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In Silico Modeling of Magnetic Resonance Flow
Imaging in Complex Vascular Networks

Krzysztof Jurczuk*, Marek Kretowski, Pierre-Antoine Eliat, Herve Saint-Jalmes, and Johanne Bezy-Wendling

Abstract—The paper presents a computational model of mag-
netic resonance (MR) flow imaging. The model consists of three
components. The first component is used to generate complex vas-
cular structures, while the second one provides blood flow charac-
teristics in the generated vascular structures by the lattice Boltz-
mann method. The third component makes use of the generated
vascular structures and flow characteristics to simulate MR flow
imaging. To meet computational demands, parallel algorithms are
applied in all the components. The proposed approach is verified
in three stages. In the first stage, experimental validation is per-
formed by an in vitro phantom. Then, the simulation possibilities
of themodel are shown. Flow andMR flow imaging in complex vas-
cular structures are presented and evaluated. Finally, the computa-
tional performance is tested. Results show that the model is able to
reproduce flow behavior in large vascular networks in a relatively
short time.Moreover, simulatedMR flow images are in accordance
with the theoretical considerations and experimental images. The
proposed approach is the first such an integrative solution in liter-
ature.Moreover, compared to previous works on flow andMR flow
imaging, this approach distinguishes itself by its computational ef-
ficiency. Such a connection of anatomy, physiology and image for-
mation in a single computer tool could provide an in silico solution
to improving our understanding of the processes involved, either
considered together or separately.

Index Terms—Computational fluid dynamics (CFD), computa-
tional modeling, magnetic resonance imaging (MRI), parallel com-
puting, vascular network.

I. INTRODUCTION

C OMPUTATIONAL models play a very important role in
science and industry. In the medical field, they are used to

reproduce biological systems and equipment by using and pro-
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gramming mathematical formulas that describe physical pro-
cesses usually in a simplified manner [1]. This artificial repre-
sentation of reality allows us to perform various experiments in
silico without disturbing the actual system. The advantage of
using models in also evident when significant number of sce-
narios are to be tested. Simultaneous simulations are often the
only way to evaluate various combinations of parameters.
In this paper, we deal with the modeling of magnetic res-

onance imaging (MRI) of vascular structures. Such imaging,
called in medicine magnetic resonance angiography (MRA) [2],
is influenced not only by the standard contrast parameters of
tissues (i.e., relaxation times and proton density) but also by
blood behavior, e.g., flow direction, velocity and patterns. In
one respect, pathology detection and characterization can be im-
proved by using the intrinsic flow sensitivity of MRI. For ex-
ample, flow-related signal diminution can be identified in zones
of abnormal vessel widening (e.g., aneurysm [4]) or narrowing
(e.g., stenosis [5]). Such vessel perturbations can lead to many
serious consequences, such as cerebral hemorrhage [6], liver is-
chemia with hepatic insufficiency [7], or thromboembolic pul-
monary embolism [8]. Another example is the use of contrast
agents transported by blood to enhance the MR signal in hyper-
vascularized areas of tumoral lesions (contrast-enhanced MRA)
[3].
In other respects, flow during MRI acquisition can give rise

to various image artifacts (as other movements) [9]–[12]. These
flow-related artifacts appear in the regions with complex vas-
cular structures as well as simple straight vessels. They lead to
additional difficulties in image analysis which can lead to image
misinterpretation and inappropriate patient treatment. Hence,
the understanding ofMR flow image formation is of importance,
due to clinical assessment of the disease as well as problems
with artifacts. The literature includes many studies, both exper-
imental and numerical, to predict the influence of flow on MRI,
e.g., [11], [13]–[18] to name a few.
MR flow imaging is a complicated process that involves

many factors linked to anatomy, physiology, and imaging
modalities. MRI sequence events (e.g., excitation, spatial
encoding, etc.) are located in time over ranges usually from a
few milliseconds to a few seconds. Due to the flow, magnetized
fluid particles are transported during and between those MRI
events and are thus subjected to constantly changing magnetic
conditions [9]. Therefore, fluids in images can be visible in a
totally unpredictable way. Evidently, this visibility depends on
the flow pattern (e.g., turbulent, steady) and the flow charac-
teristics, such as velocity and direction. In turn, the spatial and
temporal flow behavior results from the topology, geometry,
and physiology of the vascular structures. Even small changes
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Fig. 1. General overview of the three-component computational model. The first component provides vascular geometries based on physiological and hemo-
dynamics parameters. The second one carries out flow simulations, while the third one reproduces MR flow imaging processes. To deal with complex vascular
structures (e.g., hundreds and thousands of vessels), parallel algorithms are developed in each model component.

in vessel geometry or physiological parameters (e.g., pressure,
blood flow) can substantially change the fluid behavior and may
impact the risk of later severe clinical consequences [19], [20].
These interdependencies between anatomy, physiology, and

image formation in clinical treatment of diseases was the moti-
vation to create an MRI model that integrates three components
in one tool, i.e., a vascular geometry generator, a flow simu-
lator and a virtual scanner of MR flow imaging (see Fig. 1). The
general aim of this integrative model is to provide an in silico
solution to improve our understanding of all these processes
taken together. During the acquisition of clinical images, it is
usually impossible to control and monitor all the involved pro-
cesses/events in each step of the image formation. By contrast,
such a computational model may represent a noninvasive way to
obtain some detailed insight and control parameters that would
be difficult or even impossible to access in real experiments.
The original part of the works presented in this paper is an ef-

ficient and effective integration of three model components that
have been shown to be successful when applied separately: gen-
eration of a synthetic vascular network [21], the lattice Boltz-
mann method (LBM) [28], and numerical simulations of MR
flow imaging [35]. First of all, the effective sharing of data
between model components requires additional developments,
such as automatic vessel discretization. The second issue con-
cerns the development of computationally efficient algorithms
suitable for the investigation of complex vascular structures. Be-
sides addressing questions about the integrative model quality
and the level of its detail, the challenge of such an approach lies
also in the demand for high performance computing to perform
simulations within a reasonable period of time. This has im-
posed the use of parallel computing to implement the proposed
algorithms, and this aspect also represents another original con-
tribution of this work. In all the components of the model, com-
putations are adapted to be performed at various parallel archi-
tectures (e.g., using shared-memory, distributed-memory, and
hybrid machines). The main goal of this paper is to present
the model and its possibilities at different levels (and scales).
To our knowledge, the proposed tool is currently the only so-
lution available in the literature that simultaneously treats the

modeling of vascular geometries, flow behavior, and MR flow
imaging.
The first component of the model (see left part of Fig. 1) is

used for vascular network generation. The structure of the vas-
cular network is obtained through the process of vascular devel-
opment associatedwith tissue growth. The tissue growth ismod-
eled by progressive creation of new macro-cells (parts of tissue
with capillaries inside) [21]. The vascular network can consist
of several vascular trees (e.g., arterial and venous trees) that are
connected in terminal vessels by macro-cells. Many physiolog-
ical and functional parameters of the tissue, as well as geomet-
rical and hemodynamic parameters, can be modified to adapt
to a specific vascularization, e.g., for liver or kidney. Because
we consider large three-dimensional (3D) vascular trees made
up of thousands and more vessels and bifurcations, parallel al-
gorithms were also developed for vascular development [22].
As far as we know, in all previous approaches of vascular mod-
eling (e.g., [23]–[27]), only sequential algorithms were applied
to generate vascular trees.
The second component of the model (see middle part of

Fig. 1) applies LBM to simulate flow behavior in vascular
structures generated by the first component. LBM is a ki-
netic-based approach known for its computational efficiency
and easy accommodation to complex geometries. At the same
time, it is able to produce results that obey the Navier–Stokes
equations to a high level of accuracy [29], [30]. This method
of computational fluid dynamics (CFD) allowed us to carry
out simulations in hundreds and thousands of 3-D vessels.
On the other hand, in the most advanced previous studies on
the modeling of flow in 3-D vascular structures [31], [32],
tens and hundreds of vessels were examined with the use of
huge computational resources (tens of thousands of processors
distributed between several research centers).
The third component of the model (see right part of Fig. 1)

reproduces MR imaging processes using geometries and flow
maps that are both provided by the two previous components.
The imaged area is divided into cubic elements in such a way
that each element contains information about the flow charac-
teristics of the fluid filling them. The influence of MRI events
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is tracked in each cubic element by the discrete time solution
of the Bloch equation [33] in the form of rotation matrices and
exponential scaling [34]. At the same time moments, the flow
influence is taken into account by the algorithm of magnetiza-
tion transport between cubic elements [35]. Finally, the image
is directly constructed by sampling the resulting MR signal in
the k-space matrix and Fourier transform processing. Such an
approach allows us to closely follow the physical process of
MRI, along with the automatic incorporation of flow-related ar-
tifacts. Thus, there is no need for geometrical procedures for
mapping the physical plane to the image plane, such as mesh
transformation [16]. Flow is automatically considered during
most MRI events, e.g., during excitation, signal acquisition, and
spatial encoding. Moreover, the model component stands out
by its low computational load, and parallel implementation that
makes it possible to consider complex vascular networks. Pre-
vious works (e.g., [13], [14], [16], [18]) considered one vessel
at a time or a single bifurcation at most.
The rest of the paper is organized as follows. Section II de-

scribes the model components and how they are connected. In
Section III, the proposed approach is verified. First, we confront
the simulation results with in vitro experiments. Then, the sim-
ulation possibilities of the model in complex vascular structures
are shown and inspected. Section IV presents the evaluation of
computational performance of the model. Section IV provides
a discussion along with a summary and possible future research
directions.

II. MODEL DESCRIPTION

A. Vascular Network Modeling

The vascular network component is composed of two ele-
ments: tissue and vascular trees [21]. The tissue is represented
by a set of macroscopic functional units (MFU, also called
macro-cells, with a typical size 0.1–1 mm ) that fill a prede-
fined organ shape. The vascular trees supply MFUs with blood.
Moreover, in each MFU a micromodel is hidden [3]. It repre-
sents the microvascularization responsible for contrast agent
propagation in the tissue. The micromodel is built of few com-
partments used to represent the arterioles, venules, sinusoidal
network (discontinuous capillaries and pores), and interstitial
fluid. Blood flows from the arterioles to the capillaries, then
enters the interstitial liquid compartment and leaves the MFU
via the venules. In this paper, we focus on the vascular network
model at the macroscopic level, since it is subsequently coupled
with the flow and MRI models. For a detailed survey of the
complete model, we refer the reader to our previous papers,
e.g., [21], [3].
The vascular tree is composed of vessels that can divide to

create bifurcations (Fig. 2) [21]. Each vessel segment (part of
the vessel between two successive bifurcations) is represented
by an ideal rigid tube with a fixed radius, wall thickness, length,
and position. The geometry of the smallest vessels, i.e., capil-
laries, is not considered as they are hidden in the MFUs. Based
on a morphometrical investigation dealing with larger vessels,
e.g., conducted by Zamir [36], it is assumed that each vascular
tree forms a binary tree (Fig. 2). As a result, we do not take

Fig. 2. Part of a binary vascular tree. Mother vessel and its two descendant
vessels (left and right) connected by a bifurcation.

account of anastomoses (e.g., mutual vessel intersections) that
occur mainly among vessels with very small radii.
The parameters of the vessels (i.e., blood flow, pressure, ra-

dius, etc.) are calculated according to the basic laws of physics.
In brief, the first constraint deals with the decreasing radii of
the vessels in successive bifurcations, creating a relationship
between the radius of a mother vessel and the radii of its two
descendants [37]. Secondly, the mass conservation law must
be observed at each bifurcation, i.e., the quantities of blood
entering and leaving a bifurcation have to be equal. The other
unknowns are constrained by treating blood as a Newtonian
(constant viscosity) incompressible fluid exhibiting laminar
flow governed by Poiseuille’s law [38].
The structure of the vascular trees is generated using the

algorithm of vascular development driven by progressively
increasing the number of MFUs. The model is initialized by
means of a vascular network consisting of only a few vessel
segments and MFUs (e.g., based on segmented images or
anatomical data). The organ shape can be bounded by recon-
struction from CT scans, MRI images or even manually. The
simulation starts with an organ whose size is a fraction of the
adult one. In discrete time moments, the organ is enlarged until
it reaches its full mature form. In consecutive algorithm cycles,
each MFU can either divide and give rise to a new MFU or
die (analogy with mitosis and necrosis processes [39]). Since
mitosis is predominant during the growth phase, the increasing
blood requirements of the growing tissue induce development
of the vascular network. New MFUs fill empty spaces that
appear during the organ growth phase.
The newly appearing MFUs are initially not perfused (con-

nected) by the existing vascular network. In reality, such is-
chemic parts of the tissue produce angiogenic factors which
stimulate the neighboring vessels to sprout new branches able to
supply blood. In the model, a fixed number of the neighboring
vessels (candidates to perfusion) is found for each new MFU.
Then, each candidate vessel creates a new bifurcation that is
used to temporarily perfuse the MFU. Finally, the optimal con-
figuration of candidate vessel segments (with the lowest sum
of volumes) is chosen as the permanent configuration. Subse-
quently, the vessels’ characteristics (i.e., blood flow, pressure,
etc.) are recalculated to satisfy all the physical constraints used.
For each MFU a class is assigned. The MFU class determines

most of its structural and functional properties (e.g., size, prob-
ability of mitosis/necrosis) as well as its physiological features
(e.g., blood pressure, blood flow rate). The MFU class can also
change over time, whichmakes it possible to simulate pathology
formation and evolution.
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In our previous studies, the vascular model was successfully
adapted to virtual representations of two internal organs: liver
[40] and kidney [41]. It should be emphasized that these repre-
sentations were oriented towards image generation and, there-
fore, our attention was focused on vessel networks that play a
very important role in clinical imaging.
1) Parallel Algorithm for Vascular Network Modeling: The

perfusion ofMFUs in the vascular network is themost time-con-
suming part of the vascular development algorithm. This is be-
cause it is necessary to create and test several temporary bifur-
cations for each new MFU before finding the optimal configu-
ration. This requires many calculations to satisfy the imposed
constraints related to the geometry and hemodynamics at the
level of the bifurcation as well as the vascular network. Thus,
both of the developed parallel algorithms [42], [22] are focused
on this process.
The first parallel algorithm [42] is based on the master–slave

model [43] and uses the message passing paradigm [44]. The
newly appearing MFUs are distributed by a master processor
among slave processors (functional/task decomposition [43]).
Each slave processor attempts to find optimal bifurcations for its
assigned MFUs. Each time the search ends successfully, a slave
sends the parameters of the optimal bifurcation to the master
processor. The master processor is responsible for managing
the permanent perfusion process. It searches among its vascular
structures for vessels that are proposed by the slave processor
to perfuse the considered MFU. If it cannot find at least one of
these vessels, then the MFU is rejected. Such a situation simply
means that this particular vessel (or vessels) has been used ear-
lier to perfuse another tissue element and was replaced by new
vascular structures. The rejected MFU leaves an empty space in
the tissue for other new MFUs that can appear during the next
subcycle. However, in the case of acceptance, the MFU is per-
manently connected to the vascular system. Then, information
about the permanent changes in vascular trees is broadcasted
by the master processor to the slaves. Most of the communica-
tion between processors is carried out in a nonblocking mode
to facilitate the overlapping of computation with communica-
tion. Moreover, several load balancing algorithms are proposed
to obtain an equal spreading of load over the processors.
The second parallel algorithm [22] applies the shared address

space paradigm [45]. Each time a new MFU appears or an ex-
isting one dies, all the calculations in different vascular trees
(e.g., hepatic arteries, portal veins, or hepatic veins in the case of
liver) are divided between different processors (functional/task
decomposition). For instance, each new MFU is connected to
the vascular network simultaneously in all the vascular trees.
The advantage of this approach is that no explicit communica-
tion between processors is needed. However, the speedup of this
approach is limited by the number of vascular trees. It is also
possible to couple the two parallelizations to obtain a hybrid al-
gorithm [46] that is able to exploit efficiently computing clusters
equipped with shared- and distributed-memory architectures.

B. Flow Modeling

In order to study hemodynamics in the modeled complex vas-
cular networks, the used CFD approach should have relatively

Fig. 3. Space discretization: (a) lattice of nodes connected by fixed paths, 3-D
model with 19 discrete velocities (19 paths to neighbors), sphere in the
center denotes the velocity equals zero (i.e., for nonmoving particles);
(b) vessel segments represented by oblique truncated cones.

low computational requirements. An ideal candidate is the lat-
tice Boltzmann method (LBM) [28]. This method has been ex-
tensively developed over the last decade, and, as a result, has
become a powerful alternative to the conventional CFD solu-
tions based on Navier–Stokes equations [47]. The advantages of
LBM include not only simple arithmetic calculations and highly
efficient parallelization, but also easy formulation of boundary
conditions and high applicability to complex geometries, which
stem from the bridging between micro- and macroscale physics.
It has been demonstrated that the Navier–Stokes equations can
be derived from the LBM equations for incompressible flow
at low Mach number [48], [49]. In other cases, LBM has been
shown to be a robust approximation of the Navier–Stokes equa-
tions [50], [51].
LBM solves the Boltzmann transport equation [52] in dis-

cretized space and time. The space is represented by a regular
finite lattice of nodes connected by fixed paths [Fig. 3(a)]. The
fluid dynamics at the nodes is described by motion of ficti-
tious mesoscopic particles that can move to neighboring nodes
(streaming step), and then collide and relax (collision step).
These two steps are performed by tracking the particle distribu-
tion function in time at each node. is the streaming di-
rection along one of the fixed paths between neighboring nodes
and is the node position defined as: , where

are unit vectors in directions. At the collision step,
the distributions relax to the equilibrium state .
At the streaming step, the distributions stream with their
discrete velocities along the direction to the neighboring
nodes at positions ( is the streaming
distance, is the distance between nearest-neighboring nodes
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and is the lattice constant related to the propagation factor on
the lattice and is usually set to unity [28]). This two-step evo-
lution is expressed by the lattice Boltzmann equation in the fol-
lowing way:

(1)

where is the time step and is the dimensionless relax-
ation time related to fluid viscosity. The collision term is
approximated by the broadly accepted and computationally ef-
ficient single-relaxation-time Bhatnagar–Gross–Krook (BGK)
operator [53].
Different lattice topologies have been developed for LBM.

They are classified using the DxQy notation, where is the spa-
tial dimension and is the number of discrete velocities. There
are three preferred topologies for 3-D cubic lattices: D3Q15,
D3Q19, and D3Q27. With increasing number of discrete ve-
locities the accuracy of the solution also increases. However,
there is also an increase in computation time, number of itera-
tions, code complexity and memory consumption. It has been
shown that the difference between D3Q19 and D3Q27 in fluid
flow simulations is not necessarily significant [54]. On the other
hand, D3Q15 topology can exhibit velocity oscillations and is
prone to computational instability, especially at higher Reynolds
numbers. Thus, in the proposed approach, we use the D3Q19
topology [55] [Fig. 3(a)] for which the equilibrium distribution
function takes the following form:

(2)

where is the macroscopic lattice velocity,
is the dimensionless lattice density, is the

weighting factor .
The lattice velocity is interpreted as the fraction of the distance
between neighboring nodes through which the fluid travels per
time step . Thus, the physical macroscopic velocity is ob-
tained by multiplying the lattice velocity by .
The following boundary conditions are applied. At the en-

trances and exits (i.e., inflow and outflow points) of the ge-
ometry, it is possible to impose the constant velocity or pres-
sure boundary conditions. The unknown values of the distribu-
tion function are calculated by the extrapolation method pro-
posed by Guo et al. [56]. As regards walls, we use the proce-
dure called the bounce-back scheme for the no-slip (i.e., zero
velocity) boundary condition [55].
To couple the vascular network component with the lattice

Boltzmann algorithm, the analytical definition of vessel seg-
ment shape (i.e., radius, beginning and end points) is changed
to a discrete representation. We chose to represent each vessel
segment by a lattice of nodes inside a 3-D volume similar
to an oblique truncated cone, to provide a continuous shape
(without jumps) at bifurcations [Fig. 3(b)]. The algorithm to
check whether a lattice node is inside or outside such a volume
was designed (see Fig. 4 for its visualization). The algorithm

inputs are the beginning/end points and radii of the considered
(as well as the preceding) vessel segments. The algorithm steps
are as follows.
1) Point is projected along the line (axis of the con-
sidered vessel segment) to meet two lines; the first line is
perpendicular to the axis of the preceding vessel segment
and passes through point ; the second line is perpendic-
ular to the axis of the considered vessel segment and passes
through point .

2) Based on the points and so obtained as well as the
considered vessel segment data (radii and
beginning/end points ), we find points and

.
3) Points are found by projecting the point

to lines and along lines and .
4) Finally, the point is inside the considered vessel segment
if at least two points out of are inside
the segment or ; the distance from point
is checked for points and , while the distance from
point is verified for points and .

In the 3-D version of the algorithm, the initial projections
have to be performed on two planes. The first plane is perpen-
dicular to the axis of the preceding vessel segment and passes
through point . The second plane is perpendicular to the axis
of the considered vessel segment and passes through point .
The remaining steps are the same.
1) Parallel Algorithm for Flow Modeling: The LBM re-

quires many floating point values to store and operate on the
particle distribution function in each lattice node. For the
applied D3Q19 lattice topology, at least floating point
values are needed for each lattice node. Since we consider
complex vascular structures with many vessel segments of
different sizes, sparse filling of fluid compared to (surrounding)
solid tissue will be usually observed. Thus, it is wasteful to use
solid nodes (located outside the fluid) during flow simulations.
For this reason, an additional list (vector) of the fluid points
is created in the model. This list is used by the flow algorithm
(so-called sparse lattice representation with neighborhood
indirect addressing [57]). For solid nodes only their positions
are stored. The parallel flow algorithm is based on previous
LBM parallelization studies [57], [58] that exploit this type of
data representation.
The list of fluid nodes is divided equally between processors

(data decomposition [43]) leading to balanced workload among
processors [58]. Each processor is able to perform the collision
step independently at all assigned nodes, because this operation
needs only spatially local data. Three situations may occur re-
garding the streaming step. If the neighboring node is located
on a wall or is assigned to the same processor, the new value
of the particle distribution function is streamed in the same way
as in the sequential algorithm. Otherwise, when the neighboring
node is located at a different processor, the necessary inter-pro-
cessor communication is realized by the message passing par-
adigm. Additional vectors of ghost (halo) nodes are created to
ensure efficient handling of sending and receiving operations.
These nodes store data to be sent to other processors as well as
data received from other processors. Thus, they do not partici-
pate in the collision step.
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Fig. 4. Visualization of the algorithm to check whether the point/node is inside the vessel segment . In images on left, the point is outside the
considered vessel segment. In images on right, the point is situated in such a way that it is inside the considered vessel segment, but it would be outside for the
vessel segment with constant radius (for cylindrical vessel in 3-D).

C. Modeling of MR Flow Imaging

The imaged area is divided into cubic elements in such a way
that one LBM grid node is situated at the center of each cubic
element. This kind of discretization guarantees that each cubic
element contains information about the flow of the fluid filling
it (from the flow simulation) as well as the MR characteris-
tics (proton density and relaxation times). For stationary tissue
structures, the flow velocity equals zero.
The whole MR imaging process is divided into sufficiently

small time steps [35]. After each time step, the magnetiza-
tion vector in each cubic element
is modified. The new magnetization is calcu-
lated taking into account both the flow influence and the

imaging process by means of the following equation (see
Fig. 5):

(3)

where is the spatial position of the considered cubic element.
The flow influence is realized by the propagation (transport)

of magnetization between cubic elements. The magnetization
changes in a cubic element at position in time step are
expressed as follows:

(4)
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Fig. 5. Coupling the flow and MRI algorithms. At first, magnetization in each
cubic element is modified based on the flow characteristics, taking into account
themagnetization transfer between neighboring nodes. Then,MRI processes are
modeled. In each cubic element, a magnetization vector is changed according
to the Bloch equation.

The magnetization values entering and leaving
for each cubic element are calculated based on

the velocity obtained from the flow
model component. For sake of clarity, the equations of
and are shown in the full form for the two-dimen-
sional (2-D) case. The fractions of magnetization entering a
cubic element are calculated based on its flow properties and
magnetizations of its neighboring elements

(5)

The fractions of magnetization leaving a cubic element are cal-
culated from its flow properties and its magnetization value (see
“black rectangles” in Fig. 5)

(6)

In 3-D modeling, each sum component in these equations is
made up of two cases, accordingly, with or
term.
The influence of imaging events (e.g., excitation, space en-

coding, signal sampling, etc.) on magnetization values is mod-
eled by the Bloch equation [33]. We apply its discrete time so-
lution in the form of rotation matrices and exponential scaling
[34]. A similar approach has been successfully used in many
advanced MRI simulators, e.g., SIMRI [59], ODIN [60], since
it closely reproduces the physical processes of MRI.
In each cubic element, the influence of MRI events after suc-

cessive time steps is expressed as follows:

(7)

where represents the relaxation phenomena, with spin-
lattice and spin-spin times. is the rotation matrix
about the -axis used to model the influence of spatial encoding
gradient (rotation through angle
and magnetic field inhomogeneities (rotation through angle

. is the gyromagnetic ratio and
is the rotation matrix describing the influence of the radio-

frequency (RF) pulse and the slice selection gradient.
TheMR signal coming from the imaged area in time is mod-

eled as the sum of local transverse magnetizations over the en-
tire image area

(8)

where is the collection of all cubic elements of the imaged
area. The signal is sampled during an acquisition period and
saved in the k-space matrix. Each subsequent excitation is per-
formed with a different phase encoding step, and the acquired
signals fill the successive matrix rows. The MR image is cre-
ated by application of the fast Fourier transform (FFT) [61] to
the fully filled matrix.
By default, the time step for modeling of MR flow imaging is

equal to the time step from flow modeling. If needed (for quick
trial calculations or time optimization issues), this time step can
be changed. Moreover, it may be different during various stages
of imaging, e.g., shorter during a slice selection and longer after
a signal acquisition up to the time of the next excitation when
there is less change in magnetization, which can lead to signifi-
cant computational savings in simulation studies. However, this
time step cannot be longer than the shortest time needed by all
the fluid to pass from one grid node to another. In other case,
it is possible that magnetization fractions can go (jump) more
than one grid node in a single time step. A shorter time step, in
turn, enables the time resolution to be increased, however, it can
lead to an excessive increase of the simulation time. The model
will usually apply a time step of the order of tens to hundreds of
microseconds and a streaming distance (cubic element size) of
the order of tens to hundreds of micrometers.
As regards the grid resolution, a restriction arises because of

the need to have appropriate number of cubic elements in each
image voxel. Due to the applied discrete-event solution of the
Bloch equation, simulations are performed at discrete spatial lo-
cations and a continuous distribution of spins has to be imitated.
Thus, the number of cubic elements (also called isochromats)
in each image voxel has to be chosen carefully to generate a
smooth image intensity. First, to avoid image artifacts related to
signal replication in the k-space matrix, the cubic element size
cannot be bigger than the image voxel size. Second, using insuf-
ficient number of cubic elements can lead to truncation artifact
[60], in particular for abrupt image intensity changes. Moreover,
previous studies have shown that, to model the intra-voxel phase
variations [2], a sufficient number of cubic elements has to be
assigned to each voxel [60]. On the other hand, too high number
of cubic elements may result in spurious spin echo refocusing if
not sufficient frequency spacing is provided [62] and in exces-
sive simulation time.
In the model, the default value is set at 5 cubic elements per

direction in each image voxel. It is based on previous studies
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[75], [60] as well as our own investigations to search well-com-
promised values in the context of image quality and simulation
time [35]. In the case of more complex geometries (e.g., porous
media), it is possible that more cubic elements per image voxel
should be used.
In the model, the ideal spoiling of transverse magnetization

is currently used. After each readout, the transverse magnetiza-
tion of all cubic elements is set to zero. Thus, there is no pos-
sibility that any residual transverse magnetization can persist
into the next repetition, even if short repetition time is needed.
This simplification provides, however, numerical advantages to
the simulation [18], e.g., there is no need to track the transverse
magnetization after the readout up to the time of the next ex-
citation, which can provide simulation time saving, especially
when long repetition time is demanded.
In addition, the so-called hard-pulse approximation is used to

represent different RF pulse shapes [72]. It allows the shaped
RF pulses to be approximated by the sequence of short constant
pulses of equal duration separated by periods of free precession,
which perfectly suits for the applied iterative approach of MRI
and flow simulations.
1) Parallel Algorithm of MR Flow Imaging: The imaged

area is composed of cubic elements creating a rectangular box
[see Fig. 3(a)]. One-dimensional (1-D) data decomposition (also
called slice decomposition) [43] is used, i.e., the box is cut into
equal-size slices. These slices are then assigned to processors.
Since the MRI modeling involves magnetization changes that
are based only on local data [see (3) and (7)], each processor
performs this part of the algorithm independently. However, if
magnetization transport takes place between cubic elements lo-
cated in neighboring slices, there is a need to exchange data be-
tween these slices. For this purpose, the message passing para-
digm is applied. To ensure efficient communication, the ghost
vectors of cubic elements are used at slice interfaces. They are
used to hold copies of data to be sent to neighboring slices as
well as received from neighboring slices.

III. RESULTS

The proposed approach is verified in two steps. Firstly, the
experimental validation is performed with a physical phantom
consisting of three bifurcations. Then, we demonstrate the sim-
ulation possibilities of the model. Flow and MRI simulations in
complex vascular structures are presented and inspected visu-
ally as well as quantitatively using flow characteristics curves.
All simulations and visualizations were performed by our

in-house software. This software is built up of several modules
that enable us to control all simulation stages, to look at virtual
objects and simulated images, to monitor flow simulations as
well as visualize the flow results.

A. Comparison With In Vitro Experiments

The computational model of MR flow imaging was validated
both qualitatively and quantitatively in our previous paper
[35] for different simple geometries (straight tube, U-bend
tube, and single bifurcation) and for various flow conditions
and parameters of MRI sequences. Both theoretical and ex-
perimental investigations were performed. In this paper, we

Fig. 6. Comparison between experimental and simulated GE images in com-
parable geometries. Images acquired in coronal and axial planes with different
TR/TE parameters. In the axial plane, a reference tube with static water can be
also seen (bottom right of the image).

present experimental validation using a silicon phantom with
three bifurcations (Fig. 6). Tubing radii range from 2 to 4 mm.
The tubes forming the first bifurcation (from the left side) are
rigid and straight, while the second and third bifurcation shapes
correspond to human aorta anatomy with an aneurysm (Elastrat
phantoms, Geneva, Switzerland). The flow of cold tap water
through the phantom was provided by a constant flow rate
pump. MR imaging was performed on a Bruker Biospec 4.7T
scanner (Bruker Biospin, Wissembourg, France) using the 2-D
spoiled gradient echo sequence (FLASH).



JURCZUK et al.: In SilicoMODELING OF MAGNETIC RESONANCE FLOW IMAGING IN COMPLEX VASCULAR NETWORKS 2199

Using the proposed computational model, a similar geom-
etry was constructed and MR imaging simulations were per-
formed. Fluid behavior was modeled as the steady flow of a
Newtonian liquid with literature-based properties for pure water
at 10 C: ms, ms, and kinematic
viscosity m /s [74], [13]. To obtain comparable
flow characteristics, constant velocity conditions were applied
at the object inlet and outlets. At the inlet, the constant flow
forced by the pump was used. At all outlets, we assumed that
flow rate is the same, and flow velocities were calculated based
on cross-sectional areas. Five cubic elements per direction were
assigned to each voxel.
Fig. 6 shows some examples of experimental and corre-

sponding simulated images. Images were acquired in the
axial and sagittal planes with different parameters (TR/TE).
A mean flow speed of 30 cm/s was applied at the entrance of
the phantom. Basic imaging parameters are reported on the
images, while the others were set as follows: 1) sagittal images:
flip angle , in-plane resolution mm 0.625 mm,
field of view mm 60 mm and slice thickness mm,
2) axial images: flip angle , in-plane resolution
mm 0.5 mm, field of view mm 32 mm and slice
thickness mm.
As far as images in the sagittal plane are concerned, at least

two flow-related artifacts are clearly visible. First, the saturation
of the longitudinal magnetization causes the signal to become
weaker at increasing distance from the entrance. Second, the
signal is reduced due to the intra-voxel phase dispersion [2] in
the bifurcation neighborhood (first white arrow) and areas with
complex shapes (second and third white arrows). The phase dis-
persion is probably the dominant reason of the signal dropout
in the apex of the first bifurcation (first white arrow), like in
previous studies [16]. In the areas with complex and irregular
shapes (second and third white arrows), tubes are substantially
narrowed. As a result, in these areas, strong velocity gradients
can be observed, which can lead to phase dispersion and finally
to signal diminution. When TE is increased, the period of time
between excitation and signal acquisition also increases, and
therefore the artifacts due to the intra-voxel phase dispersion
are more pronounced.
The images in the axial plane (approximately perpendicular

to the main flow direction, see photo of phantom in Fig. 6) were
acquired using an additional silicon object with static water (ref-
erence object placed near the object of interest). This allows us
to observe how the contrast of flowing versus static tissue can be
regulated. When TR is short (i.e., 50 ms) static water nuclei are
saturated and give much less signal than flowing “fresh” water
nuclei. In contrast, when TR is longer (i.e., 1000 ms), static
nuclei have more time for longitudinal relaxation and conse-
quently give more signal than flowing nuclei.
A good agreement is observed between simulated and exper-

imental images. However, there are some image features that
show up the limitations of the model. For example, compared
with simulated images, more prominent signal loss in the place
where tubes are connected and higher noise can be observed
in experimental images. On the other hand, simulated images
appear to underestimate the signal close to walls. These differ-
ences can be ascribed to incompletely modeled imaging pro-

cesses, e.g., approximated rectangular gradient waveforms or
ideal receiver and gradient coils used in simulations. Other rea-
sons can be found in the developed flow model. Due to compu-
tational efficiency issues, we applied the single-relaxation-time
LBM scheme without any turbulence model (e.g., large-eddy-
simulations (LES) LBM model [76]). This LBM scheme could
not resolve flow turbulences sufficiently with the used resolu-
tion and uniform grids [28]. Moreover, some differences in the
MR images could also be explained by discrepancies between
2-D flow simulations and 3-D in vitro flow.

B. Simulations in Complex Vascular Structures

1) Vascular Structure Generation: The simulation process
was started by generating a vascular system. The simulated vas-
cularization of an adult liver was obtained by the use of the first
model component (vascular network component) [Fig. 7(a)].
The initial vascular trees consisted of a few vessel segments
whose geometry was chosen based on anatomical data [63]. The
organ shape was bounded by the reconstructed liver geometry
from 120 CT-scans of 1 mm thickness. The shape was filled in
successive algorithm growth steps by new MFUs and, as a con-
sequence, new vascular structures appeared. Detailed parame-
ters concerning the initialization of the simulation as well as the
physiological and functional parameters (e.g., blood flow and
pressure at input/output, wall thickness ratio, size of MFU or
probability of mitosis/necrosis) can be found in [21] and [70].
The simulated vascular system consisted of about

vessel segments (about for each of the three hepatic
vascular trees—arteries, portal veins, and hepatic veins)
[Fig. 7(a)]. For further analysis (flow and MRI simulations),
only the arterial tree was retained [Fig. 7(b)]. Moreover, vessel
segments of diameter larger than 0.3 mm were taken into
account [Fig. 7(c)]. In performance evaluation, we also consid-
ered more sophisticated/complex vascularizations.
2) Flow Simulations: Blood flow was simulated in the se-

lected part of the arterial vascular tree (about 1200 vascular seg-
ments). Blood behavior was modeled as the steady flow of an
incompressible Newtonian liquid with a kinematic viscosity of

m /s. Constant pressure boundary conditions were
applied at the entry and exit points (see Fig. 7(c) for sample
values).
First, the analytical geometry was discretized with cubes of

size 0.064 0.064 0.064 mm . Next, cubic elements were
found corresponding to walls, input and outputs, and boundary
conditions were marked at these locations (see Section II-B). Fi-
nally, flow behavior was simulated by performing the collision
and propagation steps in alternation until the desired conver-
gence criterion was satisfied. The simulation was stopped when
the global absolute difference of the velocity fields (with L2
norm) between successive iterations was less than .
Fig. 8 presents a visualization of the flow simulation results.

The magnitude and direction of the flow are shown in a few
cross-sections of each vessel segment. Fig. 8(a) shows all the
selected arteries (about 1200), while Fig. 8(b) shows the sample
parts of the arterial tree, at different levels ranging from several
bifurcations to a single one. Curves of the obtained flow charac-
teristics are presented in Fig. 9: pressure drop, volumetric flow
rate drop, and velocity drop are shown in (a), (b), and (c), re-
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Fig. 7. Visualization of the vascular simulation results: (a) an adult liver with
about MFUs and vessel segments (for the purpose of visualization, only
the main hepatic arteries, portal veins and hepatic veins within liver shape are
shown), (b) arterial tree, (c) arterial tree with vessel segments of diameter larger
than 0.3 mm. Sample values of blood pressure used for boundary conditions are
also provided.

spectively. These characteristics are averaged for each vessel
segment and presented along ten selected paths, from the root
to terminal vessel segments. By comparing the obtained charac-
teristics with previous works [69] and literature data [70], [71],
it appears that similar patterns are observed: e.g., exponential
drop of pressure in successive hepatic arteries, with the largest
drop occurring in the most distant vessels, more linear velocity
drop in successive bifurcations and high drop of volumetric flow
in the larger arteries.
3) MR Flow Imaging Simulations: Based on the obtained

flow characteristics and the proposed imaging model compo-
nent, MR flow images were simulated. Two imaging sequences
were used: 2-D spoiled gradient echo (GE) and 2-D spin echo

(SE) [72]. To mimic arterial blood, the relaxation times were set
as follows: ms and ms [73], [16].
Fig. 10 shows the simulated images in the axial plane from

successive slices using the GE and SE sequences. We focused
on a single bifurcation, which is marked by the green cuboid.
The following imaging parameters were used:
ms, ms, in-plane resolution mm 0.256
mm, field of view mm 5 mm, and slice thickness of
2.5 mm. The simulated images suffer mainly from two flow-re-
lated effects: intra-voxel phase dispersion as well as inflow and
mismatch between the 90 and 180 pulses. In the case of GE
images, the signal dropout can be attributed mainly to the intra-
voxel phase dispersion which grows in the neighborhood of the
bifurcation. The artifacts caused by the phase variations over a
voxel are usually more pronounced when flow velocity grows
or TE grows. For images in both the second row (after a TE de-
crease) and the third row (smaller blood flow and, consequently,
smaller velocities), the signal diminution is reduced.
In the case of SE images, the flow-induced signal loss in

stronger than in the GE images. SE images are similarly affected
by the intra-voxel phase dispersion, however they can be addi-
tionally influenced by the mismatch between the 90 and 180
pulses. In the case of SE images, the signal intensity is signifi-
cantly lower in the center of the vessel segments than near their
walls. This is mainly due to the time-of-flight (TOF) effects [64]
that usually cause vessels to appear as hyposignal areas or as
totally black holes in the SE-based sequences (effect known as
“flow voids” in clinical MRA) [65]. In detail, moving blood nu-
clei that are initially excited by the 90 pulse may then exit the
imaged slice without being rephased. As a consequence, these
blood nuclei may not yield any signal. On the other hand, some
nuclei not present in the slice during excitation may appear in
this slice during rephasing but they also fail to yield any signal.
The influence of this effect depends on the flow velocity, TE and
slice thickness. For images in both the fifth row (after a TE de-
crease) and the sixth row (smaller blood flow and, consequently,
smaller velocities), the signal diminution is reduced. Moreover,
higher signal loss is observed in the vessel segment oblique to
the image plane, probably because of the in-plane flow and sig-
nificant intra-voxel phase variations [66]. The slower flow is
generally visualized better.
Fig. 11 presents simulated images of a cross section through

the arterial tree (as marked by the green cuboid) using both SE
and GE sequences. To highlight the differences between flowing
and static material, the area outside the vessels (i.e., cubic ele-
ments outside the vessels) also took part in the MRI simulation.
For each cubic element outside the vessels, the flow was set to
zero, while the relaxation times were set in the same way as
used for the blood. Here, different combinations of contrast pa-
rameters (TR/TE) were tested, while other imaging parameters
were set as follows: in-plane resolution mm 0.32 mm,
field of view mm 44.16 mm, and slice thickness of
5 mm. The peak velocity in the imaged vessel segments was
about 50 cm/s.
The presented images (Fig. 11) show primarily the differ-

ences in longitudinal magnetization recovery. In images where
TR is small enough (e.g., 50, 200 ms), the static material is satu-
rated since there is insufficient time between successive excita-
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Fig. 8. Flow simulation results; visualization at different levels: (a) all the selected arteries, (b) parts of the arterial tree. Colors and lines in a few cross-sections
of each vessel segment represent velocity magnitude and flow direction.
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Fig. 9. Flow simulation results; curves showing flow characteristics averaged in vessel segments: (a) pressure drop along vessel segments passing from the root
to terminal vessel segments (ten selected paths), (b) flow rate drop along vessel segments passing from the root to terminal vessel segments (ten selected paths),
(c) velocity along vessel segments passing from the root to terminal vessel segments (ten selected paths).

tions to recover its longitudinal magnetization. As far as blood
is concerned, “fresh” unmagnetized nuclei (with complete/full
longitudinal magnetization) flow continuously into the image
slice. The blood velocity determines how fast they replace the
saturated flowing nuclei. These “fresh” nuclei are able to give
more transverse magnetization in the next RF excitation, and
consequently more signal. Thus, vessels appear brighter than
their static surroundings. When TR is much longer, there is suf-
ficient time for complete recovery of longitudinal magnetiza-
tion of static material. Then, other flow-induced effects domi-
nate which cause vessels to appear darker.
There are at least a few reasons why vessels appear black

in SE images. First of all, signal loss can be caused by the
intra-voxel phase dispersion in the absence of flow compensa-
tion methods. We performed additional simulations to investi-
gate the difference between the transverse magnetization values
for flowing and static material with different flow velocities
using single excitation. Fig. 12 presents the amplitude and phase
of the signal measured for a single cubic element placed along
the center line of a straight tube in the isocenter and just next
to the isocenter of the magnetic field. The tube length was 0.4
m, so no fresh nuclei appeared in the observed cubic element.
Sequence parameters: SE, ms, acquisition time
ms, sinc-shaped RF pulse time ms. First, we can see that
the amplitude of the signal at time TE is lower with flow than
it is without flow. Second, the phase for different flow veloci-
ties shows different values at time TE. We can also observe that
the phase accumulated due to the blood flow is directly propor-
tional to the blood velocity, which is in accordance with pre-
vious studies [2]. Therefore, if the signal in a voxel comes from
cubic elements with different flow velocities, the intra-voxel
phase dispersion can lead to signal diminution. As a result, the
signal in such a voxel is weaker than it would be without flow.
These observations can explain the signal dropout for vessels
when there is no flow compensation method. Moreover, SE im-
ages can be influenced by mismatch between the 90 and 180
pulses. However, in the presented images, this flow-induced ef-
fect seems to be small since most of the vessels in the chosen

slice do not cut it orthogonally. In addition, some of the vessel
segments visible in SE images are not present in GE images (see
black arrows in Fig. 11). It can be attributed to the saturation of
blood nuclei due to their long dwell time in the slice because of
small blood velocity and/or long distance from the entrance of
“fresh” nuclei. The presented example shows how blood may
be imaged as low or high in signal with respect to the stationary
tissue.
In the presented images, the high and low image intensities as

well as the flow-induced image disturbances are consistent with
prior theoretical and experimental studies on MR flow imaging,
e.g., signal dropout in images in Fig. 10 due to the washout
of excited spin [9], [64], [17], signal diminution in images in
Fig. 11 due to the IVPD artifact [2], or saturation effects in im-
ages in Fig. 11 [16].

IV. EVALUATION OF COMPUTATIONAL PERFORMANCE

All components of the model were implemented in the
C++ programming language. Algorithms were parallelized
with the support of the message passing interface (MPI) [44]
(communication between distributed-memory machines), and
OpenMP Application Programming Interface [45] (communi-
cation within shared-memory). The Intel C++ Compiler 10.1
[67] and MVAPICH2 ver. 1.8.1 [68] (MPI2 implementation
over Infiniband networks) were used. The hybrid paralleliza-
tion of the first model component was supported by mixed
MPI+OpenMP. With respect to the second and third model
components, one-level parallelism was applied using MPI. For
performance evaluation, we made use of the Multi-Processing
Environment (MPE) library with the graphical visualization
tool Jumpshot-4 [44].
Simulations were performed on a cluster of sixteen SMP

servers running Linux 2.6 and connected by an Infiniband
network. Each server was equipped with two quad-core CPUs
(64-bit Xeon 2.66 GHz CPUs) with 2 MB L2 cache, 16 GB of
RAM and Infiniband 10 GB/s HCA connected to a PCI-Express
port. Moreover, the solution was also checked on a personal
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Fig. 10. Simulated MR images acquired by SE and GE sequences in the axial plane: (a) green cuboid indicates a part of the arterial tree that is shown in the
images, (b) series of images for different imaging and flow parameters.

computer equipped with Intel Core i7 CPU (1.73 GHz) and
8 GB of RAM under MSWindows 7 in MS Visual Studio 2010.
Two metrics were used for qualitative analysis of the perfor-

mance: speedup and efficiency.1 Moreover, we used the fun-
damental formula, known as Amdahl’s law [77]. Briefly, this

1Speedup is the time necessary to solve a problem sequentially divided by
the time required by its parallel version (i.e., how much a parallel algorithm
is faster than its sequential version) [43]. Efficiency is defined as the speedup
divided by the number of processors.

law states that the maximum speedup (Amdahl’s upper bound)
is limited by the fraction of time needed to perform nonparal-
lelizable code components, no matter how many processors are
used.
The computational performance of the vascular model com-

ponent was tested for different sizes of vascular networks,
ranging from small-size (about 100 MFUs) to large-size config-
urations (about MFUs and consequently about
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Fig. 11. Simulated SE and GE images of the slice through the entire volume containing the arterial tree: (a) green cuboid indicates an excited slice, (b) simulated
images with different sequences and with different TR/TE parameters.

vessel segments). The obtained mean speedups are reported
in Table I. It can be seen that the parallelization provides a
substantial speedup. However, the efficiency is far from 100%.
This can be explained by the upper bound speedup resulting
from the Amdahl’s law. The nonparallelizable code consumes
about 3% of the total CPU time needed for serial execution
of the whole algorithm. As a consequence, the upper bound
speedup is equal to about 26 with 128 processors, while 33 is
the maximum speedup when the number of processors tends
to infinity. In practice, the obtained acceleration allows us to
simulate the vascular system with MFUs in less than
1 h with 128 processors (instead of 21 h with a single processor
machine).
In analysing the performance of flow simulations, different

sizes of vascular trees were taken into account (from 10 to 4000
vessel segments). Table I shows the obtained mean speedups.
We see that the parallelization can significantly reduce the
simulation time. On the one hand, it offers the possibility
of studying more complex vascular networks, which can be
useful in cases of tumoral hypervascularization. On the other
hand, multiple test simulations in simple vessel configurations
can be performed in a reasonable period of time. The flow
results presented here (see Fig. 8) were obtained for about 1200
vessel segments and were simulated using 128 processors in
approximately 12 h (instead of 14 days with a single processor
machine).
The parallelization of the MR flow imaging algorithm was

tested for 2-D and 3-D objects, with different sizes of images

(from 64 64 to 4096 4096) and various combinations of
TR and TE parameters. In Table I, we report the obtained mean
speedups. The acceleration is significant. A high efficiency
is also observed, e.g., 80%–90% for 4, 8, 16, 32 processors.
Owing to this parallelization, the simulation of each MR flow
image presented in Fig. 11(b) (795 690 70 cubic elements
and 159 138 image voxels) took an average about 3 h with
128 processors instead of eight days using one processor. The
simulation of each MR image in Fig. 10(b) took about 4 min
using 128 processors.

V. DISCUSSION AND SUMMARY

We present a new computational model forMR flow imaging.
The model consists of three components: 1) vascular structure
generator, 2) flow solver, and 3) MRI simulator. The coupling
of these three components together in a single solution allows us
to track (back and forward) and control a wide range of physical
processes involved in flow image formation. During in vivo as
well as in vitro experiments, such a detailed control is usually
impossible or hardly accessible. In the proposed model, we are
able to control physiological processes influencing vascular ge-
ometries, hemodynamic parameters, and MR imaging settings.
Such a three-component solution brings the possibility to ex-
plain data, observations and hypotheses based on collaborative
knowledge which may be more detailed than if provided by
studies using the individual modeling components.
Such an approach to MRI modeling has not been proposed

before. To date, there were many computational studies consid-
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Fig. 12. Illustration of the influence of flow on (a), (c) amplitude and (b), (d) phase of the transverse magnetization in a single cubic element. Single cubic element
is placed (a), (b) in the isocenter and (c), (d) just next to the isocenter of the magnetic field. Two values of flow (5 cm/s, 20 cm/s) and no flow are considered.

TABLE I
COMPUTATIONAL PERFORMANCE OF THE THREE MODEL COMPONENTS. MEAN
SPEEDUP (S) AND EFFICIENCY (E) VALUES VERSUS NUMBER OF PROCESSORS

ering vascular structures generation, flow simulations, or MR
flow imaging separately. Classically, flow behavior in large vas-
cular trees was simulated with the use of computationally inex-
pensive 1-D models [78], [79], [80]. Although these models are

able to yield fast results that are satisfactory for a preliminary
insight (e.g., direction of mean flow) [32], they are not sufficient
to provide data for detailed MR simulations. For instance, they
do not take into account the bifurcation geometry (e.g., bifurca-
tion angle) and the flow profile is assumed to be the same at any
point in the vessel.
There have also been many studies on flow modeling in 3-D

vascular structures. However, these studies were usually lim-
ited to small-size domains [80], e.g., to a single vessel [81] or
bifurcation [19], [82]. Recently, with the substantial advance
in design of parallel computers, a computational solution has
been proposed for high-resolution flow in large 3-D vascular
networks [31]. Tens or hundreds of thousands of parallel pro-
cessors have been used to solve the Navier–Stokes flow equa-
tions by a high-order spectral element spatial discretization [83]
in the complex human brain arterial tree. The flow simulations
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took a few days for about one hundred vessels. The most recent
computational paradigm in flow modeling couples multi-scale
simulations (atomistic, at the level of red blood cells, and con-
tinuum, i.e., large arteries) by means of enormous computer re-
sources: IBM Blue Gene/P supercomputer (131 072 processors
and 5TB of data) [84] or massive GPU clusters (4000 GPUs)
[85]. Although all these solutions represent a major advance in
CFD, they are still hard to use in frequent simulations since they
require access to huge computational and memory resources.
Moreover, the procedure of simulation preparation is also time-
consuming and can change according to different geometries
and/or initial conditions.
By contrast, the proposed LBM-based flow model was able

to provide 3-D high-resolution results for hundreds and thou-
sands of vessels in a relatively short time, i.e., in about 12 h on
a middle-class computer cluster with only 128 processors (32
quad-core CPUs). Compared to the numerical Navier–Stokes
equation solvers, there was no need for an explicit solution of
pressure dynamics. Grids for complex geometries were gener-
ated in a fully automatic way and boundary conditions were
straightforward to apply. There was also no need to use mas-
sive computational resources. Clearly, our approach has some
limitations compared to Navier–Stokes based solvers, due to
features inherited from LBM (e.g., the uniform mesh) or from
the applied LBM model (e.g., steady flow behavior). However,
the numerous advantages listed above, as well as many other
strong points [28], cause that the flow model component pro-
vides a computationally efficient way for testing many scenarios
in combination with the MR flow imaging simulator.
We compared the results obtained by the applied LBM algo-

rithm with a numerical solution of the Navier–Stokes equations.
The OpenFoam software [89] was used to simulate flow with
the use of the Navier–Stokes equations. We used the icoFoam
solver which is the transient solver for incompressible, laminar
flow of Newtonian fluids. It solves the incompressible laminar
Navier–Stokes equations using the PISO algorithm. Two ge-
ometries were verified: a 2-D and 3-D single-vessel segment
as well as a 2-D single bifurcation (i.e., three vessel segments).
In both cases, no significant differences were observed in the
flow characteristics obtained from the two solvers. However, the
LBM solver yielded results in a much shorter time than the nu-
merical solution of the Navier–Stokes equations. For instance,
for the 3-D vessel segment (length 17 mm, radius 1.7 mm, grid
resolution 0.064 mm 0.064 mm 0.064 mm), the simulation
time using one CPU and LBMwas about 5 h, as against about 20
h using the numerical solution of the Navier–Stokes equations.
Therefore, we limited this comparison to three vessel segments.
Several other solutions have also been proposed for the com-

putational modeling of MR flow imaging. They can be divided
into two groups: Lagrangian- (e.g., [13], [18]) or Eulerian-based
(e.g., [14], [16]). Lagrangian-based solutions use flow pathlines
to track magnetized particles and change the magnetic condi-
tions influencing them. While this approach is physically in-
tuitive, it is known to be computationally expensive and not
so efficient in complex geometries where particle tracking can
fail. Moreover, the algorithms for compensation of regions of
low particles density can be needed since the densities of par-
ticles are not uniform over space [18], while in real fluids they

are. On the other hand, the most advanced Eulerian-based so-
lutions [14], [16] use Bloch equation integration with an addi-
tional magnetization transport term in 2-D objects. This com-
putational approach eliminates the necessity to track magnetic
particles along pathlines during imaging, and therefore is able
to speed up calculations. However, it can hinder the modeling
of the spatial-temporal interaction of flow with MRI events.
Therefore, an additional geometrical procedures had to be de-
veloped to take into account the displacement artifact [10], e.g.,
mesh transformation for mapping the physical plane into the
MR image plane [16]. Other gradient arrangements, different
RF pulses or 3-D imaging may require additional algorithms or
some improvements in the current algorithms to take account of
the misregistration effects. Besides, all the previous works dealt
with simple vascular geometries having a single bifurcation at
most.
The advantage of our approach stems from coupling the mag-

netization transport algorithm (2-D/3-D analytical operations)
with the discrete-time solution of the Bloch equation. Hence, the
Eulerian coordinate approach is retained and, at the same time,
flow-related artifacts are automatically taken into account. No
additional geometrical procedures, such as mesh transformation
[16], are needed. Consequently, modifications in imaging se-
quence events (e.g., additional RF pulses, magnetic gradients)
only require changes in the arrangement of MRI events in time
and/or their parameters. Another advantage of the approach is
its computational efficiency, which allows us to consider com-
plex vascular geometries (with thousands and more vessel seg-
ments). Since such geometries require the use of lattices with
high spatial resolution compared to image resolution, parallel
computing appears very useful for adequate tracking of magne-
tization transport.
Parallel computing could also appear very useful when a sim-

ulation time step has to be small enough. In the proposed ap-
proach, magnetization can be directly (i.e., in a single time step

transferred only between neighboring grid nodes. As a re-
sult, the time step should be chosen carefully. We cannot choose
too long time steps since then it is possible that for fast-flowing
fluid the magnetization portions will jump over grid nodes. On
the other hand, unreasonable reduction of time step can lead
to excessive simulation time. In addition, if we even choose
a time step providing the transfer only between neighboring
grid nodes, differences between real and simulated images may
appear. We experimentally verified that these differences usu-
ally decrease with the decrease of the time step. Shorter time
steps could be particularly preferable for complicated geome-
tries, and/or complex flow patterns.
Our future investigations will deal with more complex vas-

cular networks. First, we plan to use the whole generated arte-
rial tree, and then the two/three connected vascular trees (e.g.,
arteries, veins, and portal veins). This will lead to the possibility
of simulating MR images of whole organs or more extensive re-
gions, e.g., abdomen, by 3-D MR angiography sequences. It is
noteworthy that geometric sensitivity studies have shown that
it is better to examine vessel-shape anomalies as part of a more
extensive vascularization than as an independent small sector
[86]. We also plan to extend the model by contrast agent prop-
agation and pharmaceutical product distribution components.
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The superiority of LBM over Navier–Stokes solvers in mixtures
(multi-component fluids) flows has been proven in many studies
[87], [88], [55].
Ongoing research also includes issues concerning other

types of flow and blood rheology. In the proposed model, the
full history of magnetization evaluation can be tracked and
changes or even replacement of flow maps during imaging
do not require any algorithm modifications. Thus, there is no
restriction to incorporate turbulent or pulsatile flows. As far
as the parallelization is concerned, some improvements can
be applied to flow simulations. The obtained mean speedups
are far from linear compared with the parallelizations used
in other works [57], [58]. In our case, we aimed to find a
trade-off between memory consumption and data organization
in memory (which influenced efficiency). The considered
vascular network required the use of large number of lattice
nodes which filled the rectangular box sparsely (i.e., there
were many nodes outside vessels). For this reason, we con-
centrated more on memory consumption, thus allowing the
study of more vessels. We applied a 1-D list of fluid nodes
instead of the full 3-D table, which consequently involved
indirect addressing. Although such data representation re-
duced memory consumption, at the same time, it limited the
reusage of cache memory. Despite this, we envisage that
more work on parallel computing in the model will lead to
better computational efficiency. Moreover, grid-refinement
techniques [90] can help to reduce memory consumption.
In conclusion, we show the technical possibilities and po-

tential of a three-component model for MR flow imaging. The
model aims at explaining and exploring the formation and
appearance of MR images using the collaborative knowledge
obtained from many processes and systems, based on vascular
geometry, flow patterns and imaging technology. Application
of the model in some specific medical applications (e.g.,
searching markers of hepatocellular carcinoma or hepatic
stenosis after liver transplantation [7]) may clarify the true
dynamics and collaboration of the processes involved. The
broad possibilities of this approach provide motivation for
ongoing attempts to develop the model further.
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