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Abstract. Evolutionary-based approaches have recently been increas-
ingly proposed for data mining tasks, but their real applicability depends
on efficiency and scalability for large-scale data. It is clear that parallel
and distributed processing support is indispensable herein. Apache Spark
is one of the most promising cluster-computing engines for Big Data.
In this paper, we investigate the application of Spark to speed up an
evolutionary induction of classification trees in the Global Decision Tree
(GDT) system. The system simultaneously searches for the tree structure
and tests in non-terminal nodes due to specialized genetic operators. As
the original GDT system is implemented in C++, the Java-based mod-
ule is developed for Spark-based acceleration of the most computation-
ally demanding fitness evaluation. The training dataset is transformed
to Resilient Distributed Dataset, which enables in-memory processing of
dataset’s parts on workers. Preliminary experimental validation on large-
scale artificial and real-life datasets shows that the proposed solution is
efficient and scales well.
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1 Introduction

In the last decade, the availability of large data volumes in business, industry and
research increased tremendously. This gives huge opportunities as well as chal-
lenges for knowledge discovery from data [20]. Typical data mining approaches,
originating from classical statistical pattern recognition or machine learning algo-
rithms, are usually computationally complex. They become often useless when
confronted with contemporary Big Data warehouses. One of the possible solu-
tions is adaptation and extension of existing methods by using parallel and/or
distributed processing [12]. Nowadays a lot of researchers commitment is directed
at developing flexible frameworks for migrating calculation to computing clus-
ters or graphical processing units (GPU)s, as former low-level approaches like
e.g. MPI were relatively demanding to apply. Spark [21] is a novel alternative
for cluster-computing, especially well suited for in-memory computing. It offers
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fault-tolerance, robust horizontal scalability as well as rich monitoring and diag-
nostic tools.

Evolutionary algorithms [16] are currently one of the most popular
population-based meta-heuristics for solving optimization and search problems.
These nature-inspired techniques try to mimic biological evolution, where more
fitted individuals have a better chance to survive and reproduce. Evolutionary
algorithms are known for their robustness and are successfully applied to a wide
range of problems. On the other hand, these are not the fastest techniques when
run on a single processor, so especially for the big data mining, efficient parallel
and/or distributed implementations and accelerations are indispensable [2,11].

In this paper, we investigate speeding up an evolutionary induction of deci-
sion trees. Global Decision Tree (GDT) is a data mining system that enables
induction of various variants of decision trees: univariate, oblique and mixed
ones. In a single run of an evolutionary algorithm, the tree structure, tests and
predictions in the leaves are searched. The resulting decision trees are generally
simple and accurate, but for large-scale data computation times are long [3]. To
overcome this limitation, we tried to develop more time efficient implementations
on computing clusters using MPI/OpenMP [5,6] and on GPUs [13] using CUDA.
In this paper, we explore the benefits of Spark as an acceleration engine for the
GDT system.

The rest of the paper is organized as follow. Firstly, Spark is briefly introduced
and its applications in an evolutionary search and especially evolutionary data
mining are listed. In the next section, the most important features of global
induction of decision trees are shortly recalled. Then Spark-based acceleration
of the GDT system is presented and vital implementation issues are also shortly
discussed. In Sect. 4 experimental validation of the proposed solution on large-
scale artificial and real datasets is described. The paper is concluded in the last
section and possible directions of future works are sketched.

1.1 Spark

Apache Spark [21] is an open-source distributed computing engine for large-scale
data processing. Spark provides high-level APIs in Java, Scala, Python and R and
offers tools for structured data processing, machine learning, graph processing
and data streaming.

Apache Spark architecture is based on a concept of Resilient Distributed
Dataset (RDD) - an immutable distributed data structure that provides fault
tolerance and can be processed in parallel.

In contrast to Hadoop MapReduce, where intermediate results are stored
on disk, Spark processes data in distributed shared memory model, preferably
in the RAM of the cluster nodes, which makes it much more suited for itera-
tive algorithms and interactive data exploration. Furthermore, Spark offers a
much broader set of high-level functional-style data operators that simplify the
implementation of distributed applications.
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1.2 Related Works

One of the first attempts to apply Spark to evolutionary algorithms was proposed
by Deng et al. [8]. The authors implemented a parallel version of differential evo-
lution where the population is treated as an RDD and only the fitness evaluation
is distributed to workers. Teijero et al. [19] also tried to parallelize differential
evolution, focusing on individual’s mutation. The proposed three master-slave
implementations were not efficient, so the authors decided to switch to the island
model with local-range mutations and rare migrations. In [18] a parallel genetic
algorithm for pairwise test suite generation was proposed. A population was
stored as an RDD and the fitness was evaluated on workers, whereas genetic
operators were applied in subpopulation corresponding to partitions.

As for evolutionary data mining approaches using Spark, in [9] fuzzy rule-
based classifiers were generated. The fitness function of multi-objective algorithm
scanned for entire training datasets and this computationally expensive opera-
tion was divided among cluster nodes. Another multi-objective fuzzy approach
for subgroup discovery was presented in [17]. Evolutionary search for a set of
rules was executed in separate dataset partitions and repeated for each value
of the target variable. Then reduction of the rules obtained in each partition
based on the global measures was carried out. In [10] the authors tried to scale
a genetic programming-based solution for symbolic regression and proposed a
fitness evaluation service based on Spark.

2 Global Decision Tree Induction Framework

The GDT system [7,14] enables induction of several types of decision trees,
depending among others on the type of a predictive task to be solved, the permit-
ted test types in nodes and models in leaves, etc. All variants of the algorithm
share the same typical evolutionary process [16] with an unstructured, fixed size
population and a generational selection.

Every individual in a population corresponds to a single decision tree, whose
size and structure is dynamically changed during the evolution. There is no
special encoding and the trees are represented in the actual form. In the simplest
case of binary, univariate, classification trees, only inequality tests on continuous-
valued features with two outcomes are placed in the internal nodes, whereas class
labels are associated with leaves. More complicated variants can, for example,
rely on oblique tests in non-terminal nodes or multiple-linear models in leaves.

Individuals in an initial population are created with a simplified top-down
induction, which is applied to randomly selected small sub-samples of the learn-
ing data.

As decision trees are “peculiar”, hierarchical structures, the variation opera-
tors should be appropriately designed and applied so that the evolution is efficient
and robust. In the GDT system, two groups of specialized genetic operators were
developed: mutation-like operators which are applied to single individuals and
cross-over ones which operate on pairs of trees. In each group, several variants
of operators were proposed depending, among others, on the tree type and node
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type. Each time, the choices of the variant and affected nodes (or node) are
random, but probability distributions are not uniform across both nodes and
variants. For nodes the location in the tree (modifying nodes from upper levels
result in more global changes) and quality of the subtree (less accurate nodes
should be modified more often) are taken into account. For a drawn node only
matching variants are considered, but the user preferences can be also included.

When a non-terminal node is to be mutated, it can be pruned into a leaf or
its test can be modified, recreated or copied from another node. These changes
can be purely random or can be based on a local search (so-called memetic exten-
sions). As for a leaf node, it can be transformed into a stump (one internal node
and leaves) and a new test needs to be created. Concerning simpler symmet-
ric cross-over variants, only tests or whole sub-tress can be exchanged between
two individuals. In more complicated asymmetric scenarios, a subtree from a
donor position in one tree is duplicated and implanted to a receiver position in
the second tree. In certain variants of both mutation and cross-over operators,
randomly chosen dipoles1 can be used to guide the decision tree modifications.

The fitness function, which drives the evolutionary search, should as much as
possible close reflect the goal of the algorithm. In many of data mining tasks, one
tries to find the best predictor, but simultaneously simplicity of such a predictor
is often desired. It is well known that a classifier which perfectly classifies the
training data is usually much worse, when tested on unseen data, due to the
over-fitting problem. In case of decision trees, the predictor complexity can be
reduced just to the number of nodes or can rely on the complexity of tests in
internal nodes and/or models in the leaves. In the GDT system many forms of
the fitness function, both single-objective or multi-objective, can be applied. As,
in this paper, only univariate decision trees applied to classification problem are
considered, the simple weighted form of the fitness function can be used:

Fitness(T ) = Accuracy(T ) − α ∗ Size(T ), (1)

where Accuracy(T ) represents the reclassification quality of the tree T , Size(T )
stands for the number of nodes in T and α is the user-supplied parameter, which
can be possibly tuned up for the given dataset (default value α = 0.001).

3 Spark-Accelerated Evolutionary Induction

For large-scale data, the most time-consuming operation in evolutionary induc-
tion is clearly the fitness evaluation, as it requires re-classifying of the whole
training dataset for every tree in each iteration. Thus, in the proposed Spark-
based acceleration, we decided to concentrate only on distributing the training
dataset, as it enables the most productive parallelization. The rest of the evolu-
tion is unaffected in principle and is realized sequentially.

Firstly, the training dataset is loaded line-by-line and transformed into an
RDD of elements representing observation groups of the same size. The number
1 A dipole is a pair of observations; if observations come from different classes, a dipole

is called mixed.
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Fig. 1. Distributed fitness evaluation and dipoles searching.

of groups should correspond to the number of available computing nodes so the
dataset chunks can be effectively cached in their memory. During the induction,
all observations are passed through every transferred decision tree and arrange-
ment of observations in its leaves is obtained (Fig. 1). It is realized by typical
pair of map-reduce operations evoked on the grouped RDD: each group emits
a locally processed copy of the tree (map(group) → tree) and the local trees
are then reduced into a final result. Moreover, for each processed group a set
of dipoles, which can be potentially used in genetic operators, is randomly cho-
sen and implicitly reduced. Finally, the class distributions in each leaf can be
calculated and the overall accuracy is estimated.

The proposed method is highly iterative, therefore an effective distribution of
the dataset in the cluster memory is one of the crucial implementation aspects.
The dataset can be loaded from a local file and distributed on the cluster (using
SparkContext::parallelize() method from Spark API) or loaded from HDFS
with SparkContext::textFile() in case of larger files. Each file line is parsed
into an observation object which is randomly assigned to a group with a numeric
ID. This creates a key-value RDD of <groupID, observation> elements that
are grouped using RDD::groupByKey(). As the number of groups equals the
number of computing nodes, this operation triggers a global dataset repartition
that results in a uniform distribution of the data over the cluster. As this is a
one-time operation, the cost of repartition is negligible and the lack of data skew
is highly beneficial.

The Spark-based solution uses a multi-process architecture (Fig. 2). The orig-
inal GDT system, implemented in C++, was modified to communicate with the
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Fig. 2. Implementation concerns.

main Spark process (Driver) that reimplements the operations, which require
access to the dataset, in Java. The Driver dispatches the work to multiple Spark
Worker processes that are distributed over the cluster nodes. Both the Spark
Driver and GDT applications are running on the same machine and use named
pipes mechanism for inter-process request/response communication. As a result,
the core evolution is performed in one process (C++ part), whereas the dis-
tributed fitness evaluation and dipoles searching are realized in Spark (Java
part). Such a heterogeneous implementation provided a convenient way to inde-
pendently modify and test both components.

4 Experimental Validation

The proposed solution is validated on both artificial and real-life large-scale
datasets. The first group comprises 4 variants of Chess dataset (inspired by
3 × 3 chessboard) with increasing number of instances/observations. Moreover,
two real-life datasets (Suzy and Higgs), which are the biggest classification prob-
lems available in UCI Repository [4], are analysed. The characteristics of the
considered datasets are given in Table 1.

Table 1. Characteristics of the datasets: name, number of instances, number of
attributes, and number of classes.

Dataset Instances Attributes Classes

Chess1M 1 000 000 2 2

Chess5M 5 000 000 2 2

Chess10M 10 000 000 2 2

Chess20M 20 000 000 2 2

Suzy 5 000 000 18 2

Higgs 11 000 000 28 2
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All presented results were obtained with a default set of parameter’s values
from the sequential version of the GDT system. In this paper, we are focused
only on time performance thus results for the classification accuracy are not
included. Moreover, the proposed solution only accelerates evolution so it does
not really affect the resulting classifiers. For detailed information about accuracy
performance, we refer a reader to our previous papers [7,14].

The experiments were performed on a cluster of 18 SMP workstations con-
nected by a Gigabit Ethernet network. Each cluster node was equipped with
a quad-core Intel Xeon E3-1270 3.4 GHz CPU, 16 GB RAM and was running
Ubuntu 16.04 (Linux 4.4). 16 worker nodes were used by Spark executors, one
node was dedicated to Spark Master and HDFS NameNode and the last node
was running Spark Driver and GDT C++ processes. The cluster used Apache
Hadoop 2.7.3 and Apache Spark 2.2.0 [1] deployed in a standalone mode with a
single executor on each worker node.

The experiments were run on a different number of total CPU cores, dis-
tributed uniformly over the executor worker nodes. The speedups calculated for
all ChessXM variants and the different number of cores (from 2 up to 64) are
presented in Fig. 3. The speedup is defined as the ratio of the baseline execu-
tion time to the time of a given Spark run. The baseline time was obtained by
running the solution on a single-threaded version of the Java module with the
Spark integration completely disabled.

It should be noticed that for the smallest dataset (1 million of instances),
the proposed Spark-based acceleration is completely useless. For larger variants,
the observed speedups are much better, but not very impressive (e.g. around
10 for 32 cores). It could be also noted that moving from 32 to 64 cores,
results in the visibly slower increase of speedup. Such behavior can be easily
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Fig. 3. Performance evaluation: speedup obtained on a different number of cores for
the Chess dataset variants with increasing number of observations.
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explained by an inevitable executor overhead (e.g. scheduler delay, task serial-
ization/deserialization, result read/write and shuffle time) introduced by Spark.
Figure 4 illustrates this situation for the Higgs dataset. Each computational task
contains a short (about 8 ms) overhead that becomes more significant in the over-
all performance as the actual computing time decreases with the increase of a
number of cores.
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Fig. 4. Performance evaluation: detailed time-sharing information of induction task
with a different number of cores. Evaluation performed on the Higgs dataset.

The results obtained on the real-life data are presented in Table 2. Although
datasets contain a larger number of attributes, the observed patterns are rather
expected and analogous to previously seen on 3 larger artificial datasets. It can be
also noticed that for the smaller dataset (Suzy), increasing the number of cores
from 32 to 64, does not give any significant acceleration as a slightly increased
overhead cancels out the speedup gain.

In this paper, Spark is applied to speed up our global decision tree induction,
but in the well-know Spark’s MLlib library [15], distributed versions of classical
top-down decision tree induction algorithms are available. In order to have at
least an approximate reference, the basic algorithm (with default settings) was
launched on Suzy and Higgs datasets. The estimated accuracies are practically
the same as obtained by the GDT system, but the decision trees generated by
MLlib are clearly overgrown (63 nodes for both datasets as opposed to 5 to 9
and 5 to 11 nodes, correspondingly). However, the induction time on 64 cores
is only 1–2 min, which is substantially shorter than the evolutionary approach
(around 30 min). Such a difference in tree complexity can be clearly explained by
the fact that the MLlib algorithm is based on the top-down approach whereas
the GDT system uses global induction. Global evolutionary inducers are known
to provide smaller (less complicated) models [3].
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Table 2. Obtained speedup for real-life datasets for a different number of CPU cores.

Dataset Speedup on different number of cores

2 4 8 16 32 64

Suzy 1.74 2.64 3.79 5.80 8.16 8.03

Higgs 1.72 2.49 3.65 6.15 10.22 14.23

5 Conclusion

In this paper, Apache Spark is applied to speed up an evolutionary induction of
classification trees in the Global Decision Tree (GDT) system. The most com-
putationally demanding operations are fitness evaluations as they require re-
classifying of the whole training dataset and for large-scale data it results in too
long induction time. Hence, the dataset is transformed into RDD and it enables
distributed and in-memory calculations on workers. Even preliminary experi-
mental results show that the time of evolutionary induction can be significantly
reduced for the largest datasets. It should be also noticed that the Spark-based
solution can be easily scaled up just by connecting new computing stations.

In the future works, we plan to perform more extensive testing of the pro-
posed approach. We are especially interested in revealing what are the limits
of Spark-based induction: how big datasets could be processed on a given hard-
ware in a fixed time. Our future investigations will also deal with a hybrid, e.g.
Spark+CUDA, approaches as well as parallelization of other more elaborated
decision trees, like model or oblique trees.
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