(denoted in tables as GDT). For the purpose of comparison, results obtained by
the well-known OC1 system [16] are also presented. Both systems were run with
default values of parameters. Presented in tables results correspond to averages
of 10 runs and were obtained by using test sets (when available) or by 10-fold
stratified cross-validation. The average number of leaves is given as a complexity
measure of classifiers.

In the first group, artificial datasets with analytically defined decision bor-
ders are analyzed. Analogous experiments are described e.g. in [16], but original
datasets are not available, hence similar configurations were generated by using
a random number generator (see Fig. 2). All these datasets are two-dimensional,
except LS5 and LS10 problems which are defined with 5 and 10 features corre-
spondingly. The number of feature vectors in the learning sets is 1000.

a) b) c)

Fig. 2. Examples of 2-dimensional artificial datasets: a) rotated chessboard, b) zebra1
and c) zebra3
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Table 1. Results obtained for artificial datasets. Classification accuracy [%] is given
as the quality measure and number of leaves as the tree size.

without noise 50% noise 100% noise
GDT OC1 GDT OC1 GDT OC1

Dataset Quality Size Quality Size Quality Size Quality Size Quality Size Quality Size
chess2 98.4 4 99.3 6 97.3 4.0 89.9 16 96.5 4.0 90.7 22
zebra1 99.1 4.1 98.2 8 98.7 4.1 97.8 8 98.3 4.0 96.7 8
zebra3 97.4 9.0 95.1 15 93.5 9.7 96.3 8 93.9 8.4 90.4 8
LS2 99.8 2 99.7 2 99.9 2 99.9 2 99.8 2 98.8 6
LS5 99.5 2 98.7 2 98.7 2 99.4 4 99 2 98.4 2
LS10 98.1 2.0 96 4 97.3 2.0 93.5 4 97.3 2.0 93.5 4

In order to check the robustness of induction algorithms and especially the
efficiency of the embedded feature selection, noisy features were added. They
were generated randomly without taking into account class labels and obviously
they are irrelevant to classification. Two levels of added noise are analyzed: the
number of noisy features is equal to the half of the original amount in the features
(denoted as ”50% noise”) and the number of additional features is equal to the
number of features in the original dataset (”100% noise”).

Results of experiments with artificial datasets are gathered in the Table 1. For
all domains GDT performed very well, both in terms of classification accuracy
and tree complexity. Compared to OC1 it was able to find simpler trees with
competitive accuracy. It is should be emphasized that GDT was also much more
robust for added noise than its rival. It can be observed that the accuracy of our
system is only slightly decreased, whereas OC1 performed significantly worse in
noisy scenarios.

One of the important innovations introduced in the paper is a new way of
applying mutation-like operators (i.e. mutation is applied to the tree and not
independently to nodes). It is rather difficult to analyze the impact of any single

a) b)
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Fig. 3. The performance of two mutation strategies on LS5 dataset: a) mutation of
nodes (5%), b) mutation of the tree (50%)
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Table 2. UCI datasets description. In brackets the number of feature vectors in the
testing set is provided when such a set is available.

Number of Number of Number of
Dataset examples features classes
breast-w 683 9 2
bupa 345 6 2
iris 150 4 3
page-blocks 5473 10 5
pima 768 7 2
sat 4435(2000) 36 7
vehicle 846 18 4
waveform 600(3000) 21 3

operator modification only by looking at the final classification results and more
detailed simulations are necessary. In Fig. 3 frequency and efficiency of two
types of mutation are compared in one typical run of the algorithm. All other
parameters except the mutation type are exactly the same. Performance of two
mutation strategies is presented on LS5 dataset because the optimal decision
tree for this problem is composed of only one internal node. It can be easily
observed that with the convergence of the search the mutation of nodes becomes
less frequent and effective, whereas the mutation of the tree performs equally
effectively and can finely fit the dividing hyper-plane position.

In the second series of experiments, a few datasets taken from UCI Machine
Learning Repository [1] are analyzed to assess the performance of the proposed
system in solving real-life problems. In order to avoid the problem of coding
nominal features and treating missing values the datasets with only continuous-
valued features and without missing values were chosen. Table 2 presents char-
acteristics of investigated datasets. Obtained results are gathered in Table 3.

The proposed system performed well on almost all analyzed datasets, but
its superiority over OC1 is not so evident as for artificial datasets. The worst

Table 3. Results obtained for real-life datasets from UCI repository. Classification
accuracy [%] is given as the quality measure and number of leaves as the tree size.

GDT OC1
Dataset Quality Tree size Quality Tree size
breast-w 96.7 2.0 95.3 3.0
bupa 68.8 3.5 67.5 6.9
iris 97.0 3.0 96.7 3.0
page-blocks 95.2 3.0 97.0 12.0
pima 75.6 2.1 72.6 5.1
sat 83.7 6.3 85.4 45.0
vehicle 67.6 8.2 70.2 15.4
waveform 82.4 4.2 78.0 3.0
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result was obtained by the GDT system with a default set of parameters for the
vehicle dataset. It was verified that significantly better classification accuracy
can be easily obtained just by relaxing the stoping condition. Finally, it was
once more confirmed that the global approach finds more compact trees with at
least comparable accuracy.

As can be expected, the induction times of EA-based system are longer that
its top-down rival. However, even for page-blocks, which is the biggest dataset
composed of more than 5000 feature vectors, the computation time is equal to
about 58 min as measured on a standard PC (PIV 3GHz, 1GB RAM). It seems
that such an amount of time is acceptable in most analytical applications.

4 Conclusion

In the paper a new evolutionary algorithm for global induction of linear deci-
sion trees is proposed. In contrast to the classical top-down approaches, both
the structure of the classifier and all hyper-planes in internal nodes are searched
during one run of the algorithm. The modified scheme of applying genetic opera-
tors leads to a more effective search process that is not sensitive to the tree size.
The presented system is able to detect and eliminate noisy or irrelevant features
from tests, thanks to feature selection embedded into the induction algorithm.
Experimental validation of our approach shows that resulting trees are simpler
and more compact with at least the same classification accuracy as existing
counterparts.

The presented approach is constantly improved and currently we are working
on introducing also univariate tests (tests with nominal outcomes and inequal-
ity tests for continuous-valued features) into our system. This should allow the
algorithm to better adapt to the problem solved and to locally choose the most
suitable test representation.

While investigating evolutionary algorithms there is always a strong motiva-
tion for speeding them up. Because they are well suited for parallel architecture
we are contemplating re-implementing our system in a distributed environment.
This is especially important in the context of modern data mining applications,
where huge learning sets are analyzed.
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