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Abstract. A new evolutionary algorithm for induction of oblique decision trees
is proposed. In contrast to the classical top-down approach, it searches for the
whole tree at the moment. Specialized genetic operators are developed, which enable
modifying both the tree structure and the splitting hyper-planes in non-terminal
nodes. The problem of over-fitting can be avoided thanks to suitably defined fitness
function. Experimental results on both synthetical and real-life data are presented
and compared with obtained by the state-of-the-art decision tree systems.

1 Introduction

There exists dozens of decision tree induction algorithms [13]. However, a
wide diversity among decision tree systems is somehow seeming. Almost all
approaches are based on top-down strategy, where the learning set is associ-
ated with the root node and recursive procedure of optimal split searching,
sub-nodes creation and feature vectors redistribution is applied until the stop
condition is met. This greedy search technique is fast, easy to implement and,
what is probably the most important, efficient in practical situations. On the
other hand, it is evident that for many problems, the top-down induction fails
to find the optimal solution and more sophisticated methods can be indis-
pensable. However, it should be clearly stated that more complex algorithms
are generally more time consuming.

In this paper, a global approach to induction of decision trees is inves-
tigated. In contrast to the classical step-wise manner of tree building, the
whole tree (its structure and all splits) is searched at the time. Moreover,
the top-down approach is often combined with the post-pruning applied in
order to prevent the over-fitting problem. In the proposed method, any re-
structuring procedure is not necessary, because the assurance of the optimal
tree size is embedded into the search process. As a result, the global approach
allows to find suitable trees, both in terms of the classification power and the
complexity.

The proposed method consists in designing a specialized evolutionary al-
gorithm for decision tree building. Evolutionary algorithms (EA) are stochas-
tic, search techniques, which were inspired by the process of biological evo-
lution [11]. Their main advantage is ability to avoid the local optima, which
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is especially important in such a difficult optimization problem as induction
of decision trees.

The simplest type of decision trees is called univariate, because tests in
non-terminal nodes are based on single attributes. Such a test is equivalent
to partitioning the feature space with an axis-parallel hyper-plane. In case
of non-axis parallel decision border, applying only univariate test can lead
to their approximation by a very complicated stair-like structure. The afore-
mentioned problem is eliminated by oblique (perceptron, linear) trees, where
linear combinations of attributes are utilized in tests. The first such a sys-
tem was CART [6], but it had a strong preference for univariate tests. One
of the most well-known oblique tree system is Oblique Classifier 1 (OC1)
[12], which combines deterministic and randomized techniques in search for
optimal splits. Other interesting top-down based oblique tree systems were
proposed by Gama et al. [9] and Bobrowski et al. [3]. APDT (Alopex Per-

ceptron Decision Tree) [16] can be seen as a first step toward more global
induction of decision trees, because it evaluates goodness of a split based also
on the degree of linear separability of sub-nodes.

The first application of evolutionary approach to linear tree induction was
done in BTGA (Binary Tree-Genetic Algorithm) system [8], where standard
genetic algorithm (SGA) with binary representation was used to find a split-
ting hyper-plane in each non-terminal node. In [7], the original OC1 system
was successfully extended by using two standard algorithms: (1+1) evolu-
tion strategy and SGA. The system described in [10] utilized the specialized
evolutionary algorithm for optimization of hyper-plane locations based on
the dipolar criteria. After the greedy recursive partitioning the potentially
over-specialized decision tree is post-pruned. That system can be treated as
a top-down predecessor of the approach proposed in this paper.

A global approach to decision tree induction was investigated in genetic
programming (GP) community. Nikolaev at el. applied [14] standard GP
framework with specialized fitness function to evolve univariate decision tree-
like programs. In [5] GP allows to induce classification trees with limited
oblique splits.

The rest of the paper is organized as follows. In the next section the
proposed evolutionary algorithm is detailed. Its experimental validation on
both artificial and real-life problems is described in the section 3. In the last
section, conclusions and plans for future work are presented.

2 Evolutionary Algorithm for Global Induction of

Oblique Decision Trees

General structure of the proposed evolutionary algorithm follows the typi-
cal framework [11] and only application-specific issues are described in this
section.
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2.1 Preliminaries

A learning set is composed of M objects: N -dimensional feature vectors xj =
[xj

1, ..., x
j
N ]T (j = 1, ...,M)(xj ∈ RN ) belonging to one of K classes. The

feature space could be divided into two regions by a hyper-plane:

H(w, θ) = {x : 〈w,x〉 = θ}, (1)

where w = [w1, ..., wN ] (w ∈ RN ) is a weight vector, θ is a threshold and
〈w,x〉 represents an inner product. If 〈w,xi〉− θ > 0, it can be said that the
feature vector xi is on the positive side of the hyper-plane H(w, θ).

A dipole [4] is a pair (xi, xj) of feature vectors. A dipole is called mixed

if and only if feature vectors constituting it belong to different classes and a
pair of the vectors from the same class constitutes pure dipole. Hyper-plane
H(w, θ) splits the dipole (xi,xj) if and only if:

(〈w,xi〉 − θ) · (〈w,xj〉 − θ) < 0 (2)

It means that the input vectors xi and xj are situated on the opposite sides
of the dividing hyper-plane.

2.2 Representation, Initialization and Termination Condition

An oblique decision tree is a binary tree with splitting hyper-planes in non-
terminal nodes and class labels in leaves. Each hyper-plane in the tree can
be represented by a fixed-size N + 1-dimensional table of real numbers cor-
responding to the weight vector w and the threshold θ. However, the size
and the structure of the classifier for a given learning set cannot be known
in advance of induction. In such a situation, a variable-length representation
is indispensable. Furthermore, during the induction process, additional infor-
mation concerning, among other things, the learning vectors associated with
each node are necessary. As a result, decision trees are not especially encoded
in the form of traditional (binary or real-valued) chromosomes and they are
represented in their actual form in the presented system.

An initial population is created by applying for each individual the fol-
lowing simple top-down algorithm combined with selection of optimal tree
size according to the fitness function. An effective test in non-terminal nodes
is searched based on randomly chosen mixed dipole (xi, xj). The hyper-plane
Hij(w, θ) is placed to split it:

w = xi − xj and θ = δ · 〈w,xi〉 + (1 − δ) · 〈w,xj〉, (3)

where δ ∈ (0, 1) is a randomly drawn coefficient, which determines the dis-
tance to the opposite ends of the dipole. Hij(w, θ) is perpendicular to the
segment connecting dipole ends.

The EA terminates if the fitness of the best individual does not improve
during the fixed number of generations (default value is equal to 1000) or the
maximum number of generations is reached (default value: 10000).
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Fig. 1. Hyper-plane initialization based on randomly chosen mixed dipol

2.3 Fitness Function

The ultimate goal of any classification system is correct prediction of classes
for new unlabelled feature vectors, which were not accessible during the learn-
ing phase. It is obvious that such a target function cannot be directly defined.
Instead the classification quality on the training data is often applied as an
estimate measure of the predictive power of the classifier. However, it should
be underlined that optimizing only the re-classification quality leads to the
over-fitting problem. In classical systems this problem is usually mitigated
by post-pruning techniques. In our approach another solution is proposed.
A complexity term is introduced into the fitness function. This term works
as a certain type of penalty, which is proportional to the size of the tree.
This way more compact trees are promoted and it allows avoiding the over-
specialization.

Finally, the fitness function, which is maximized, has the following form:

Fitness(T ) = QReclass(T ) − α · S(T ), (4)

where QReclass(T ) is the re-classification quality, S(T ) is the size of the tree
T expressed as a number of nodes and α - is a relative importance of the
complexity term (default value is 0.005) and a user supplied parameter. It is
rather obvious that there is no one, optimal value of α for all possible dataset.
When the concrete problem is analyzed, tuning this parameter may lead to
the improvement of the results (in terms of accuracy or classifier complexity).

2.4 Genetic Operators

It is now commonly accepted opinion, that task specific operators are highly
useful in improving optimization process. In our system two complex genetic
operators are currently employed: MutateNode and CrossoverTrees. Both of
them can alter the tree structure as well as splitting hyper-planes in non-
terminal nodes.

The first composite operator can be seen as a combination of the typi-
cal mutation-like operator with the dipolar operator introduced in [10]. Mu-

tateNode is applied to every single node of the tree with the given probability



Global Induction of Oblique Decision Trees 313

(default value is equal to 0.1). The operator can cause with equal probability
a modification of the test or a change of the node role. If a non-terminal node
is concerned it can be pruned to a leaf or the corresponding hyper-plane can
be altered. The hyper-plane position can be modified due to an application of
the dipolar operator or by standard mutation. The dipolar operator chooses
at random one dipole from the set of not divided mixed and divided pure
dipoles. Then it shifts the hyper-plane by modifying only one randomly cho-
sen weight wi in such a way that the chosen mixed dipole is divided or division
of pure one is avoided. When a leaf is concerned it can be only replaced by a
new non-terminal node unless it is not reasonable.

(a)

(b)

I

I

I

II

II

II

Fig. 2. CrossoverTrees operator: (a) exchange limited only to tests (b) exchange
of the whole sub-trees

The second operator is an equivalent of the standard crossover operator
and alters two individuals by replacing parts of the input trees. The exchange
can be limited only to nodes or can encompass also sub-trees (see Fig. 2).
At the beginning, the type of the exchange is randomly drawn (two variants
are equally probable) and then, regardless of the type, one node in each tree
is chosen also at random. If both nodes are non-terminal ones, the typical
one-point crossover is applied on weights vectors and thresholds. In other
cases nodes are just substituted. After the exchange concerning the nodes,
depending on range of the operator, sub-tree starting from the altered nodes
can be also replaced.

It should be underlined that trees modified by genetic operators require
renewed determination of locations of all input feature vectors in the affected
parts. As a result of this process some parts of the tree can be even pruned,
because they do not contain any input feature vectors.

As a selection mechanism the proportional selection with linear scaling
is applied. Additionally elitist strategy is used, which means that the best
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tree in terms of the fitness function in each iteration is copied to the next
population.

It was observed by Bennett et al. [1] that in oblique trees enlarging the
margin, defined as the distance between decision boundary and the input
feature vectors, is profitable in term of classifcation accuracy. In the presented
system, a simple mechanism based on this observation was introduced. In
each non-terminal node, two the closest feature vectors (x+ and x−) to the
splitting hyper-plane H(w, θ) are determined on the opposite sides of it.
If the found dipole is mixed, the hyper-plane is centered by modifying the
threshold:

θ′ =
1

2
[〈w,x+〉 + 〈w,x−〉]. (5)

It should be noted that such an operation does not change the fitness function.

3 Experimental Results

In this section experimental validation of the proposed approach on both
artificial and real-life datasets is described. All results presented in the ta-
bles correspond to averages of 5 runs and were obtained by using test sets
(mainly in case of synthetic datasets) or by 10-fold stratified cross-validation.
Average number of nodes is given as a complexity measure. For the purpose
of the comparison, results obtained by C4.5 (release 8) [15] and OC1 [12]
with default parameters are also presented. If not otherwise stated, the pro-
posed system (described as GEA-ODT in tables) is run with default values
of parameters.
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Fig. 3. Examples of artificial datasets (rotated chessboard4 and house)

3.1 Artificial Datasets

In this subsection, synthetical datasets with analytically defined decision bor-
ders are analyzed. Analogous experiments are described in [12] and [16],
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but original datasets are not available, hence similar configurations were
generated by using random number generator. All these datasets are two-
dimensional, except LS10 problem which is defined with 10 features. Number
of feature vectors in the learning sets is 1000. Examples of synthetical datasets
are depicted in Fig. 3.

Before presenting the definitive results, two experiments with parameters
of the proposed system are presented. In the first one, usefulness of intro-
ducing the dipolar operator is investigated on the 2-class rotated chessboard
problem. In Fig. 4 two learning curves (in fact, their initial parts) correspond-
ing to induction without and with the use of dipolar operator are illustrated.
As it could be expected applying the dipolar-based approach allows to speed
up the search process.
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Fig. 4. Results of initial experiments on chessboard2 problem: comparison of learn-
ing curves with and without dipolar operator

Sore point of any decision tree induction method is finding appropri-
ate balance between re-classification quality and generalization power related
to the tree complexity. In the global approach parametr α from the fitness
function seems crucial for this problem. In the next experiment, we investi-
gated how the classification quality and the tree complexity are influenced by
changes of α. The relationships obtained on chessboard2 dataset are presented
in Fig. 5.

It can be observed that for relatively broad range of values (0.05-0.001)
optimal trees were found. Further decrease of a parameter results in perfor-
mance deterioration in terms of tree simplicity.

The final results of experiments concerning synthetical datasets are gath-
ered in Table 1. For all domains GEA-ODT perform very well, both in accu-
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Fig. 5. Results of initial experiments on chessboard2 problem: impact of α on the
classification quality and the tree complexity

Table 1. Experimental results obtained for artificial datasets

GEA-ODT GEA-ODT OC1 OC1 C4.5 C4.5

Dataset Quality Size Quality Size Quality Size

chessboard2 99.1 7 99.3 11 93.3 47

chessboard4 99.3 7 99.5 7 94.6 87

zebra1 98.5 7 98.2 15 50 1

zebra2 99.0 5 99.8 7 96.9 55

zebra3 98.2 15.8 95.1 29 91.6 99

house 95.8 5.4 95.9 5 98 39

LS10 92.6 4.2 96 7 76.2 295

racy and tree complexity. It could be observed that the global method was
able to find slightly less complicated trees than generated by other methods.

3.2 Real-life Datasets

In the second series of experiments a few well-known real-life datasets taken
from UCI Machine Learning Repository [2] were analyzed and obtained re-
sults are collected in Table 2.

The proposed system performed very well on almost all analyzed datasets.
Only for vehicle domain it was significantly worse that OC1 and C4.5. For this
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dataset EA is converging very slowly and it was observed that the maximum
number of iteration was used to stop the algorithm. When this constraint is
relaxed the quality raise to more than 69%, but the computation time is really
long (a few hours). Concerning complexities of the trees, it can be found that
the global EA approach is generally more efficient than other systems.

Table 2. Results obtained for UCI datasets

GEA-ODT GEA-ODT OC1 OC1 C4.5 C4.5

Dataset Quality Size Quality Size Quality Size

breast-w 96.7 3 95.3 5 94.9 26

bupa 67.7 4.9 67.5 12.9 64.7 44.6

iris 97.0 5 96.6 5 94.7 8.4

page-blocks 94.6 3.7 97 23 97 82.2

pima 73.5 3.2 72.6 9.1 74.6 40.6

sat 83.1 11 85.4 45 85.5 435

vehicle 65.4 14.7 70.2 30.4 72.3 129

waveform 81.5 6.2 78 5 73.5 107

4 Conclusions

In the paper, new evolutionary algorithm for induction of oblique decision
trees is presented. The greedy top-down technique is replaced by the global
approach, where the whole tree is searched at the moment. The experimental
validation indicates that the accuracy of the proposed method is at least
comparable with the results obtained by leading decision tree systems. In
terms of the tree complexity it seems that global algorithm is able to find
more compact classifiers than the competitors.

The presented system is constantly improved and currently feature selec-
tion is embedded into the algorithm, which will allow eliminating redundant
and noisy features at each non-terminal node. Furthermore several directions
of possible future research exist. One of them is designing more robust fitness
function, which has a critical influence on the performance of the system. We
also want to incorporate into the induction process the variable misclassifi-
cation cost and feature’s cost.

The proposed approach is not the fastest one now but hopefully it is
known that evolutionary algorithms are well suited for parallel architecture.
We plan to speed up our system by re-implementing it in the distributed
environment.
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