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Abstract: Most tree-based algorithms are typical top-down

approaches that search only for locally optimal decisions at each node

and does not guarantee the globally optimal solution. In this paper we

would like to propose a new evolutionary algorithm for global induction

of univariate regression trees and model trees that associate leaves

with simple linear regression models. The general structure of our

solution follows a typical framework of evolutionary algorithms with

an unstructured population and a generational selection. We propose

specialized genetic operators to mutate and cross-over individuals

(trees), fitness function that base on the Bayesian information criterion

and smoothing process that improves the prediction accuracy of the

model tree. Performed experiments on 15 real-life datasets show that

proposed solution can be significantly less complex with at least

comparable performance to the classical top-down counterparts.
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1 Introduction

The most common predictive tasks in data mining (Fayyad et al., 1996) are
classification and regression and the decision trees (Murthy, 1998; Rokach and
Maimon, 2008) are one of the most widely used prediction techniques. Regression
and model trees are now popular alternatives to classical statistical techniques like
standard regression or logistic regression (Hastie et al., 2009). They are easy to
understand and interpret which makes them particularly useful when the aim of
modeling is to understand the underlying processes of the environment. Decision
trees are also applicable when the data does not satisfy rigorous assumptions
required by more traditional methods (Hastie et al., 2009). We focus on univariate
trees since they are a ‘white-box’ technique and it makes them particularly
interesting for scientific modeling. It is easy to find explanation for predictions of
univariate regression and model trees.

1.1 Regression and model trees

Regression and model trees may be considered as a variant of decision
trees, designed to approximate real-valued functions instead of being used for
classification tasks. Main difference between regression tree and model tree is that,
for the latter, constant value in the terminal node is replaced by a regression plane.
One of the first and most known regression tree solution was presented in the
seminal book by Breiman et al. (1984) describing the CART system. CART finds a
split that minimizes the sum of squared residuals of the model when predicting and
builds a piecewise constant model with each terminal node fitted by the training
sample mean. The accuracy of prediction was later improved by replacing single
values in the leaves by more advanced models. M5 proposed by Quinlan (1992),
induces a model tree that contains at leaves multivariate linear models analogous
to piecewise linear functions. HTL presented by Torgo (1997) goes further and
evaluate linear and nonlinear models in terminal nodes. Model trees can also be
applied to the classification problems (Kotsiantis, 2010).

All aforementioned decision trees are built by a process that is known as
recursive partitioning. Top-down induction starts from the root node where locally
optimal split (test) is searched according to the given optimality measure. Then,
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Figure 1 An example of univariate decision tree with tests on nominal and
continuous-valued features. Depending on the tree type, leaves could contain
class (classification tree), continuous value (regression tree) or some kind of
model (model tree).

Figure 2 Examples of artificial datasets: a) split plane2, b) armchair2.

the training data is redirected to newly created nodes and this process is repeated
for each node until some stopping-rule is violated. Finally, the post-pruning is
applied to improve the generalization power of the predictive model.

1.2 Motivation

Inducing the decision tree by a greedy strategy is fast and generally efficient in
many practical problems, but usually produces locally optimal solutions. It can
be expected that a more global induction could improve the tree structure and
the model prediction. Figure 2 illustrates two simple artificially generated datasets
with analytically defined decision borders.

The left dataset split plane2, discussed also in (Vogel et al., 2007), can be
perfectly predictable with regression lines on subsets of the data resulting from a
single partition. The equation is:

y =

{
0 −4 ≤ x1 < −2
0.25x1 + 0.5 −2 ≤ x1 ≤ 2

(1)

Most of popular greedy top-down inducers that minimizes the residual sum of
squares (RSS) like CART or standard deviation like M5 will not find the best



4 M. Czajkowski and M. Kretowski

Figure 3 Examples of model trees for armchair2 (global approach - left, greedy
approach - right).

partitions (CART finds threshold at x1 = −0.44, M5 at x1 = −1.18). Not optimal
partition in the root node usually increases of the tree size and may result the
higher prediction error.

Illustrated in the Figure 2 b) function is defined as:

y =


x1 + 1 0 ≤ x1 ≤ 1

−x1 + 6 4 < x1 ≤ 5
−0.5x2 + 1.5 1 < x1 ≤ 4, 0 ≤ x2 ≤ 3

3x2 − 9 1 < x1 ≤ 4, 3 < x2 ≤ 5

(2)

It is a little more complex then split plane2 and many traditional approaches will
fail to efficiently split the data as the greedy inducers search only for a locally
optimal solutions. The Figure 3 presents the optimal model trees that can be
generated by globally induced and greedy top-down algorithms. These two simple
artificial problems illustrate general advantage of the global search solutions to
greedy algorithms.

1.3 Related work

Multiple authors have proposed methods to limit negative effects of inducing the
decision tree with the greedy strategy. In the SECRET authors Dobra and Gehrke
(2002) show that classification approach finds more globally optimal partitions
than the CART system. Different solution was proposed in SMOTI by Malerba
et al. (2004) where regression models exist not only in the leaves but also in the
upper parts of the tree. Authors suggest that this allows for individual predictors
to have both global and local effects on the model tree. A more recent innovation in
order to find optimal splits in nodes was presented in LLRT by Vogel et al. (2007).
LLRT allows for a near-exhaustive evaluation of all possible splits in a node, based
on the quality of fit of linear regression models in the resulting branches.

In the literature there are also some attempts of applying evolutionary
approach for induction of regression trees. In TARGET, Fan and Gray (2005)
propose to evolve a CART-like regression tree with simple genetic operators.
Bayesian information criterion (BIC) (Schwarz, 1978) is used as a fitness function
which penalizes the tree for over-parametrization. Experiments performed on two
real datasets suggest that TARGET outperforms in the terms of Mean Squared
Error the CART solution. Much more advanced trees are presented in GPMCC
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where Potgieter and Engelbrecht (2008) make use of a genetic algorithm to evolve
multivariate non-linear models at the leaves. Authors managed to decrease the size
of the trees comparing to commercial version of M5 (Cubist) and neutral network
called NeuroLinear (Setiono et al., 2002), however their system was outperformed
in terms of predictive accuracy.

Currently, there are no sufficient solutions with a good trade-off between
predictive performance and a model comprehensibility. Model trees with complex
rules at the leaves or ensemble methods generate accurate predictions but are
difficult to interpret by a human experts. On the other side, regression trees
have lower predictive performance but higher model comprehensibility. Finally,
performed experiments suggest that regression and model trees usually built
overgrown trees and therefore are more difficult to analyse and interpret.

In this paper we would like to present an evolutionary algorithm for global
induction of regression and model trees. It fills the gap between simple regression
trees and advanced but less comprehensible model trees. Previously performed
research showed that global inducers are capable to efficiently evolve various types
of classification trees: univariate (Kretowski and Grześ, 2005), oblique (Kretowski
and Grześ, 2006) and mixed (Kretowski and Grześ, 2007). In our last paper
we applied a similar approach to obtain accurate and compact regression trees
(Kretowski and Czajkowski, 2010) called GRT and we did preliminary experiments
with the model trees (Czajkowski and Kretowski, 2010) called GMT . Our work
covers the induction of univariate regression trees and model trees with simple
linear models at the leaves. Proposed solution denoted as GMT 2.0 improved
our previous solutions in almost every step of evolutionary algorithm. Starting
with more heterogeneity population, additional genetic operators and new fitness
function, that extends the BIC. We also introduced the smoothing process that
could improve the prediction accuracy of the model tree.

2 Evolutionary induction of model trees

The GMT 2.0 general structure follows a typical framework of evolutionary
algorithms (Michalewicz, 1996) with an unstructured population and a
generational selection.

2.1 Representation

Model trees are represented in their actual form as classical univariate trees
with a simple linear model at each leaf. Each test in a non-terminal node
concerns only one attribute (nominal or continuous valued). In a case of a
continuous-valued feature typical inequality tests are applied. As potential splits
only precalculated candidate thresholds (Fayyad and Irani, 1992) are considered. A
candidate threshold for the given attribute is defined as a midpoint between such
a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples are characterized by different predicted values.
Such a solution significantly limits the number of possible splits and focuses the
search process. For a nominal attribute at least one value is associated with each
branch. It means that an inner disjunction is built into the induction algorithm.
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A simple linear model is calculated at each terminal node of the model tree
using standard regression technique (Press et al., 1988). A dependent variable y is
modeled as a linear function of single variable x:

Y = α + β ∗ x, (3)

where x is one of the independent variables, α is the intercept and β is the slope
of the regression line that minimizes the sum of squared residuals of the model.

In every node information about learning vectors associated with the node is
stored. This enables the algorithm to perform more efficiently local structure and
tests modifications during applications of genetic operators.

2.2 Initialization

Initial individuals are created by applying the classical top-down algorithm, similar
to the CART and M5 approaches. At first, we learn a standard regression tree
that has mean of dependent variable values from training objects at each leaf.
The recursive partitioning is finished when all training objects in a node are
characterized by the same predicted value (or it varies only slightly, default: 1%)
or the number of objects at node is lower than the predefined value (default value:
5). Additionally, user can set the maximum tree depth (default value: 10) to limit
initial tree size. Next, a simple linear model is calculated at each terminal node of
the model tree.

Traditionally, the initial population should be generated randomly to cover the
entire range of possible solutions. Due to the large solution space the exhaustive
search may be infeasible. Therefore, while creating initial population we search
for a good trade off between a high degree of heterogeneity and relatively low
computation time. We propose several strategies:

• initial individuals are created by applying the classical top-down algorithm
to randomly chosen subsamples of the original training data (10% of data,
but not more than 500 examples);

• for each individual only tests based on the random subset of attributes
(default 50% of attributes) are applied;

• at each individual for all non-terminal nodes one of the four test search
strategies is randomly chosen:

– Least Squares (LS) function reduces node impurity measured by sum of
squares proposed in CART,

– Least Absolute Deviation (LAD) function reduces the sum of absolute
deviations. It has greater resistance to the influence of outlying values
to LS,

– Mean Absolute Error (MAE) function which is more robust and also
less sensitive to outliers to LS,

– dipolar, where a dipol (a pair of feature vectors) is selected and
then a test is constructed which splits this dipole. First instance that
constitutes dipol is randomly selected from the node. Rest of the feature
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vectors are sorted decreasingly according to the difference between
dependent variable values to the firstly chosen instance. To find a second
instance that constitutes dipol we applied mechanism similar to the
ranking linear selection (Michalewicz, 1996).

• one of three search strategies of predicted variable used in linear model at
the leaves is applied:

– optimal: finds the locally optimal model that minimizes the sum of
squared residuals. It is the most time-consuming search strategy as it
must calculate simple linear regression model for each attribute.

– random: finds the simple linear model from training objects in this leaf
on the randomly chosen independent variable.

– none: the fastest strategy. No attribute is used to build the simple linear
model, therefore each terminal node contains the sample mean.

Additionally, user can set the size of the population (default value: 50).

2.3 Genetic operators

To maintain genetic diversity, we have proposed two specialized genetic operators
corresponding to the classical mutation and cross-over. Each evolutionary iteration
starts with randomly choosing the operator type where default probability to
select mutation equal 0.8 and cross-over 0.2. Both operators have influence on the
tree structure, tests in non-terminal nodes and models at the leaves. After each
operation it is usually necessary to relocate learning vectors between parts of the
tree rooted in the altered node. This can cause that certain parts of the tree does
not contain any learning vectors and has to be pruned. Modifying a leaf makes
sense only if it contains objects with different dependent variable values.

2.3.1 Cross-over

Cross-over solution starts with selecting positions in two affected individuals. In
each of two trees one node is chosen randomly. We have proposed three variants
of recombination (Czajkowski and Kretowski, 2010):

• tests associated with the nodes are exchanged (only when non-terminal nodes
are chosen and the number of outcomes are equal),

• subtrees starting in the selected nodes are exchanged,

• branches which start from the selected nodes are exchanged in random order
(only when non-terminal nodes are chosen and the number of outcomes are
equal).

2.3.2 Mutation

Mutation solution starts with randomly choosing the type of node (equal
probability to select leaf or internal node). Next, the ranked list of nodes of the
selected type is created and a mechanism analogous to ranking linear selection is
applied to decide which node will be affected. Depending on the type of node,
ranking take into account:
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• location (level) of the internal node in the tree - it is evident that
modification of the test in the root node affects whole tree and has a great
impact, whereas mutation of an internal node in lower parts of the tree has
only a local impact. Therefore, internal nodes in lower parts of the tree are
mutated with higher probability,

• absolute error - worse in terms of prediction accuracy leaves and internal
nodes are mutated with higher probability (homogenous leaves are not
included).

We have proposed new variants of mutation for internal node:

• node can be transformed (pruned) into a leaf,

• tests between father and son exchanged,

• mutation between subtrees that replaces all subtrees with randomly chosen
one,

• test in node reinitialized by new random or new dipolar one (described in
Section 2.2),

– shifting the splitting threshold at continuous-valued feature,

– re-grouping nominal feature values by adding, merging branches or
moving value between them,

and for the leaf:

• transform leaf into an internal node with a new dipolar test,

• replace simple linear model by a new one that is recalculated on a random
predictor variable,

• remove predictor variable and leave mean value at the leaf.

2.4 Selection and termination condition

Ranking linear selection is applied as a selection mechanism. Additionally, in each
iteration, single individual with the highest value of fitness function in current
population in copied to the next one (elitist strategy).

Evolution terminates when the fitness of the best individual in the population
does not improve during the fixed number of generations (default value: 1000).
In case of a slow convergence, maximum number of generations is also specified
(default value: 5000), which allows to limit the computation time.

2.5 Fitness function

Specification of a suitable fitness function is one of the most important and
sensitive element in the design of the evolutionary algorithm. It measures how good
a single individual is in terms of meeting the problem objective and drives the
evolutionary search process. Direct minimization of the prediction error measured
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on the learning set usually leads to the overfitting problem. In a typical top-
down induction of decision trees (Rokach and Maimon, 2008), this problem is
partially mitigated by defining a stopping condition and by applying a post-
pruning (Esposito et al., 1997).

Fitness is computed for all members of the population after each generation. In
our previous work (Czajkowski and Kretowski, 2010) we used Akaike’s information
criterion (AIC) (Akaike, 1974) as a fitness function. This measure of the goodness
of fit worked also as a penalty for increasing the tree size. AIC is given by:

FitAIC(T ) = −2 ∗ ln(L(T )) + 2 ∗ k(T ), (4)

where L(T ) is the maximum of the likelihood function of the tree T and k(T )
is the number of model parameters in the tree. Log(likelihood) function L(T ) is
typical for regression models (Gagne and Dayton, 2002) and can be expressed as

ln(L(T )) = −0.5n ∗ [ln(2π) + ln(SSe(T )/n) + 1], (5)

where SSe(T ) is the sum of squared residuals of the tree T and n is the
number of observations. The term k(T ) can also be viewed as a penalty for over-
parametrization. This complexity penalty term was set to Q(T ) + 1 in where Q(T )
is equal to the number of terminal nodes in model tree T .

We tested also a measure introduced by Schwarz (1978) called Bayesian
information criterion (BIC) that seems to be more appropriate for the regression
and model trees. In this information criterion, which is similar to AIC, the penalty
for increasing model size depends on the n - number of observations in the data:

FitBIC(T ) = −2 ∗ ln(L(T )) + ln(n) ∗ k(T ). (6)

However, performed research reveal that both information criteria in their base
form were not able to find an optimal structure of GMT 2.0. Measures worked
sufficiently good when the probability of mutation for leaves to transform into
internal nodes was very low or equal zero. Higher probability of transforming leaves
into the internal nodes caused rapid increase of size and error of the searched
structure. However, not including this mutation operator strongly limits variants
of the evolution of the tree structure.

In this paper we propose a new fitness function which extends the BIC.
The number of independent parameters in the complexity penalty term k(T ) for
GMT 2.0 was set to 2(Q(T ) + W (T )) where W (T ) is the number of attributes in
the linear models at the leaves (equal 1 for model node or 0 for regression node).
High value of penalty term, compared to our previous solution or the TARGET
system allow GMT 2.0 to induce significantly smaller trees.

Performed research in determining appropriate value of the penalty term k(T )
suggests that the modification of the number of model parameters in the tree
is only a partial solution. Higher value of k(T ) impact data with high and low
value of likelihood function in a different way and therefore it is not universal.
Complexity penalty term has the highest effect when the sum of squared residuals
SSe(T ) of the tree is high because of the logarithm function. Small value of fraction
SSe(T )/n results in high value of likelihood function which makes FitBIC(T ) less
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sensitive to the penalty term k(T ). To obtain fitness function that is not sensitive
to the various values of the likelihood function, we multiplied the FitBIC(T ) by,
as we call it, the Tree Size Factor. This is additional complexity penalty tries
to balance the penalty for the small and large datasets. The Tree Size Factor is
denoted as ϱ(T ) and can be expressed as:

ϱ(T ) =
n + Q(T )

n−Q(T )
. (7)

Therefore the complete fitness function equation for GMT 2.0 is given by:

FitGMT 2.0(T ) =

{
FitBIC(T ) ∗ ϱ(T ) when FitBIC(T ) ≥ 0

FitBIC(T ) ∗ 1
ϱ(T ) when FitBIC(T ) < 0

. (8)

The best single individuals are the ones with the lowest FitGMT 2.0(T ) value. The
Tree Size Factor ϱ(T ) increases the value of the fitness function and depends on
the number of observation and leaves.

2.6 Smooting

In M5 algorithm, Quinlan (1992) proposed the smoothing process to improve the
prediction accuracy of the tree-based models. The smoothing process modify the
predicted by a model at the appropriate leaf, value of each case to reflect the
predicted values at nodes along the path from that leaf to the root. It requires
to generate additional linear models for every internal node of the tree. In the
GMT 2.0 we developed the form of smoothing that is similar to the one in M5
algorithm. At first, predicted value for a test instance is computed by the leaf
model. Then, this value is smoothed and updated along the path back to the root
by linear models for each nodes. Let P (Ti) denote the predicted value at Ti subtree
of tree T , then:

P (T ) =
ni ∗ P (Ti) + k ∗M(T )

ni + k
, (9)

where ni is the number of training cases at Ti, M(T ) is the predicted value
recalculated from the linear model at T and k is a smoothing constant (default
10).

Figure 4 illustrates the smoothing process for the test instances at the leaf with
linear model denoted as LM4. If there were no smoothing process, the predicted
value P (T ) for a tested instance would be equal the value calculated from the
model LM4. However, with the smoothing process turned on, the models that are
on the path from the leaf to the root (LM5 and LM6) have influence on the final
predicted value P (T ).

According to Quinlan (1992) smoothing has most effect when some models
were constructed for few training cases or when the models along the path predict
instances very differently. However trees that adapt smoothing differs from the
classical univariate model trees. Each test instance is predicted not only by single
model at proper leaf but also by different linear models generated for every internal
node up to the root node. Therefore smoothing affects the simplicity of the solution
making it more difficult to understand and interpret.
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Figure 4 The smoothing process for the test instances at the leaf with linear model
denoted as LM4.

3 Experimental validation

Two sets of experiments were performed - one for the regression trees and second
for the model trees. GMT 2.0 was validated on several real-life datasets. Obtained
results were compared with our previous solutions (Kretowski and Czajkowski,
2010; Czajkowski and Kretowski, 2010) and popular regression and model trees
that are available in the Weka system (Hall et al., 2009).

3.1 Setup

To assess the performance of the proposed system in solving real-life problems,
several datasets from UCI Machine Learning Repository (Blake et al., 1998) and
provided by Torgo (2010) were analysed. Table 1 presents the details of each
dataset. All results presented in this paper correspond to averages of 20 runs and
were obtained by using test sets (when available) or by 10-fold cross-validation.
Root mean squared error (RMSE) is given as the prediction error measure of
the tested systems. The number of nodes is given as a complexity measure (size)
of regression and model trees. Each tested algorithm runs with default values of
parameters through all datasets.

3.2 Regression trees

Regression trees are used for analysis that require simple predictions based on a
few logical if-then conditions. However, most solutions induce overgrown regression
trees which are difficult to analyze. Domain experts need solutions that are smaller
and therefore easier to understand. Our main goal in this set of experiments was
to decrease the tree size of our previous solution called GRT without significant
increase of prediction error. It is expected that changes in the complexity penalty
term k(T ) influence not only the tree size but also the prediction error of GMT 2.0.
For a comparison purpose, we have tested four regression tree systems:

• GMT 2.0reg - proposed solution, set to work as a regression tree;

• GRT - one of the predecessors of GMT 2.0. Globally induced regression tree
proposed in (Kretowski and Czajkowski, 2010);
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Table 1 Characteristics of the real-life datasets

Dataset Number of features
Name Symbol Number of instances Numeric Nominal

Abalone AB 4177 7 1
Ailerons AI 13750 40 0
Auto-Mpg AM 392 4 3
Auto-Price AP 159 14 1
Delta Ailerons DA 7129 5 0
Delta Elevators DE 9517 6 0
Elevators EL 16599 18 0
Housing HO 506 13 0
Kinemaics KI 8192 8 0
Machine CPU MC 209 6 0
Pole PO 15000 48 0
Pyrimidines PY 74 27 0
Stock ST 950 9 0
Triazines TR 186 60 0
Wisconsin Cancer WC 194 32 0

• REPTree - popular top-down inducer. REPTree builds a regression tree
using variance and prunes it using reduced-error pruning (with backfitting);

• M5reg - state of art model tree proposed by Quinlan (1992), set to work as
a regression tree.

Table 2 presents results for the regression trees. GMT 2.0 alike GRT managed
to induce significantly smaller trees compared to the tested counterparts. This can
be especially noticed on large datasets. Almost all GMT 2.0 trees are smaller
and therefore easier to analyze and interpret. The only exception appears in the
Pyrimidines (PY) dataset where globally induced trees are little more complex
to the tested counterparts however have significantly higher prediction accuracy.
This suggests that greedy algorithms like M5reg and REPTree underfitted to the
training data and did not capture the underlying structure.

The average prediction error of GMT 2.0 is similar to the GRT and REPTree
however it is slightly worse than M5reg. Comparing to our previous solution,
GMT 2.0 managed to significantly decrease tree size in all datasets for over 70%
(average). In the same time, in 7 out of 15 datasets the prediction error RMSE
for GMT 2.0 decreased, compared to GRT or stayed on the same level. Lack
of improvement on some datasets may be explained by the significantly smaller
trees induced by the GMT 2.0. There is usually a trade-off between the predictive
performance and the model comprehensibility. Additional experiments showed that
the GMT 2.0 with lower value of the parameter k(T ) managed to induce larger
but much more accurate regression trees. Modification of this penalty term allows
to fine tune the decision tree algorithm.
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Table 2 Obtained results for the regression trees

GMT 2.0 GRT REPTree M5reg
Dataset RMSE size RMSE size RMSE size RMSE size

AB 2.33 3.5 2.31 51 2.35 201 2.28 36
AI 0.000213 19 0.000217 27 0.000203 553 0.000199 166
AM 3.96 2.1 3.57 45 3.6 94 3.49 19
AP 2542 2.0 2618 13 2760 32 2543 8.0
DA 0.000179 7.4 0.000179 82 0.000175 291 0.00176 74
DE 0.00150 7.9 0.00148 78 0.00150 319 0.00148 59
EL 0.00435 22 0.00443 32 0.00398 503 0.00413 189
HO 4.51 6.5 4.17 32 4.84 41 4.72 26
KI 0.194 25 0.194 34 0.191 819 0.182 264
MC 74.2 2.7 63.9 15 92.34 15 64.8 10
PO 9.91 19 10.32 25 8.25 223 9.32 139
PY 0.104 4.1 0.101 10 0.135 1.0 0.135 1.0
ST 1.41 13 1.33 39 1.19 137 1.14 88
TR 0.142 4.9 0.139 14 0.152 7.0 0.140 5.0
WC 33.3 1.9 39.2 16 35.9 9.0 35.0 3.0

3.3 Model trees

Model trees which are an extension of the regression trees, usually have higher
performance in the terms of the accuracy prediction. However, model trees like
HTL (Torgo, 1997) or SMOTI (Malerba et al., 2004) build complex models at
the leaves that reduces simplicity of the predictions. Therefore in this set of
experiments we focus on comparing the model trees with simple linear regression
models at the leaves:

• GMT 2.0 - proposed solution with no smoothing.

• GMT - one of the predecessors of GMT 2.0. Globally induced model tree
with simple linear regression models at the leaves proposed in (Czajkowski
and Kretowski, 2010);

• M5slr - state of art model tree system proposed by Quinlan (1992), set to
work with simple (instead of multivariate) linear regression model at the
leaves.

We may observe from Table 3 that GMT 2.0 alike GMT managed to induce
significantly smaller trees to the tested counterparts. Research showed that the
sizes of induced GMT and GMT 2.0 trees are similar. However, in this set of
experiment we focus on improving of the GMT prediction power. We managed to
reduce RMSE error, comparing to our previous solution, in 14 out of 15 datasets
for GMT 2.0. Comparing to the M5slr, proposed solution managed to not only
significantly decrease tree size but also reduce the prediction error in most of the
datasets.
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Table 3 Comparison results for the model trees with simple linear regression models
at the leaves

GMT 2.0 GMT M5slr
Dataset RMSE size RMSE size RMSE size

AB 2.24 6.7 2.30 7.7 2.24 35
AI 0.000200 24 0.000207 18 0.000194 109
AM 3.23 4.7 3.43 9.9 3.35 11
AP 2328 2.9 2507 3.7 2183 6
DA 0.000173 13 0.000178 11 0.000170 46
DE 0.00147 8.6 0.00150 9 0,00148 40
EL 0.00397 40 0.00444 13 0.00386 174
HO 4.21 6.6 4.32 9.1 4.36 21
KI 0.183 34 0.196 20 0,178 196
MC 63.4 6.1 67.5 3.8 89.5 7.0
PO 9.37 67 12.41 12 10.28 108
PY 0.103 4.4 0.109 4.5 0.118 3.0
ST 1.22 18 1.63 7.1 1.08 64
TR 0.142 4.9 0.141 4.7 0.141 4.0
WC 32.7 1.0 34.3 3.1 33.8 1.0

Table 4 Comparison results for the smoothed model trees with simple linear
regression models at the leaves

GMT 2.0 smot M5slr smot
Dataset RMSE size RMSE size
AB 2.23 6.7 2.21 35
AI 0.000200 24 0.000186 109
AM 3.18 4.7 3.22 11
AP 2243 2.9 2282 6
DA 0.000172 14 0.000169 46
DE 0.00146 8.8 0.00147 40
EL 0.00393 39 0.00366 174
HO 4.07 6.9 4.07 21
KI 0.182 34 0.172 196
MC 62.6 5.8 87.6 7.0
PO 9.37 61 9.61 108
PY 0.093 4.3 0.115 3.0
ST 1.22 17 1.22 64
TR 0.132 5.0 0.137 4.0
WC 32.7 1.0 33.5 1.0

3.4 Smoothed model trees

The smoothing process often improves the prediction accuracy of the tree-based
models. Table 4 illustrates the impact of the smoothing function on GMT 2.0
and M5slr solutions. We may observe that both algorithms managed to slightly
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improve the prediction accuracy on most of the datasets. Low impact of smoothing
function and weaker improvement of RMSE on proposed solution comparing to the
M5slr smot may result from smaller and more optimal GMT 2.0 tree structure
that cannot be so efficiently adjusted.

Table 4 results shows that smoothing process may have also a negative impact
on the final prediction. In Stock and Auto-Price dataset, the RMSE calculated for
the M5slr smot has increased. None of this happen to GMT 2.0 smot.

3.5 Calculation time

As with most evolutionary algorithms, calculation time of the proposed approach is
more time consuming than the classical top-down inducers. Performed experiments
with the Dual-Core CPU 1.66GHz with 2GB RAM on the dataset Elevators (16
559 instances, 18 attributes) showed that time:

• for regression trees: M5reg equal 7 seconds, GMT 2.0 equal 1.5 minutes;

• for model trees: M5slr equal 11 seconds, GMT 2.0 equal 33 minutes;

• for smoothed model trees: no relevant time differences.

Difference between M5slr and GMT 2.0 is caused by the evolutionary evaluation of
linear models at the leaves. However, proposed solution is scalable and can manage
large datasets.

4 Conclusion

Regression trees and model trees with simple linear models at the leaves are
important ”white box” solutions. In this paper we propose a new global approach
to the model tree learning and compare it with classical top-down inducers. The
structure of the GMT 2.0 tree, tests in non-terminal nodes and models at the
leaves are searched in the same time by specialized evolutionary algorithm.

Experimental results show that the globally evolved regression models are
highly competitive compared to the top-down based counterparts, especially in the
term of tree size. GMT 2.0 managed to significantly improve our previous solution:
GRT regression trees in the term of size and GMT in the predictive accuracy.

Proposed solution may be applied to the problems that are primarily concerned
with the regression of an outcome onto a single predictor. As an example the
original genetic epidemiology problem required only consideration of simple linear
regression models like (Shannon et al., 2002) to locate genes associated with
a quantitative trait of interests. GMT 2.0 is constantly improved. We plan to
introduce oblique tests in the non-terminal nodes and more advance models at the
leaves. We also plan to parallelize the evolutionary algorithm in order to speed-up
its execution time.
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Kretowski, M. and Grześ, M. (2005) ‘Global Learning of Decision Trees by an

Evolutionary Algorithm’, Information Processing and Security Systems, Springer,

pp.401–410.
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