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Abstract. This paper presents a new method, referred as Weight k −
TSP , which generates simple and accurate decision rules that can be
widely used for classifying gene expression data. The proposed method
extends previous approaches: TSP and k−TSP algorithms by consider-
ing weight pairwise mRNA comparisons and percentage changes of gene
expressions in different classes. Both rankings have been modified as well
as decision rules, however the concept of ”relative expression reversals”
is retained. New solutions to match analyzed datasets more accurately
were also included. Experimental validation was performed on several
human microarray datasets and obtained results are promising.

1 Introduction

DNA chips provide tens of thousands of genes expression levels in single exper-
iment [6,11]. Recently, microarray technology have been widely used to assist
diagnosis and to discriminate cancer samples from normal ones [1,2,4]. Through
analysis of gene expressions, some marker genes are found which later on can be
used to build medical decision-support systems. However, finding a meaningful
and robust classification rule is a real challenge, since in different studies of the
same cancer, diverse genes consider to be marked [14]. The analysis of DNA
microarrays poses also a large number of statistical problems, in which we can
specify two main issues - dimensionality and redundancy.

DNA microarrays produce massive quantities of information which is difficult
for analysis and interpretation. Unfortunately, the number of samples (denoted
by N) comparing to number of features (genes, P ) remains quite small and usu-
ally not exceeded one or two hundreds - it is the well known ”small N, large P
problem” [15,16]. Considering some dimensionality reduction (i.e. feature selec-
tion) seems to be reasonable, especially when it influences the model complexity
[9]. Among other solutions, increasing sample size and joining datasets could
be mentioned, nevertheless there are some difficulties in consistency of resulting
data [21].

Analyzing many attributes can easily cause a classifier to overfit training data
[5]. Hopefully, most of genes are known to be irrelevant for an accurate classifi-
cation. That is why the gene selection prior the classification not only simplifies
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calculations and model complexity, but also removes noise and decreases the
computation time which is also relevant. Furthermore, experiments have shown
that in most of cases the gene selection improves accuracy of the following clas-
sification [12].

Many standard classification approaches including statistical learning and pat-
tern recognition methods are applied to microarray data [17]. However, the speci-
ficity of gene expression data causes rising new algorithms or extensions of the
existing methods. Recently, many methods based on Support Vector Machines
(SVM) [19], have been proposed [13,22]. Neural networks [3] and decision trees
[8] are also commonly applied in microarray classification. Unfortunately, most
of these methods generate very complex diagnostic rules based on many expres-
sion values. From a medical point of view they are very difficult to understand
and interpret.

In this paper, we propose an extension of k−TSP [18] (k-Top Scoring Pairs),
which originates from the TSP algorithm [7]. The presented solution (denoted as
Weight k−TSP ) is focused on relative gene expression values and pairwise com-
parisons between two genes expression levels. By involving only few genes and
generating simple decision rules, classification results can be easily analyzed and
interpreted. In general, TSP and k − TSP accuracy is relatively high, although
these original algorithms, in contrast to Weight k − TSP , can not be tuned to
reflect the specificity of different cancer datasets. It can be expected that this
way the classification precision can be improved. The proposed method extends
original solutions by considering weight pairwise mRNA comparisons and per-
centage changes of gene expressions in different classes. Both ranking have been
modified as well as decision rules, however the concept of ”relative expression
reversals” have still retained.

The rest of the paper is organized as follows. In the next section both TSP
and k − TSP algorithms are briefly recalled and the Weight k − TSP method
is presented. In section 3 the proposed approach is experimentally validated on
real microarray datasets. The paper is concluded in the last section and possible
future works are presented.

2 A Family of TSP Algorithms

All variants from the family of the TSP methods are applied according to the
classical supervised learning framework. In the first step based on the training
dataset created from the gene expression profiles with the verified diagnosis, the
top scoring pairs are generated. This process is illustrated in Fig. 1. In the next
step, the obtained classifier can be applied to a new microarray sample with
unknown decision. Only selected genes are analyzed and TSP−based prediction
is made (Fig. 2).

2.1 TSP

Top Scoring Pairs (TSP ) method was presented by Donald Geman [7] and is
based on pairwise comparisons of gene expression values. Despite its simplicity
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Fig. 1. Building TSP -based decision rules on the training dataset

comparing to other methods, classification rates for TSP are comparable or
even exceed other classifiers [7]. Discrimination between two classes depends on
finding matching pairs of genes that achieve the highest ranking value called
”score”.

Fig. 2. Testing a new sample with the TSP classifier based on the selected genes

Considering the object containing P genes and N samples participating in
the training microarray dataset, a P × N matrix X can be developed:

X =

⎛
⎜⎜⎜⎝

x11 x12 . . . x1N

x21 x22 . . . x2N

...
...

. . .
...

xP1 xP2 . . . xPN

,

in which the expression value of i-th gene from the n-th sample is denoted by xij .
Each row represents observations of a particular gene over N training samples,
and each column represents a gene expression profile composed from P genes.
Each profile has a true class label denoted Cm ∈ C = {C1, . . . , CM}. For the
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simplicity of calculations it is assumed that there are only two classes (M = 2)
and profiles with indices from 1 to N1 (N1 < N) belong to the first class (C1)
and profiles from range 〈N1 + 1, N〉 to the second class (C2).

TSP method focuses on gene pair matching (i, j) (i, j ∈ {1, . . . , P}, i �= j)
for which there is the highest difference in the probability of an event xin < xjn

(n = 1, 2, . . . , N) between class C1 and C2. For each pair of genes (i, j) two
probabilities are calculated pij(C1) and pij(C2):

pij(C1) =
1

|C1|
N1∑

n=1

I(xin < xjn) , (1)

pij(C2) =
1

|C2|
N∑

n=N1+1

I(xin < xjn) , (2)

where |Cm| denotes a number of profiles from class Cm and I(xin < xjn) is the
indicator function defined as:

I(xin < xjn) =
{

1, if xin < xjn

0, if xin ≥ xjn
. (3)

TSP is a rank-based method, so for each pair of genes (i, j) the ”score” denoted
Δij is calculated:

Δij = |pij(C1) − pij(C2)| . (4)

In the next step of the algorithm pairs with the highest score are chosen. There
should be only one top pair in the TSP method, however it is possible that
multiple gene pairs achieve the same top score. A secondary ranking based on
the rank differences in each class and sample is used to eliminate draws.

For each top-scoring gene pair (i, j) the ”average rank difference” in both C1

and C2 are computed and defined as:

γij (C1) =
∑N1

n=1(xin − xjn)
|C1| , (5)

γij (C2) =

∑N
n=N1+1(xin − xjn)

|C2| . (6)

Value of this second rank for each pair of genes (i, j) is defined as:

τij = |γij (C1) − γij (C2)| , (7)

and the algorithm chooses a pair with the highest score.
The TSP classifier prediction is made by comparing the expression values

from two genes (i, j) marked as ”top scoring pair” with a test sample (inew, jnew).
If we observe that pij(C1) ≥ pij(C2) and xinew < xjnew , then TSP votes for
class C1, however if xinew ≥ xjnew then TSP votes for class C2. An opposite



460 M. Czajkowski and M. Krȩtowski

situation is when pij(C1) < pij(C2), cause if xinew < xjnew TSP votes for C1

and if xinew ≥ xjnew TSP chooses C2. In other words, if pij(C1) ≥ pij(C2) then:

ynew = hTSP (new) =
{

C1, if xinew < xjnew

C2, if xinew ≥ xjnew
, (8)

where hTSP is a prediction result. Opposite situation is when pij(C1) < pij(C2).

2.2 k-TSP

A k−TSP classifier proposed by Aik Choon Tan [18] is a simple extension of the
original TSP algorithm. The main feature that differ those two methods is the
number of top scoring pairs included in final prediction. In the TSP method there
can be only one pair of genes and in k−TSP classifier the upper bound denoted
as k can be set up before the classification. The parameter k is determined by a
cross-validation and in any prediction the k − TSP classifier uses no more than
k top scoring disjoint gene pairs that have the highest score. Both primary and
secondary rankings (equations (4) and (7)) remain unchanged.

The classification decision is made by comparing the expression values for
each pair of genes (iu, ju) (u = 1, . . . , k) with a new test sample. The k − TSP
classifier denoted as hk−TSP based on individual classifiers hu(new) employs a
majority voting to obtain the final prediction of ynew, however each vote has the
same wage:

ynew = hk−TSP (new) = argmax
k∑

u=1

I(hu(new) = Ci) , (9)

where Ci ∈ C, and

I(hu(new) = Ci) =
{

1, if hu(new) = Ci

0, otherwise . (10)

Meaning of hu(new) is the same as in the equation (8).

2.3 Weight k-TSP

In classification Weight k − TSP all rankings have been changed, comparing
to TSP and k − TSP . Therefore, the selection of top scoring pairs, and the
prediction is different than in TSP or k − TSP classifier. The main reason that
motivates research on extensions of the k − TSP algorithm is its limitation in
finding appropriate top scoring pairs. There are two factors that could cause
it. First factor that hampers finding appropriate top scoring pairs is connected
to the relatively high computational complexity, which for these methods is
θ(N ∗ P 2). Microarray datasets contain huge amounts of data and the feature
selection is usually applied before the actual classification. However, k − TSP
sensitivity to the feature selection and small size of datasets may effect rank
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calculations and decrease accuracy. This is linked with the second factor which
is a small number of features having similar expression values and being opposite
to each other in different classes. Depending on data and preprocessing method,
expression values can be very different and genes can have values for example
from 0 to 10000.

Let us hypothetically assume that for some tested cancer samples two genes
are responsible G1 and G2. Suppose that in healthy samples from training
dataset genes the expression levels are in a range G1< 0, 50 >, G2< 6000, 9000 >
and in cancer sample: G1 < 1000, 2000 >, G2 < 2500, 4000 >. Method k−TSP
and TSP will never mark these genes as ”top scoring pair” because among all
classes G1 is smaller then G2. It might choose them with other genes, by mak-
ing more top pairs, but it will not be so accurate and can cause problems in
interpretability. A solution for this type of situations could be comparison of
percentage changes of gene expression in pairs among different classes.

Considering that S represents average values quotient genes in each pair from
K training samples (K determined by a cross-validation). For each pair of genes
(i, j) (i, j ∈ {1, . . . , P}, i �= j) single element from S can be described as:

Sij =
∑K

m=1 xim/xjm

K
. (11)

Weight k−TSP is focused on finding pairs of genes (i, j) that have the highest
difference in probability of event {xin/xjn < Sij} (n = 1, 2, . . . , N) between
class C1 and C2. For each pair of genes (i, j) two probabilities are calculated
pij(C1) and pij(C2):

pij(C1) =
1

|C1|
N1∑

n=1

I(xin/xjn < Sij) , (12)

pij(C2) =
1

|C2|
N∑

n=N1+1

I(xin/xjn < Sij) , (13)

where I(xin/xjn < Sij) is the indicator function defined as:

I(xin/xjn < Sij) =
{

1, if xin/xjn < Sij

0, if xin/xjn ≥ Sij
. (14)

Similarly to k−TSP , Weigh k−TSP is a rank-based method, so for each pair
of genes (i, j) the calculated score denoted Δij , where:

Δi,j = |pij(C1) − pij(C2)| . (15)

Secondary ranking which used in TSP and k−TSP in case of an equal score has
also been modified, since there are exceptions that could discriminate genes with
low values of expression. Again, considering the assumption that for some tested
cancer two pairs of genes denoted F1 and F2, having the same primary ranking,
are responsible. Suppose in all training dataset samples, genes expression values
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for these pairs are in range F1 < 0, 1000 >, F2 < 3000, 9000 >. Pair F1 may
create more interesting decision rules and improve prediction than F2 because
genes have changed their expression values from low level to high. In pair denoted
F2, genes expression levels have stayed in high or very high range among all
samples and should not be classified as a top scoring pair. However TSP and
k−TSP algorithm would choose F2 pair because of its rankings that compares
only value differences. Proposed modifications do not discriminate genes with
low values of expression and would mark F1 as a top scoring pair. To eliminate
problem of very small values (near 0) to dividend divisor - average S was added,
so all values belong to range 〈0, 1〉:

γij (Cm) =

∑
n∈Cm

xin/xjn

Sij+xin/xjn

|Cm| , (16)

where |Cm| denote number of profiles in Cm. Value of this second rank for each
par of genes (i, j) is defined as:

τij = |γij (C1) − γij (C2)| . (17)

Similarly to previous solution the algorithm chooses pair with the largest score.
Final prediction is similar to presented earlier in TSP and k − TSP algo-

rithm and is based on voting. However unweighed majority voting was extended
by adding weight and mixed decision rules, which for some datasets improved
accuracy. The equations (9) and (10) for unweighed majority voting are still
valid in Weight k − TSP , however there were changes in hu(new).
If pij(C1) ≥ pij(C2) then:

hu(new) =
{

C1, if xinew/xjnew < Sij

C2, if xinew/xjnew ≥ Sij
, (18)

where xinew denote an expression level of i-th gene from sample named new.
Opposite situation is when pij(C1) < pij(C2). In wage voting - equation (9) also
has changed.
If pij(C1) > pij(C2) then:

Iwg(hu(new) = Ci) =

{
Sij

Sij+xinew/xjnew
, if hu(new) = Ci

0, otherwise
. (19)

If pij(C1) ≤ pij(C2), wage changes:

Iwg(hu(new) = Ci) =

{
xinew/xjnew

Sij+xinew/xjnew
, if hu(new) = Ci

0, otherwise
. (20)

3 Experimental Results

3.1 Setup

Performance of Weight k − TSP classifier was investigated on public available
microarray datasets described in Table 1. All datasets come from Kent Ridge
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Table 1. Binary class gene expression datasets

Datasets Genes Class 1 Class 2

Leukemia 7129 47(all) 25(aml)
Breast Cancer 24481 51(n) 46(r)
CNS 7129 39(f) 21(s)
Colon Tumor 2000 22(n) 40(t)
Prostate Cancer 12600 59(n) 77(t)
Lung Cancer 12533 31(mpm) 150(adca)
Lymphoma 4026 23(a) 24(g)

Table 2. Classifiers accuracy results tested with WEKA software

Datasets
Classifiers ALL-AML BC CNS CT PC LC DLBCL Average

Naive Bayes 97.05 78.94 76.66 74.19 23.52 99.32 97.87 78,22
RBF Network 97.05 78.94 75.00 85.48 79.41 98.65 95.74 87,18
SMO 94.11 68.42 81.66 88.70 26.47 99.32 97.87 79,5
AdaBoostMI 91.17 63.15 73.33 79.03 44.11 81.87 91.48 74,87
Bagging 94.11 63.15 76.66 82.25 41.17 95.97 85.10 76,91
J48 91.17 47.36 75.00 79.03 29.41 77.18 80.85 68,57
Random Forest 73.52 89.47 76.66 85.48 73.52 96.64 97.87 84,73
JRip 91.17 52.63 70.00 72.58 29.41 97.98 78.72 70,35

Bio-medical Dataset Repository and are related to studies of human cancer,
including: leukemia, breast cancer, central nervous system, colon tumor, prostate
cancer, lung cancer and lymphoma. Comparison Weight k − TSP with several
popular classifiers like: SMO, NB, RBF Network, ADA, Bagging, J48, Random
Forest and JRip was performed on WEKA [20] - data mining software. Weight
k − TSP and TSP-family classifiers were implemented and tested on the MLP
software. Before classification, gene selection Relief-F [10] with neighbours k=10
and sample size 100 was applied.

Typical normalization was also performed: a′
i = (ai−aimin

)

(aimax −aimin
) , where ai is an

expression level of i-th gene, aimax is maximal and aimin is a minimal value in
dataset. For all classifiers default parameters, proposed in WEKA and recom-
mend in [18]; typically 10 runs and 10 folds in crossvalidation were used.

3.2 Outcome

Results of experiments are shown in Table 1 and Table 2. Table 2 summarizes
the results for 8 different classifiers on 7 binary classification problems, tested
on WEKA software. Based on the results: the RBF Network (87,18) and Ran-
dom Forest (84,73) yield the best accuracy averaged over the 7 problems and
SVM (79,50) outperformed other methods in 4 of the 7 cases. However in terms of
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Table 3. Classifiers accuracy results tested with MLP software

Datasets
Classifiers ALL-AML BC CNS CT PC LC DLBCL Average

TSP 85,29 73,68 57,49 79,59 76,47 97,98 86,30 79,54
std. dev. 1,49 0,00 4,17 2,13 0,00 0,00 2,86 1,69

k-TSP 92,05 78,94 59,33 84,66 82,35 98,25 94,35 84,28
std. dev. 2,79 0,00 5,16 2,86 0,00 0,56 2,13 1,76

Weight TSP 91,17 73,68 58,33 84,73 82,35 84,63 86,40 81,68
std. dev. 0,00 0,00 5,77 2,54 0,00 1,49 2,78 1,64

Weight k-TSP 93,52 84,21 58,50 87,61 89,11 98,38 97,95 87,04
std. dev. 1,86 1,49 2,65 1,72 3,41 0,56 1,34 1,83

efficiency and simplicity Weight k − TSP and TSP-family methods are supe-
rior. Table 3 summarizes the results for TSP-family classifiers on the 7 binary
classification problems - implemented and tested on MLP software.

To appropriately compare Weight k − TSP to TSP method, Weight TSP
was implemented. It can be observed that Weight TSP and Weight k − TSP
accuracy is slightly increased in almost every tested database and in terms of
efficiency and simplicity it is similar to TSP-family classifiers.

4 Conclusion and Future Works

This paper presents extension of TSP and k − TSP classifier called Weight
k − TSP . Main concept of this method is weight pairwise mRNA comparisons
and percentage changes in gene expression in different classes. By concentrating
in Weight k−TSP on a relative gene expression changes between tested samples
and by building novel prediction rules - the increase of the average classification
accuracy was observed. In terms of efficiency and simplicity Weight k − TSP
is similar to TSP-family methods however it is superior to other classifiers like
SVM and Naive Bayes.

TSP-family classifiers and several different machine learning methods was
compared on 7 gene expression datasets involving human cancers. From results,
Weight k−TSP perform approximately the same as the RBF Network classifier
and it was more accuracy then other methods on these data, however Weight
k − TSP provides simple decision rules usually involving few genes which have
clear biological connections to adequate cancer types.

Furthermore, many possible improvement for Weight k − TSP still exist.
One direction of current research is to use discrete data of ”present”, ”absent”
or ”marginal” gene expression values. Tests for finding marker genes that oc-
curred most often in top pairs are also performed and superficial results are very
promising.
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