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Abstract. One of the important and still not fully addressed issues in
evolving decision trees is the induction time, especially for large datasets.
In this paper, the authors propose a parallel implementation for Global
Decision Tree system that combines shared memory (OpenMP) and mes-
sage passing (MPI) paradigms to improve the speed of evolutionary in-
duction of decision tree. The proposed solution is based on the classical
master-slave model. The population is evenly distributed to available
nodes and cores, and the time consuming operations like fitness eval-
uation and genetic operators are executed in parallel on slaves. Only
the selection is performed on the master node. Efficiency and scalability
of the proposed implementation is validated experimentally on artificial
datasets. It shows noticeable speedup and possibility to efficiently process
large datasets.
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1 Introduction

Evolutionary algorithms (EA) [14] are metaheuristic nature-inspired algorithms
that represent techniques for solving a wide variety of difficult optimization prob-
lems. Their mechanisms such as mutation, recombination, natural selection and
survival of the fittest are inspired by the biological evolution. One of the main
drawbacks of EA is relatively high computational complexity. This issue is espe-
cially important for current data mining applications [6], where larger and larger
datasets are processed and analyzed.

Fortunately EA are naturally prone to parallelism and the process of artificial
evolution can be implemented in various ways [1]. It is possible to parallelize time
consuming operations or to parallelize the whole evolutionary process itself. The
first approach is often based on the master-slave model [7] and aims at speed-
ing up the calculation without changing the original sequential algorithm. The
second approach leads to a variety of distributed (coarse-grained) and cellular
(fine-grained) algorithms that differ from the sequential implementation.

In the recent past evolutionary algorithms were successfully applied to evolve
decision trees as an alternative to the greedy top-down approaches [2]. However,
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evolving decision trees is usually more costly and time-consuming and consid-
erably limits their popularity comparing to the greedy strategies. In the recent
survey [2] on the evolutionary induction of decision trees, authors put on the
first place in the future trends the need of speeding up the evolutionary tree
induction.

In this paper, the authors investigate how the evolutionary induction of de-
cision tree can be parallelized using both shared address space (OpenMP [3])
and message passing (MPI [16]) paradigms on a cluster of nodes with multi-core
chips. The main objectives of this work are to accelerate the Global Decision Tree
(GDT) system and to allow efficient evolutionary induction of decision trees on
large datasets.

The first attempt to parallelize the GDT solution was proposed in [13]. The
authors investigated parallel and distributed solutions for global induction of
decision trees. In this paper, we rewrite and significantly extend that parallel
implementation and introduce hybrid MPI+OpenMP approach that may provide
a better efficiency than e.g. pure MPI version [15]. In addition, the proposed
solution focuses not only on the algorithm speedup but also on algorithm’s ability
to efficiently process large datasets.

This paper is organized as follows. The next section provides a brief back-
ground on the GDT system. Section 3 describes our approach for parallel im-
plementation of evolutionary tree induction in detail. Section 4 presents exper-
imental validation of the proposed solution and comparison results on artificial
datasets. In the last section, the paper is concluded and possible future works
are sketched.

2 Global Decision Tree System

The GDT general structure follows a typical framework of evolutionary algo-
rithms [14] with an unstructured population and a generational selection. It is
able to induce univariate [10], oblique [11] and mixed [12] classification trees.

Decision trees are complicated tree structures, in which number of nodes,
type of the tests and even number of test outcomes are not known in advance.
Therefore, in the GDT system individuals are not specially encoded and are
represented in their actual form as a typical classification trees. Depending on
the tree type (univariate, oblique, mixed), each test in internal node concerns one
or more attributes. In case of univariate tests, a test representation depends on
the considered attribute type. For nominal attributes at least one attribute value
is associated with each branch starting in the node, which means that an internal
disjunction is implemented. Typical inequality tests with two outcomes are used
for continuous-valued features. Only precalculated candidate thresholds [5] are
considered as potential splits. In an oblique test with binary outcome a splitting
hyperplane is represented by a fixed-size table of real values corresponding to a
weight vector and a threshold. The inner product is calculated to decide where
an example is routed.

Initial individuals are created by applying the simple top-down algorithm
based on a dipolar principle [9] to randomly selected sub-samples of the learning
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set [12]. Ranking linear selection [14] is used as a selection mechanism. Addi-
tionally, in each iteration a single individual with the highest value of fitness
function in current population is copied to the next one (elitist strategy). Evolu-
tion terminates when the maximum number of generations (default value: 1000)
is reached.

To maintain genetic diversity, two specialized genetic operators corresponding
to the classical mutation and cross-over were proposed. They are applied with a
given probability to a tree (default value is 0.8 for mutation and 0.2 for cross-
over). Mutation operator starts with randomly choosing the type of node (equal
probability to select leaf or internal node). Next, the ranked list of nodes of
the selected type is created and a mechanism analogous to the ranking linear
selection is applied to decide which node will be affected. Depending on the
type of node, the ranking takes into account the location of the internal node
(internal nodes in lower parts of the tree are mutated with higher probability)
and the number of misclassified objects (nodes with worse classification accuracy
are mutated with higher probability). Modifications performed by the mutation
operator depend on the tree type and the node type (i.e. if the considered node
is a leaf node or an internal node) and cover different variants:

– changing the sub-trees or tests in the internal nodes;
– pruning the internal nodes or expanding the leaves that contain objects from

different classes.

Cross-over operator starts with selecting positions in two affected individuals.
Depending on the recombination variant, randomly selected nodes may:

– exchange subtrees (if exists);
– exchange tests associated with the nodes (only when non-terminal nodes are

chosen and the numbers of outcomes are equal);
– exchange branches in random order which start from the selected nodes (only

when non-terminal nodes are chosen and the numbers of outcomes are equal).

Successful application of any operator results in a necessity for relocation of the
learning examples between tree parts rooted in the modified nodes.

Fitness function is one of the most important and sensitive factor in the design
of EA. It drives the evolutionary search process by measuring how good a single
individual is in terms of meeting the problem objective. In context of decision
trees a direct minimization of the reclassification quality measured on a learning
set usually leads to the overfitting problem. This problem is partially mitigated
by defining a stopping condition and by applying a post-pruning [4] in typical
top-down induction of decision trees [17]. In case of the evolutionary induced
decision trees, this problem may be mitigated by a term incorporated into the
fitness function. In the GDT system the fitness function is maximized and has
the following form:

Fitness(T ) = QReclass(T )− α · Comp(T ),

where QReclass(T ) is the reclassification quality of the tree T and α is the rel-
ative importance of the classifier complexity (default value is 0.005). The tree
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complexity term Comp(T ) can be viewed as a penalty for over-parametrization.
It includes the tree size (calculated as the number of leaves) and for oblique and
mixed trees also the complexity of attributes in the internal nodes.

3 Parallel Implementation of Global Decision Tree
System

In this section, the parallel implementation of the GDT system is proposed. At
first, an efficient fitness calculation is shortly discussed and next, distributed
(MPI) and shared (OpenMP) memory solutions are described.

In a typical EA the evaluation of fitness of individuals in population is the most
time consuming operation. As it is calculated independently for every individual,
this process can be easily parallelized by distributing population evenly among
available nodes (slaves). The master node executes the remaining operations of
the evolution.

In case of the GDT system, the aforementioned approach cannot be directly
applied. The information about the learning vectors is stored in each node of
decision trees. This way the genetic operators can efficiently and directly obtain
the fitness corresponding to the individual [12], [8]. The actual fitness calculation
is embedded into the post mutation and cross-over processing, when the learning
vectors in the affected parts of the tree (or trees) are relocated. This mechanism
increases the memory complexity of the induction but significantly reduces its
computational complexity. As a consequence, the most time consuming elements
of the algorithm are genetic operators and they should be performed in parallel.

Figure 1 illustrates the proposed hybrid parallel approach for the evolutionary
induced decision tree algorithm. It can be observed that at the first step the
master node spreads individuals from the population over slave nodes using
message-passing strategy. In the next step, in each slave node the calculations
are spread over cores which run the algorithm blocks in parallel.

It should be recalled that the shared memory approach is strongly linked and
limited by the available hardware (e.g. 8 cores in one node), whereas within
the distributed memory approach it is usually easier to create more numerous
configurations.

3.1 Distributed Memory Approach

In each evolutionary loop, the master evenly distributes individuals between the
nodes (slaves). To avoid wasting resources, the chunk of population is left on the
master which also works as a slave. Migration the individuals between nodes is
performed with the framework of the message-passing interface and requires:

– packing the tree structures into a flat message;

– transfer the message between nodes (sending/receiving);

– unpacking the message into the corresponding tree.
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Fig. 1. Hybrid parallel approach of the evolutionary induced decision tree algorithm

The packed tree structure contains information about its size, the tests in the
internal nodes’ and additional nodes statistics (e.g. number of learning vectors),
that speeds up the reconstruction during the message unpacking in the target
node. In order to minimize the message size, the information about learning
vectors associated with the tree nodes is not included in the message.

The certain parts of EA like reproduction (with elitism) and terminal con-
dition verification are executed on the master node. However, to perform the
selection, the fitness value of the distributed individuals has to be known. To
avoid unnecessary unpacking-packing operations (for trees will not be selected
into the next generation) on the master, the fitness value of the migrated indi-
vidual is also transferred. Additionally, a certain number of individuals from the
given slave node may survive (or be replicated) and in the next iteration they
could be scheduled to be sent back to that node. This observation gives another
possibility to eliminate unproductive calculation. However, it raises a risk that
the individuals in particular a node may not change much (or be very similar).
To keep the original sequential algorithm and avoid some kind of island mod-
els, we sent the cloned trees to random slave nodes to keep the sub-population
diversified at each slave and to avoid crossing with identical or very similar in-
dividuals.

In the previously presented research [13] on the parallel GDT implementa-
tion, the redistribution of learning vectors was performed after unpacking each



A Parallel Approach for Evolutionary Induced Decision Trees 345

individual on the target node. The whole tree was reconstructed before starting
the mutation and cross-over operations. Then, after successful application of a
genetic operator, the redistribution of learning vectors of an affected node (and
eventual sub-nodes) was performed.

This process of associating each instance with appropriate leaf is very time-
consuming, especially on large datasets. In order to limit redistribution of the
data, we propose to reconstruct only those nodes that will be affected. In ad-
dition, there is only a need to fit learning vectors that fall to the affected node
since the redistribution of eventual sub-nodes is not necessary. If a genetic op-
erator will be successful, the learning vectors in the sub-tree will be relocated
anyway. This way, instead of reallocating all learning vectors in whole tree, we
only set a part of the data in the node (without its eventual sub-nodes) that is
selected for mutation or cross-over. It can be also noticed that if the root tree
node is to be affected by a genetic operator, the preceding processing is reduced
only to associating the whole dataset to the root node. The GDT assumption
that internal nodes in lower parts of the tree are mutated with higher proba-
bility also enhances a possible speedup of the proposed implementation as it is
expected that the lower parts of the tree held fewer learning vectors that need
to be assigned.

3.2 Shared Memory Approach

The shared memory approach is applied in every slave node (including master
which works also as a slave). We assume that all cores within the node operate
independently but share the same memory resources. Access and modification
of the same memory space by one core is visible to all other cores, therefore, no
data communication between the cores is required. However, additional synchro-
nization during write/read operations is needed in order to insure appropriate
access to shared memory.

In Figure 1 we see that each slave node spreads calculations further. The calcu-
lations in the chosen algorithm blocks concerning different individuals are spread
over cores. This way, all variants of genetic operation together with redistribution
of learning vectors can be performed in parallel. In case of mutation, each core
processes a single individual at a time, whereas during cross-over, pairs of af-
fected individuals are processed in parallel. Parallelization with shared memory
approach is also applied on the master node for the distribution and gather-
ing population from other nodes. In addition, all trees that were transformed
into leaves after application of genetic operators are extended into sub-trees in
parallel by cores at each slave node.

4 Experiments

In this section we show the performance of the proposed parallel version of the
GDT system. Two sets of experiments were performed. At first, the efficiency
of the parallel MPI and OpenMP implementation is presented for four datasets.
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Next, more detailed information is illustrated for one selected dataset with re-
spect to speedup and size of the dataset.

4.1 Setup

Experimental verification was performed with the mixed version of the GDT sys-
tem. All presented results were obtained with a default settings of parameters
from the sequential version of the GDT system. We have tested four artificially
generated datasets with different characteristics described in Table 1 and illus-
trated in Figure 2. All datasets are composed of 100 000 instances and have
different characteristics like number of attributes and classes or the type of op-
timal splits.

In the paper we focus only on the time performance of the GDT system,
therefore, results for the classification accuracy are not enclosed. However, for
all tested datasets, the GDT system managed to induce trees with optimal struc-
tures and almost perfect accuracies (99%-100%). For detailed accuracy results,
we refer reader to our previous papers [10,12].

In the performed experiments a cluster of sixteen SMP servers (nodes) running
Ubuntu 12 and connected by an Infiniband network (20 Gb/s) was used. Each
server was equipped with 16GB RAM, 2xXeon X5355 2.66GHz CPUs with total
number of cores equal 8. We used the Intel version 15.1 compiler, MVAPICH
version 2.2 and OpenMP version 3.0. Within each node, only the shared memory
approach (OpenMP) was applied whereas between the nodes the message-passing
interface (MPI) was used.

4.2 Results

In the first experiment, the authors focus on the overall speedup of the proposed
hybrid MPI-OpenMP approach. Table 2 presents the obtained mean speedup for
different datasets (100 000 instances). Only the best combination of nodes and
cores is shown and it looked as follows for all four datasets:

– results for 2 cores: 1 node with 2 OpenMP threads;
– results for 4 cores: 1 node with 4 OpenMP threads;
– results for 8, 16, 32, 64 cores: 8 nodes with 1, 2, 4, 8 OpenMP threads per

node, respectively.

Table 1. Datasets’ characteristics: name, number of instances, number of attributes,
number of classes and the type of splits in the internal nodes

Dataset Instances Attributes Classes Splits

Chess 3x3 100 000 2 2 univariate

Cross 100 000 2 5 univariate

Diamond 100 000 2 2 oblique

Zebra 100 000 10 2 oblique
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Chess 3x3 Cross Diamond Zebra

Fig. 2. Examples of artificial datasets

Table 2. Mean speedup reported for different number of cores

Dataset
Speedup on different number of cores

2 4 8 16 32 64

Chess 3x3 1.62 2.75 6.14 8.06 12.97 15.34

Cross 1.67 2.61 4.90 7.80 9.69 10.59

Diamond 1.86 2.62 4.61 7.10 9.35 10.58

Zebra 1.66 2.61 4.43 5.60 8.91 9.93

It is clearly visible that the hybrid parallel algorithm is able to noticeable
decrease the computation time. The best speedup for 64 cores (8 cluster nodes
- 1 MPI process per node and 8 OpenMP threads inside each node) is obtained
for the dataset Chess 3x3. We can observe that the speedup differences between
32 and 64 cores are relatively small considering doubling the number of cores.
One of the reasons is the size of the population (default: 64 individuals). To
achieve effective parallelization, the number of cores should not exceed half of
the population because for some operations like cross-over, each core performs
calculations on two individuals. The second reason why the efficiency for the
higher number of cores is getting smaller results from the Amdahl’s law [7] as
some parts of the algorithm have to run sequentially.

It should be noticed, that in previous work [13] speedup of the parallel im-
plementation of GDT system on similar datasets were between 2 and 3 for 8
processing units. Here, we manage to achieve speedups between 4 and 6.

Fig. 3(a) shows how the number of used OpenMP threads per node influences
the simulation time. Results are obtained for the dataset Chess 3x3 (100 000
instances). Each time all cores on the used nodes are allocated. Although the
population size equals 64, it is still profitable to use 8 nodes (8 MPI processes)
with 8 OpenMP threads per each node.

The detailed results for different dataset (Chess 3x3) size are presented in
Fig. 3(b). It shows the optimal results for the different number of used cores.
For example, the 16 used cores means: i) for 10 000 instances - 4 cluster nodes
- 1 MPI process per node and 4 OpenMP threads inside each node, or ii) for 1
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Fig. 3. Performance of the hybrid parallel algorithm of evolutionary induced decision
tree: a) speedup across nodes with different number of OpenMP threads per node, b)
speedup for different dataset size

000 000 instances - 8 cluster nodes - 1 MPI process per node and 2 OpenMP
threads inside each node. Each time all cores on the used nodes are allocated. It
is visible that the algorithm deals successfully both with small and large dataset
sizes. It is true for a few cores as well as for more processing units.

Time comparison of the average loop time of the GDT solution shows that
it is scalable in context of the data size. The sequential GDT system performs
evolutionary loop in an average 0.037 second for Chess 3x3 dataset with 10
000 instances and 31.71 seconds for 1 million instances. The default number of
generations in the GDT system equals 1 000, therefore, the tree induction time
for the sequential algorithm and the largest dataset takes almost 9 hours (+ the
time to read the dataset and create initial population) whereas using parallel
implementation is reduced up to 42 minutes when 64 cores are used.

5 Conclusion and Future Works

In the paper, the hybrid parallelization of the evolutionary induction of decision
tree is investigated. The authors manage to successfully speed up the evolution-
ary induction of decision trees and efficiently process large datasets. Proposed
implementation takes an advantage of modern parallel machines and may pro-
vide an efficient acceleration on high-performance computing clusters as well as
on low-cost commodity hardware.

We will continue to work with the presented approach to adapt it to evolu-
tionary induction of regression and model trees. Moreover, future work will deal
with a GPGPU paralellization.
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