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Abstract. In most of data mining systems decision trees are induced
in a top-down manner. This greedy method is fast but can fail for cer-
tain classification problems. As an alternative a global approach based
on evolutionary algorithms (EAs) can be applied. We developed Global
Decision Tree (GDT) system, which learns a tree structure and tests in
one run of the EA. Specialized genetic operators are used, which allow
the system to exchange parts of trees, generate new sub-trees, prune ex-
isting ones as well as change the node type and the tests. The system is
able to induce univariate, oblique and mixed decision trees. In the paper,
we investigate how the GDT system can profit from a parallelization on
a compute cluster. Both parallel implementation and distributed version
of the induction are considered and significant speedups are obtained.
Preliminary experimental results show that at least for certain problems
the distributed version of the GDT system is more accurate than its
panmictic predecessor.

1 Introduction

Evolutionary algorithms [17] are methods inspired by the process of natural
evolution, which are applied to solve many difficult optimization and search
problems. Among others they are successfully used in various knowledge discov-
ery systems [7]. However, it is known that the evolutionary approach is not the
fastest one and a lot of effort is put into speeding it up. This issue is especially
important for future data mining applications, where larger and larger datasets
will be processed and analyzed.

Fortunately evolutionary techniques are naturally prone to parallelism and in
most of the cases they can be efficiently implemented in distributed environments
[1]. Such an implementation can be only aimed at speeding up the calculations
without changing the original sequential algorithm (so called global parallelism)
or can try to extend it by using structured populations. Among the most widely
known types of structured EAs are distributed (coarse-grained) and cellular (fine-
grained) algorithms. In the distributed version a population is partitioned into
several independent subpopulations (islands) performing a sparse exchange of
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individuals, whereas in the cellular algorithm individuals evolve in overlapped
small neighborhoods.

In our previous papers, Global Decision Tree (GDT) system was introduced
for a global induction of decision trees based on evolutionary algorithms. The
system was able to generate accurate and simple univariate [12], oblique [13] and
mixed [14] trees. In this paper we want to investigate how the global induction
of decision trees can profit from a parallelization on a compute cluster. Among
many top-down (e.g. [5],[4]) and global (e.g. [10], [8], [19]) evolutionary decision
tree inducers, according to our knowledge only two attempts in the framework of
the fine-grained approaches were developed: CGP/SA - (Cellular Genetic Pro-
gramming/Simulated Annealing) [6] and GALE - (Genetic and Artificial Life
Environment) [16].

The rest of the paper is organized as follows. In the next section the GDT
system is briefly recalled. In section 3 a parallel implementation of the global
induction is presented and in section 4 a distributed version is investigated.
Experimental validation of the presented approaches is performed in section 5.
The paper is concluded and possible research directions are sketched in the last
section.

2 GDT System

In this section, the GDT system is briefly presented. The system is able to
generate univariate [12], oblique [13] and mixed [14] decision trees. Its general
structure follows a typical framework of evolutionary algorithms [17] with an
unstructured population and a generational selection.

2.1 Representation, Initialization and Termination Condition

A decision tree is a complicated tree structure, in which the number of nodes, test
types and even the number of test outcomes are usually not known in advance
for a given learning set. Moreover additional information, e.g. about learning
vectors associated with each node, should be accessible during the induction.
As a result, decision trees are not specially encoded in individuals and they are
represented in their actual form.

Three test types can be used in non-terminal nodes depending on the decision
tree type: two types of univariate tests for an univariate tree, only oblique tests
for an oblique tree and all previously mentioned for a mixed tree.

In case of univariate tests, a test representation depends on the considered
attribute type. For nominal attributes at least one attribute value is associated
with each branch starting in the node, which means that an internal disjunc-
tion is implemented. For continuous-valued features typical inequality tests with
two outcomes are used. In order to speed up the search process only bound-
ary thresholds are considered as potential splits and they are calculated before
the EA starts. In an oblique test with binary outcome a splitting hyperplane is
represented by a fixed-size table of real values corresponding to a weight vector
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and a threshold. The inner product is calculated to decide where an example
is routed.

Before starting the actual evolution, an initial population is created by apply-
ing a simple top-down algorithm based on a dipolar principle [11] to randomly
selected sub-samples of the learning set [14].

The evolutionary induction terminates when the fitness of the best individual
does not improve during a fixed number of generations (default value is equal to
1000) or the maximum number of generations (default value: 5000) is reached.

2.2 Variation Operators

We use two specialized genetic operators corresponding to the classical mutation
and cross-over. Application of any operator can result in a necessity for reloca-
tion of the learning examples between tree parts rooted in the modified nodes.
Additionally the local maximization of the fitness can be performed by pruning
lower parts of the sub-tree on condition that it improves the value of the fitness.

Mutation operator. A mutation-like operator [14] is applied with a given
probability to a tree (default value is 0.8) and it guarantees that at least one
node of the selected individual is mutated. First, the type of the node (leaf or
internal node) is randomly chosen with equal probability and if a mutation of a
node of this type is not possible, the other node type is chosen. A ranked list of
nodes of the selected type is created and a mechanism analogous to a ranking
linear selection [17] is applied to decide which node will be affected.

While concerning internal nodes, the location (the level) of the node in the
tree and the quality of the subtree rooted in the considered node are taken into
account. Nodes on lower levels of the tree are mutated with higher probability,
which promotes local changes. Nodes on the same level are sorted according
to the number of misclassified objects by the subtree. As for leaves, the num-
ber of misclassified learning examples in leaves is used to put them in order,
but homogenous leaves are excluded. As a result, leaves for which classification
accuracies are worse are mutated with higher probability.

Modifications performed by a mutation operator depend on the tree type and
the node type (i.e. if the considered node is a leaf node or an internal node). For
a non-terminal node a few possibilities exist:

– A completely new test (of the approved type) can be found. A pair of objects
from different classes (mixed dipole) in this node is randomly chosen and a
test which separates them to distinct sub-trees is searched. In case of a
univariate tree, such a test can be constructed directly for any feature with
different feature values. When an oblique test is considered, the splitting
hyperplane is perpendicular to the segment connecting two drawn objects
and placed in a halfway position.

– The existing test can be altered by shifting the splitting threshold
(continuous-valued feature), by re-grouping feature values (nominal features)
or by shifting the hyperplane (oblique test). These modifications can be
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purely random or can be guided by the dipolar principles [11] of splitting
mixed dipoles and avoiding to split pure ones.

– A test can be replaced by another test or tests can be interchanged.
– One sub-tree can be replaced by another sub-tree from the same node.
– A node can be transformed (pruned) into a leaf.

Modifying a leaf makes sense only if it contains objects from different classes.
The leaf is transformed into an internal node and a new test is chosen in the
aforementioned way.

Cross-over operator. There are also several variants of exchanging informa-
tion between individuals. Most of them start with a random selection of one
node in each of two affected trees. In the first variant, the subtrees starting in
the selected nodes are exchanged. In the second variant, which can be applied
only when non-internal nodes are randomly chosen and the numbers of outcomes
are equal, only tests associated with the nodes are exchanged. The third vari-
ant is also applicable with the same assumptions and branches which start from
the selected nodes are exchanged in random order. There is also a variant of
crossover inspired by the dipolar principles. In the internal node in the first tree
a cut mixed dipole is randomly chosen and for the cross-over the node with the
test splitting this dipole is selected in the second tree.

2.3 Fitness Function

A fitness function drives the evolutionary search and is very important and sen-
sitive component of the induction. It is well-known that it is not possible to
optimize directly the classification quality on unseen data. Instead, the reclassi-
fication quality measured on the learning set can be used, but this may lead to
an over-fitting problem. In order to mitigate the problem a complexity term is
incorporated into the fitness function. In the GDT system the fitness function is
maximized and has the following form:

Fitness(T ) = QReclass(T ) − α · (Comp(T ) − 1.0), (1)

where QReclass(T ) is the reclassification quality of the tree T and α is the relative
importance of the classifier complexity (default value is 0.005).

In case of the univariate trees, the tree complexity Comp(T ) is defined as the
classifier size which is equal to the number of nodes. The penalty associated with
the classifier complexity increases proportionally with the tree size and prevents
classifier over-specialization. Subtracting 1.0 eliminates the penalty when the
tree is composed of only one leaf (in majority voting).

A little bit more elaborated definition of the tree complexity is used when
oblique tests are allowed (i.e. in oblique and mixed trees), because it reflects the
complexity of tests:

Comp(T ) = |Nleaf (T )| +
∑

n∈Nint(T )

(1 + β · (F (n) − 1)), (2)
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where Nleaf (T ) and Nint(T ) are sets of leaves and internal nodes respectively,
F (n) is the number of features used in the test associated with the node n and
β ∈ [0, 1] is the relative importance of the test complexity (default value 0.2).
The complexity of the tree is defined as a sum of the complexities of the nodes
and it is assumed that for leaves and internal nodes with univariate tests the
node complexity is always equal to 1.0. It can be also observed that when β = 1
the number of features included in the test is used as the node complexity, and
if β = 0, then the node complexity is 1.0.

3 Parallel Implementation of Global Induction

The most costly (time consuming) operation in the typical evolutionary algo-
rithm is evaluation of the fitness of all individuals in the population. As the
fitness is calculated independently for every individual this feature gives the
most straightforward way of exploiting parallelism in the evolutionary search.
The population is evenly distributed to available processors (slaves) and the fit-
ness is calculated in parallel. The remaining parts of the evolution are executed
in the master processor.

In evolutionary data mining an individual usually represents a certain type of
classifier and its goodness of fit is evaluated by using the learning set. When this
set is large, it can be also profitable to divide the learning set into subsets and to
distribute them among processors. In each computational node the partial fitness
calculations are performed in parallel and finally the overall fitness is summed
up in the master processor [15].

In case of the global induction of decision trees none of the aforementioned
approaches can be directly applied. In the GDT system, information about the
learning vectors reaching any node of decision tree is stored in that node. It
allows us to apply the genetic operators efficiently and to directly obtain the
fitness corresponding to the individual. In fact, the actual fitness calculation is
embedded into the post mutation and cross-over processing, when the learning
vectors in the affected parts of the tree (or trees) are relocated. This mechanism
increases the memory complexity of the induction but significantly reduces its
computational complexity. As a consequence, the most time consuming elements
of the algorithm are genetic operators and they should be performed in parallel.

The general scheme of a single generation in the parallel implementation of
the global induction is presented in Fig. 1. The proposed approach is based on
the classical master-slave model. After the selection and the reproduction, sub-
populations are sent to the slave processors where individual variation operations
are performed. When all individuals in the subpopulation migrated to the given
processor are processed, they are sent back to the master processor, where the
rest of the algorithm is performed. It should be noticed that also an initial
population of the algorithm is created in parallel by slave processors.

Migrating an individual between processors within the framework of the
message-passing interface is composed of 3 steeps: packing the individual into
a flat message, transferring the message between processors (sending/receiving)
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Fig. 1. Parallel implementation of the global decision tree induction based on the
master-slave model

and unpacking the corresponding tree. In order to minimize the message size in-
formation about learning vectors associated with tree nodes is not stored in the
message. Only the number of vectors is included in the message and this speeds
up the reconstruction during the message unpacking in the target processor. It
should be also noticed that in the master processor, when centralized parts of
the algorithm are executed (i.e. the reproduction with elitism and the termi-
nation condition verification) packed individuals can be processed on condition
that the corresponding values of the fitness are known. This way unnecessary
unpacking-packing operations can be eliminated in the master processor. Addi-
tionally, a certain number of individuals from the given slave processor survive
(or replicate) and in the next iteration they are scheduled to be sent back to that
processor. This observation gives another possibility to eliminate unproductive
calculation, however the cloned trees should be sent to different processors in
order to avoid crossing with identical or very similar individuals.

In spite of all it can be expected that the computational cost associated with
scattering and gathering of decision trees is high and the significant improvement
in the speedup can be obtained only by reducing migrations. One of the simplest
solutions consists in performing the population synchronization not in every it-
eration. Hence, in these iterations when the synchronization is not performed,
subpopulations evolve locally. There are two elements which become different
compared to the original algorithm: reproduction and crossover. In every sub-
population the best individual is searched and the reproduction is performed
locally. Moreover, individuals can mate only with other individuals located in
the same processor. After a few local iterations (default value: 10) a standard
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iteration with the centralized reproduction is applied. Such a hybrid solution can
be treated as a first steep toward fully distributed evolution of decision trees.

4 Distributed Global Evolution of Decision Trees

The proposed solution is based on the classical multi-population (island) model.
The general scheme of a distributed induction is presented in Fig. 2. In every
dem individuals are evolved locally as in the original sequential version of the
GDT system. A migration of selected trees is performed periodically (default
value: 20 iterations) and selection of trees to send and to discard is done ac-
cording to their fitness. Islands are organized into a ring and during migrations
any dem communicates only with two its neighbors. It sends the same number
of individuals to the next island and receives the same number of trees from its
predecessor. Such an operation can be straightforwardly and efficiently imple-
mented and the centralized processing is unnecessary. In the simplest case only
local best individuals are cloned and sent and the worst individuals are replaced
by incoming ones.

Fig. 2. Distributed evolution based on the island model (ring topology and migration
of single individual)

The termination condition of the distributed evolution is verified in a cen-
tralized way after migrations. If the overall best value of the fitness does not
improve during the fixed number of generations, the algorithm is finished even if
the maximum number of generations is not reached. The resulting decision tree
of the distributed evolution is chosen according to the fitness function among
the best local individuals stored in each island.
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5 Experimental Results

In this section the proposed parallel and distributed versions of global deci-
sion tree induction are experimentally verified. In order to focus and clarify the
presentation only results concerning the mixed decision trees, as the most repre-
sentative, are included. All presented results were obtained with a default setting
of parameters from the sequential version of the GDT system.

In the experiments a cluster of sixteen SMP servers running Linux 2.6 and
connected by an Infiniband network was used. Each server is equipped with two
64-bit Xeon 3.2GHz CPUs with 2MB L2 cache, 2GB of RAM and an Infniband
10 Gb/s HCA connected to a PCI-Express port. We used the MVAPICH version
0.9.5 [9] MPI implementation.
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Fig. 3. Efficiency of parallel implementation: speedup measured on exemplar datasets

In Fig. 3 scalability of the parallel implementation measured on four exemplar
artificial datasets1 is presented. It can be observed that the obtained speedup is
satisfactory. In order to explain this result detailed time-sharing is necessary and
it is presented for one dataset in Fig. 4. It is clearly visible that the problem is
caused by the overhead connected with unpacking individuals and redistributing
the learning examples to tree nodes at slave processors. The time of applying the
variation operators (denoted as Operation time) is properly reduced. It can be
also noticed that the sending/receiving time (denoted as MPI time) is relatively
small and it increases with the number of slave processors.

In the next experiment it was verified that the significant increase of speedup
can be obtained by reducing migrations. In Fig. 5 execution times measured for
1 For detailed description of artificial datasets used in the experiments please refer

to [14].
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 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

1 2 4 8 16

A
ve

ra
ge

 lo
op

 ti
m

e

Number of processors

Avg UnPack Time
Avg MPI Time
Avg Operation Time
Avg Selection Time

Fig. 4. Efficiency of parallel implementation: detailed time-sharing on chessOB2CL
dataset
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Fig. 5. Speedup of the hybrid solution measured on chessOB2CL dataset (with different
rate of migrations)

the hybrid implementation with increasing number of local iterations (without
centralized reproduction) are presented. It can be observed that sparser migra-
tions result in the important improvement in terms of speedup (almost linear
speedup obtained for the run with 10 local iterations after the population syn-
chronization).
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Table 1. Results on artificial data

C4.5 OC1 GDT dGDT
Dataset size quality size quality size quality size quality
chess2x2 1 50 10.1 89.3 4 99.8 4 99.9
chess3x3 9 99.7 21.1 73.7 9 99.3 9 99.6
chessOB2CL 33 95.6 7 77.3 4.1 99.1 4 99.7
chessOB4CL 35 94.6 4.3 49.8 4 98.9 4 99.7
house 21 97.4 8.2 92.8 3.8 96.9 5 99.5
ls10 284 77.3 7.3 95.3 2 97.6 2 98.2
ls2 22 97 2 99.7 2 99.9 2 99.9
zebra1 25 95.3 3 83.5 3 99.6 3 99.9
zebra2 2 59.5 4.8 94.1 4 98.2 4 99.6
zebra3 57 91.2 8.2 24.3 8.4 97 9.3 98.4

Table 2. Results on real datasets

C4.5 OC1 GDT dGDT
Dataset size quality size quality size quality size quality
balance-scale 57 77.5 5.4 90 2.6 89.5 9.3 94.8
bcw 22.8 94.7 4.7 91.2 2 96.7 2.1 96.7
bupa 44.6 64.7 5.8 65.6 3.5 68.6 32.6 64.1
glass 39 62.5 4.5 55.7 11.6 66.4 31.6 68.5
page-blocks 82.8 97 15.6 96.6 3 94.9 7.3 96.6
pima 40.6 74.6 6.5 69.6 2.2 75.4 13.6 74.4
sat 435 85.5 58.3 78.9 6.4 81.5 14.6 84.8
vehicle 138.6 72.7 21.6 66.4 8.8 65.4 42.3 70.3
waveform 107 73.5 10.5 77.4 4.2 80.5 12.3 81.1
wine 9 85 3.2 87 4.2 91.5 5 88.8

As it can be expected based on the experiments with the hybrid implementa-
tion, in case of the distributed version of the GDT system almost linear speedup
is achieved (15.4 for 16 processors). In the final experiments, an impact of the
distributed evolution on accuracy and complexity of decision tree classifiers is
verified.

The distributed approach (denoted as dGDT in tables) is assessed on 10 ar-
tificial and 10 real life datasets and is compared to the well-known top-down
univariate (C4.5 [20]) and oblique (OC1 [18]) decision tree systems. It is also
compared to the sequential versions of the global inducer - GDT. All prepared
artificial datasets comprise training and testing parts. In case of data from UCI
Repository [2] for which testing data are not provided, a 10-fold stratified cross-
validation was employed. The population size for dGDT was set to 256 giving 8
sub-populations of 32 individuals each.

In table 1 and table 2 results of experiments with artificial and real life datasets
are presented. It can be observed that two global inducers performed better both
in terms of accuracy and classifier complexity that its top-down counterparts
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on artificial datasets. It seems that dGDT was even slightly better than the
sequential version on these datasets. In case of real life datasets, the situation is
more equilibrated. For six datasets dGDT was more accurate then GDT, but for
three problems the sequential version was better. It can be also noticed that the
distributed inducer produced more complex trees. Compared to the top-down
systems both global inducers performed well, however for certain problems they
were outperformed.

6 Conclusions

In the paper, the parallelization of the global decision tree induction based on
evolutionary algorithms is investigated. It was shown that the migration of the
individuals is a sensitive point of the process and the cost associated with the
migration is relatively high. As a result the most efficient solution is based on
the multi-population model. Moreover, it was experimentally shown that at least
for certain problems the distributed version of the system is more accurate than
its sequential predecessor.

The GDT system is still in development and many possible directions of fu-
ture improvements exist. Currently we are working on more sophisticated island
topologies, where random but still decentralized and balanced migrations will
be possible. We also plan to implement the global induction in the framework
of shared memory multiprocessing (OpenMP), which will reduce the problem of
migrations.
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(eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 400–409. Springer, Heidelberg
(2006)
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