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Abstract
Magnetic resonance imaging (MRI) is one of the most important diagnostic tools in modern medicine. Since it is a high-
cost and highly-complex imaging modality, computational models are frequently built to enhance its understanding as
well as to support further development. However, such models often have to be simplified to complete simulations in a
reasonable time. Thus, the simulations with high spatial/temporal resolutions, with any motion consideration (like blood
flow) and/or with 3D objects usually call for using parallel computing environments.
In this paper, we propose to use graphics processing units (GPUs) for fast simulations of MRI of vascular structures. We
apply a CUDA environment which supports general purpose computation on GPU (GPGPU). The data decomposition
strategy is applied and thus the parts of each virtual object are spread over the GPU cores. The GPU cores are responsi-
ble for calculating the influence of blood flow behavior and MRI events after successive time steps. In the proposed
approach, different data layouts, memory access patterns, and other memory improvements are applied to efficiently
exploit GPU resources. Computational performance is thoroughly validated for various vascular structures and different
NVIDIA GPUs. Results show that MRI simulations can be accelerated significantly thanks to GPGPU. The proposed
GPU-based approach may be easily adopted in the modeling of other flow related phenomena like perfusion, diffusion or
transport of contrast agents.
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1 Introduction

The rapid development of computers and programming
techniques that started in the second half of the 20th
century led to tremendous changes in conducting
research. Instead of building physical models, a lot of
experiments are currently performed in a virtual world
with the use of computers and computational models
(Zeigler, 2000). Such computer simulations (called in-
silico experiments) have a lot of advantages over in vivo
and in vitro experiments. For example, they are usually
cheaper and more effortless, actual systems (like the
human body) are not exposed to damage, and a
broader range of problems can be studied since several
simulations can run simultaneously.

The paper concerns the computational modeling of
magnetic resonance imaging (MRI) (Westbrook et al.,
2011) which is one of the most important diagnostic
tools in modern medicine. However, scientists and phy-
sicians still have restricted access to MRI equipment.
This is partly due to the high cost connected with

imaging equipment and also the necessity to employ
skilled personnel to operate and maintain MRI scan-
ners. MRI simulations can effectively eliminate the
high cost related to the skilled personnel and physical
devices (Benoit–Cattin et al., 2005). Moreover, simula-
tions can be performed without the need for patients to
participate and thus are not limited by the examination
duration.

In this paper, we focus on MRI of vascular struc-
tures. Although MRI is known as a highly detailed
three-dimensional (3D) imaging modality, there are still
a lot of difficulties in vascular image formation and
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interpretation (Van Der Graaf et al., 2014; Rahimi
et al., 2015). Imaging of blood flow areas is crucial
since vascular diseases are the cause of large mortality
rates (Aiyagari and Gorelick, 2011; Garin et al., 2013).
On the one hand, pathology detection and characteriza-
tion can be improved by using the intrinsic motion sen-
sitivity of MRI. For example, blood flow-related signal
diminution can be identified in zones of abnormal ves-
sel shapes (like an aneurysm) that can have serious con-
sequences and even cause death (Lasheras, 2007). On
the other hand, a flow during MRI acquisition can give
arise to various image artifacts. They introduce addi-
tional difficulties in image analysis which can lead to
image misinterpretation and inappropriate patient
treatment. Hence, the understanding of magnetic reso-
nance (MR) flow image formation is of importance,
due to clinical assessment of the disease as well as prob-
lems with artifacts.

Computational models have often been used to
understand and/or explain MRI processes that are
unclear, complex or difficult to observe. For instance,
the models can help to study the relationships between
vascular geometry changes and hemodynamic factors in
silico (Dyverfeldt et al., 2009). The connection between
fluid flow and image appearance can also be investi-
gated (Lorthois et al., 2005). Turning on/off particular
physical phenomena and the evaluation of various com-
binations of MRI equipment parameters are often time
consuming and in some cases even impossible. On the
other hand, in computational models it is far easier to
switch on/off their components and to study the contri-
bution of different factors (each factor separately or all
factors together). Therefore, such modeling can cer-
tainly contribute in the understanding of pathological
processes and improving MRI sequence design. Finally,
controlled simulation experiments are also a valuable
way of educating.

The in-silico modeling of MR flow imaging is not a
trivial task. It requires the integration of many techno-
logical processes, phenomenon and factors linked to
anatomy, physiology, hemodynamics, and imaging
technology, in one computational model (Jurczuk et al.,
2014). Besides addressing questions about the integra-
tive model quality and the level of its detail, the chal-
lenge of such an approach lies also in the demand for
high performance computing which is required to per-
form simulations within a reasonable period of time.
Simulations of each physical phenomenon itself as well
as interactions between them require many calculations.
Large vascular simulations are vital to correctly investi-
gate internal processes in human bodies (Grinberg
et al., 2011) and the computational needs grow fast with
the size of vascular structures.

There have been many proposed approaches in the
modeling of MR flow imaging (Lorthois et al., 2005;
Dyverfeldt et al., 2009; Marshall, 2010; Jurczuk et al.,

2013), to name a few. The long simulation time was
always one of the main factors limiting the extension of
these models to a 3D version or to study complex vas-
cular networks. Thus, it seems that further progress in
computational modeling of MRI does not only depend
on sophisticated equations but also on the development
of parallel architectures and the algorithms. In our
recent study (Jurczuk et al., 2014), we applied cluster
computing in the modeling of MR flow imaging, which
allowed us to investigate more complex vascular
structures.

In this paper, we propose to use graphics process-
ing units (GPUs) in the modeling of MR flow ima-
ging. GPUs of modern graphics cards are equipped
with hundreds or even thousands of small, energy
efficient computing units (GPU cores) for handling
multiple tasks in parallel and managing workloads
efficiently (Wilt, 2013). Thus, general purpose compu-
tation on GPU (GPGPU) has gained in popularity
(Yuen et al., 2013).

Our motivation is to exploit those GPU’s computa-
tional resources and bring the possibility to perform
fast MRI simulations on a single workstation. This
way, complex vascular structure simulations can
become independent of computer clusters that might be
expensive, maintenance demanding and are not always
accessible. In addition, modern GPUs often provide
lower price/performance ratio than computer clusters.
What is also important is that the parallel approach
proposed in this paper may be easily applied in the
modeling of other flow related imaging like perfusion,
diffusion or contrast agents transport in MRI. As far
as we know, the proposed computational model is the
first GPU-based approach to the simulation of MRI of
vascular structures. Our initial efforts to create the pre-
sented solution are described in the conference paper
(Jurczuk et al., 2016).

The rest of the paper is organized as follows. Section
2 gives a brief introduction to MRI, then it presents the
in-silico model of interest. The section ends with
a related works part. In Section 3 we propose a
GPU-based approach to in-silico modeling of MRI of
vascular structures. Section 4 presents the performance
evaluation of the proposed approach. In the last section
conclusions and possible future works are sketched.

2 Computational model description

This section contains a brief introduction of MRI prin-
cipals, followed by a description of the computational
model and a related works part.

2.1 Magnetic resonance imaging

MRI is one of the most important tomography meth-
ods in medicine (Westbrook et al., 2011). Due to its
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numerous advantages and applications it has revolutio-
nized diagnostic imaging in medical science. MRI pro-
duces sharp high-resolution images. Moreover, it
provides a unique contrast between soft tissues, which
is generally superior to that of computed tomography
(CT). So far, it seems to have no side effects related to
radiation exposure, especially in comparison to CT or
positron emission tomography (PET). Its clinical appli-
cations are still expanding rapidly as hardware and
imaging technology overcome successive limitations.
Some of them include functional MRI (fMRI), MR
angiography (MRA), diffusion MRI (dMRI) or MR
spectroscopy (MRS).

MRI relies on the intrinsic magnetic properties of
body tissues in an external magnetic field (Kuperman,
2000). Hydrogen protons are usually used because of
their high natural abundance in body tissues (in water
and fat). When a patient is put in an MRI scanner
equipped with a strong magnet, the body is temporarily
magnetized. Then, an oscillating radio frequency (RF)
pulse is additionally transmitted with an appropriate
frequency to fit the frequency of the magnetized parti-
cles. As a result, the particles can absorb this additional
energy. This process is known as excitation and it can
cause the appearance of the resultant magnetization in
the plane perpendicular to the main magnetic field.

After the RF pulse is turned off, the particles lose
the absorbed energy and tend to realign with the main
magnetic field. The process of particles returning to the
equilibrium is called relaxation. Two independent
relaxations take place. The amount of longitudinal
magnetization gradually increases due to giving up the
absorbed energy (longitudinal relaxation). The rate of
longitudinal magnetization recovery is an exponential
process with the time constant T1: 1� exp (� t=T1). At
the same time, but independently, the value of the
transverse magnetization decreases since the nuclei lose
coherency due to dephasing (transverse relaxation).
The decay of the transverse magnetization is an expo-
nential process with the time constant T2: exp (� t=T2).

According to the Faraday’s law of electromagnetic
induction, if a receiver coil or any conductive loop is
placed in the area of a changing magnetic field, a vol-
tage is induced in this coil (Bernstein et al., 2004). Since
the magnetic moments of the particles rotate/spin, they
can induce a voltage in a receiver coil. Such induced
current is the MR signal that is measured. It is then
recorded and can be further processed. The spinning
magnetic moments of the particles are often called
spins.

The receiver coils are used during the relaxation,
since different tissues return to equilibrium at different
speeds. The number of the particles participating in
MR, so-called proton density, also influences the
received signal. The acquired signal is collected in a
k-space matrix. The signal from a single excitation is

the sum of all subsignals coming from all excited parti-
cles. Thus, the magnetic gradients are used to encode
spatial directions.

The signal acquired after one excitation is insuffi-
cient to encode the nuclei in all directions. It is neces-
sary to apply RF pulses multiple times with various
gradients to spatially encode the signal of a 3D area.
Then, signal series are collected and the image can be
reconstructed based on them. The fast Fourier trans-
form (FFT) (Aibinu, 2008) is used to transform the
k-space matrix to the desired image.

MRI events (excitation, signal acquisition, spatial
encoding, etc.) are spread over time. The temporal
arrangement of the events (to form an image) is called
a pulse sequence. There are two basic pulse sequences:
spin echo (SE) and gradient echo (GE). Other more
advanced pulse sequences are based on these two and
additionally include some improvements e.g. in terms
of time to obtain an image or better image contrast.

2.2 Computational model

In our previous research, we developed a three-
component model of MR flow imaging (Jurczuk et al.,
2014) (Figure 1). The first component is used for

Figure 1. Three-component MRI model overview. The model
allows us to generate vascular structures (I), then simulate flow
behavior (II) and finally reproduce MRI processes (III).
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generating the vascular structures based on physiologi-
cal and hemodynamic parameters (Kretowski et al.,
2003). The second one allows flow simulations to be
performed in the generated vascular structures
(Jurczuk et al., 2013). The last component makes use of
the generated vascular structures and flow characteris-
tics to simulate MRI of vascular structures. Since, in
this paper, the algorithm of imaging is parallelized,
only the last model component is described.

The 3D imaged area (object) is divided into cubic
elements (Jurczuk et al., 2013). For each cubic element
basic MR parameters (proton density, relaxation
times), determined by the represented part of a tissue,
are assigned. In addition, each cubic element contains
hydrodynamic parameters (generated by the flow
model) that are represented by the dimensionless lattice
velocity u= uxbi+ uybj+ uzbk, where bi, bj, bk are unit vec-
tors in x, y, z directions. The flow velocity for station-
ary tissue structures (e.g. vessel walls, bones,
parenchyma) equals zero.

Imaging simulation is divided into short time periods
called time steps Dt. After each time step, local magneti-
zations of all cubic elements are modified taking into
account both the flow influence (DMF) and MRI events
(AMRI)

M(r, t+Dt)
=AMRI(r,Dt)½M(r, t)+DMF(r,Dt)� ð1Þ

where M is the magnetization of the cubic element at
spatial position r.

First, the flow influence is computed (see top part of
Figure 2). In each cubic element the magnetization frac-
tions are propagated to the neighboring cubic elements
(see black rectangles labeled by ’’a’’, ’’b’’ and ’’c’’). This
way, parts of magnetization can leave some cubic ele-
ments. At the same time, the magnetization fractions
that leave some cubic elements enter neighboring cubic
elements. The mean magnetization changes during a
time step Dt for a cubic element at position r are mod-
eled as follows

DMF(r,Dt)=DMIN(r,Dt)� DMOUT(r,Dt) ð2Þ
where DMIN denotes the inflow magnetization, while
DMOUT is the outflow magnetization.

The DMOUT value is calculated based on the flow
properties and the local magnetization of the consid-
ered cubic element

DMOUT(r,Dt)=M(r, t)½jux(r)jjuy(r)j
+ jux(r)j(1� juy(r)j)+ (1� jux(r)j)juy(r)j� ð3Þ

Meanwhile, the fractions of magnetization entering into
a cubic element are calculated with the use of the mag-
netizations of its neighboring elements as well as the
flow properties of this cubic element, as follows

DMIN(r,Dt)

=M r� Dd
ux(r)

jux(r)j
bi � Dd

uy(r)

juy(r)j
bj, t� �

jux(r)jjuy(r)j

+M r� Dd
ux(r)

jux(r)j
bi, t� �

jux(r)j(1� juy(r)j)

+M r� Dd
uy(r)

juy(r)j
bj, t� �

(1� jux(r)j)juy(r)j

ð4Þ
In 3D modeling, each sum component in equations (3)
and (4) is made up of two more cases in accordance
with the juz(r)j or (1� juz(r)j) term.

Later, the MRI influence is computed (see bottom
part of Figure 2). It is modeled by the Bloch equation
(Bloch et al., 1946). We apply its discrete time solution
proposed by Bittoun et al. (1984). It uses the rotation
matrices and exponential scaling to represent the
response of spins’ magnetization to magnetic field
changes. Such an approach (used in many advanced

Figure 2. The connection of MRI and magnetization transport
algorithms.
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MRI simulators, e.g. SIMRI (Benoit–Cattin et al.,
2005), ODIN (Jochimsen, 2006)) allows one to follow
the variations of spins’ magnetization during the whole
MRI sequence without any integration. Based on it, in
each cubic element, the following mathematical formu-
las are used to calculate the MRI influence

AMRI(r,Dt)
=ERELAX(r,Dt)Rz(YG)Rz(YIH )RRF(r,Dt)

ð5Þ

where ERELAX represents the relaxation phenomena

ERELAX(r,Dt)

=diag e
� Dt

T2(r)ð Þ, e � Dt
T2(r)ð Þ, 1� e

� Dt
T1(r)ð Þh i ð6Þ

Rz is the rotation matrix around the z-axis used to
model the influence of the spatial encoding gradient G
(rotation through angle YG(r,Dt)=G � rgDt) and mag-
netic field inhomogeneities DB (rotation through angle
YIH (r,Dt)= gDB(r)Dt)

Rz(u)=
cos u sin u 0

� sin u cos u 0

0 0 1

2
4

3
5 ð7Þ

g is the gyromagnetic ratio and RRF is the rotation
matrix describing the influence of the RF pulse and the
slice selection gradient (Jurczuk et al., 2013).

Based on Faraday’s law of an electromagnetic
induction, the MR signal coming from the imaged
object at a time t is expressed as a sum of the transverse
magnetizations

S(t)=
X
ro2C

Mx(ro, t)bi+ X
ro2C

My(ro, t)bj ð8Þ

where C is the collection of all cubic elements of the
imaged area. Each subsequent excitation is performed
with a different phase encoding step and the acquired
signals fill the successive matrix rows. The MR image is
created by applying an FFT to the fully filled matrix.

In the model, the ideal spoiling of transverse magne-
tization is used. After each readout, the transverse mag-
netization of all cubic elements is set to zero. In
addition, the so-called hard-pulse approximation is
implemented to represent different RF pulse shapes
(Bernstein et al., 2004). It allows the shaped RF pulses
to be approximated by the sequence of short constant
pulses of equal duration separated by periods of free
precession, which perfectly suits the applied iterative
approach of MRI and flow simulations.

By default, the time step for the modeling of MR
flow imaging is equal to the time step from the flow
modeling. If needed (for quick trial calculations or time
optimization issues), this time step can be changed.
Moreover, it may be different during various stages of
imaging, e.g. shorter during a slice selection and longer
after a signal acquisition up to the time of the next

excitation when there is less change in magnetization,
which can lead to significant computational savings in
simulation studies. However, this time step cannot be
longer than the shortest time needed by all the fluid to
pass from one grid node to another. In the other case, it
is possible that the magnetization fractions can go
(jump) more than one grid node in a single time step.

As regards the grid resolution, a restriction arises
because of the need to have an appropriate number of
cubic elements in each image voxel. Due to the applied
discrete-event solution of the Bloch equation, simula-
tions are performed at discrete spatial locations and a
continuous distribution of spins has to be imitated.
Thus, the number of cubic elements (also called iso-
chromats) in each image voxel has to be chosen care-
fully to generate a smooth image intensity.

2.3 Related works

There have been several proposed approaches in the
modeling of MR flow imaging. They can be divided
into two groups: Lagrangian-based (Jou et al., 1996;
Marshall, 2010) or Eulerian-based (Jou and Saloner,
1998; Lorthois et al., 2005). In Lagrangian-based solu-
tions, the flow pathlines are calculated first. Then, the
temporal tracking of spin magnetizations along these
pathlines is performed. While this approach is physi-
cally intuitive, it is known to be computationally expen-
sive and not so efficient in complex geometries where
particle tracking can fail (Marshall, 2010). Moreover,
the algorithms for the compensation of regions of low
particles density (e.g. close to vessel walls) might be
needed since the densities of particles are not uniform
over space, while in real fluids they are.

On the other hand, in Eulerian-based approaches a
fixed grid of nodes is considered. Such a grid is used to
represent the area under investigation. The magnetiza-
tion values of the nearest spins are associated with each
node. When the spins move, their magnetizations are
transferred to neighboring nodes according to the fluid
flow. Eulerian-based models inherently provide the uni-
form particle density and therefore, the aforementioned
problems of low particles density are eliminated. The
necessity to track magnetic particles along pathlines
during imaging is also eliminated and consequently,
simulations are often less time consuming.
Nevertheless, the Eulerian-based approaches can hin-
der the modeling of the spatial-temporal interaction of
flow with MRI events. Therefore, additional geometri-
cal procedures had to be developed to take into
account the displacement artifact (Nishimura et al.,
1991), e.g. mesh transformation for mapping the physi-
cal plane into the MR image plane (Lorthois et al.,
2005). As a result, other gradient arrangements, differ-
ent RF pulses or 3D imaging may require additional
mechanisms or some improvements in the existing
algorithms.

500 The International Journal of High Performance Computing Applications 32(4)



The advantage of our approach (described in
Section 2.2) stems from the coupling of the magnetiza-
tion transport algorithm (2D/3D analytical operations)
with the discrete-time solution of the Bloch equation.
Hence, the Eulerian coordinate approach is retained
and at the same time, flow-related artifacts are auto-
matically taken into account. Such an approach allows
us to closely follow the physical process of MRI, along
with the automatic incorporation of flow-related arti-
facts. Thus, there is no need for geometrical procedures
for mapping the physical plane to the image plane, such
as a mesh transformation (Lorthois et al., 2005). Flow
is automatically considered during most MRI events,
e.g. during excitation, signal acquisition, and spatial
encoding.

In our recent research, we extended this MR flow
imaging model and investigated its MPI parallelization
on a computer cluster (Jurczuk et al., 2014). The paral-
lelization used the master-slave paradigm (Grama et al.,
2003) together with the data decomposition strategy
and managed to achieve up to 75 speedup with 128
CPU cores.

A GPU-based MRI simulator (Xanthis et al., 2014a)
was also published recently. It allows only the station-
ary magnetization (without blood flow) to be investi-
gated. The same research group extended their
simulator to model various motions (Xanthis et al.,
2014b). However, their extended solution still does not
enable vascular structures to be taken into account as
the magnetization transport algorithm is significantly
simplified. Moreover, it uses the Lagrangian-based
approach and it was tested only with a single straight
tube.

To the best of our knowledge, there are no other
studies in the literature about the simulation of MRI
on vascular structures using the GPU-based approach
yet. Our initial efforts to create the presented solution
are described in the conference paper (Jurczuk et al.,
2016). In comparison to this conference work, in this
paper, we present an optimized version of the model
and we provide new results and thorough performance
analysis of the initial and the current implementations.
The new contributions presented in this paper are as
follows.

1. Optimized computational kernels (SoA-based
memory organization (Strzodka, 2012), different
padding mechanisms).

2. An in-depth analysis of the performance of our
model concerning performance across various
GPUs, both Kepler- and Maxwell-based ones, as
well as concerning scalability, threads/blocks con-
figurations, padding mechanisms, etc. Two addi-
tional GPUs are also added. It makes the model
implementation more portable/optimized across
different GPU devices.

3. A thorough analysis of the models performance in
response to successive model improvements, from
the initial and the current implementations (differ-
ent memory layouts along with additional exten-
sions like padding).

4. Profiling results of the CPU implementation as
well as GPU-accelerated one are provided and
analyzed.

3 GPU-accelerated approach

The most time consuming part of the MR flow imaging
algorithm is the tracking of magnetizations M(r, t) in
time. A new magnetization value (M(r, t+Dt)) has to
be calculated after each time step Dt. The time step has
to be small enough (usually of the order of tens to hun-
dreds of microseconds) to take into account the
dynamic blood behavior appropriately.

Moreover, in each time step, both the blood flow
and the influence of the MRI have to be considered in
each cubic element at position r. The size of cubic ele-
ments has to be small enough to provide the imitation
of a continuous distribution of spins and, thus, the
smooth image intensity changes. Its size is usually of
the order of tens to hundreds of micrometers. The
detailed performance analysis (using GNU gprof profi-
ler (Von Hagen, 2006)) showed us that the calculation
of M(r, t+Dt) consumes, on average, more than 99%
of the total CPU time that is required to obtain final
MR images (see Table 1).

The general flowchart of our GPU-based approach
is illustrated in Figure 3. One can observe that an MRI
simulation is run in a sequential way on a CPU and the
most time consuming operations concerning the evolu-
tion of magnetization values are delegated to a GPU.
This way, the parallelization does not affect the beha-
vior of the original sequential algorithm.

The algorithm starts with the initialization of the 3D
object and the experiment parameters at a CPU
(Figure 3). Then, they are sent to the GPU and saved in
the allocated space in global memory. This CPU-GPU

Table 1. Fraction of total execution time devoted to particular
actions of MRI modeling for a straight tube geometry filled
completely by blood (the contribution of MRI/flow influence can
different for other objects, depending on the number of cubic
elements filled by fluid).

Actions Time fraction

1. Object and experiment initialization \0.01%
2. Magnetization changes modeling: 99.99%

- MRI influence 42.20%
- Flow influence 57.79%

3. Image reconstruction (FFT) \0.01%
4. Others \0.01%
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data transfer is performed only once before the MRI
simulation and the data is kept on the GPU till the
MRI experiment is finished. This way, data transfer is
substantially reduced, especially for large objects, and
each GPU thread has access to the data. Moreover,
batching many small data transfers into a single larger
one always performs more efficiently than executing
each transfer separately (Cheng et al., 2014).

After the initialization, the MR image formation is
started and here the GPU-based parallelization is
applied. Each time when there is a need to compute
new magnetization values, the CPU requests the GPU
to perform calculations (see calling kernel in Figure 3).
The data decomposition strategy is used. The 3D object
is decomposed into multiple subdomains that are pro-
cessed by GPU cores in parallel.

The following subsections describe in more detail
the GPU-parallelized algorithm, along with the data
decomposition strategy as well as additional optimiza-
tions that shorten the simulation time further.

3.1 GPU-parallelized magnetization evolution

The 3D object is decomposed into two levels (Figure 4).
At first it is spread into parts (subsets of cubic elements)
that are processed by different GPU blocks. We decided
to use the 2D grid of blocks along the directions of the
phase encoding gradients. Next, in each block, the cubic
elements along the direction of frequency encoding gra-
dient are spread further over the threads. By default,
the number of blocks and threads are set to the number
of cubic elements (object size) in the considered direc-
tions. If the object size exceeds the maximum number
of threads/blocks, then the maximum value is used and
a single thread/block processes more than one cubic ele-
ment. The maximum numbers of threads/blocks are the
algorithm parameters, however, they can also be hard-
ware dependent.

Magnetization evolves in response to various MRI
events (e.g. excitation, spatial encoding, relaxation) that
are applied in appropriate order and with chosen para-
meters (see equation (5)). Each such an event is

Figure 3. The general flowchart of the GPU-accelerated algorithm of MR flow imaging.
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simulated in consecutive time steps (Dt) because of
blood flow that transports magnetizations between
cubic elements. The magnetization of a cubic element
in the next time step depends not only on its current
magnetization value and the MRI influence (time
dependency) but also on the magnetization of its neigh-
boring cubic elements (spatial dependency), in accor-
dance with equations (3) and (4). For this reason, each
MRI event consists of a CPU loop that calls GPU ker-
nels as it is illustrated in Figure 3.

As regards the excitation, relaxation and spatial
encoding events, two kernel functions are called in each
time step. The first one is responsible for the MRI influ-
ence, while the second one for the magnetization trans-
port induced by the blood flow. Such an approach
provides the synchronization for all threads (both inside
and between blocks) after each time step. As a result,
the time and spatial dependency between magnetiza-
tions of cubic elements is provided. During the MRI

influence calculations, each thread accesses only the
local magnetization values. However, during the mag-
netization transport calculations, threads have to also
reach into neighboring cubic elements to read their
magnetization values. These values are required to
exchange magnetizations between neighboring cubic
elements. Listings 1 and 2 show these two kernels func-
tions in more detail.

The signal acquisition phase differs a little from
other MRI events. Here, not only the MRI and flow
influences are simulated, but also the signal from all
cubic elements has to be read and saved in the k-space
matrix. This operation is carried out by two additional
kernel functions (signal readout1 and signal readout2,
see Figure 3). These two functions, in a single time step,
provide the sum of all magnetizations (from all cubic
elements). The first kernel performs the reduction of
magnetization values for cubic elements inside blocks.
The second kernel finishes the reduction with the use of
one block where the number of treads equals to the
number of blocks from the first kernel function.

Figure 4. Data decomposition strategy. First, the 3D object is
divided into parts along the phase encoding directions and these
parts are spread over blocks. Second, each object part is divided
further along the frequency encoding direction into smaller
parts that are processed by various block threads. 2D grid of
blocks and 1D blocks of threads are applied.

Listing 1: Pseudo code of the kernel function responsible for
MRI influence.
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After each repetition a successive line of the k-
space matrix is filled by the MR signal. If the next
repetition is needed, the algorithm starts again from
the excitation. Otherwise, the k-space matrix is trans-
ferred from the GPU to the CPU. Finally, the MR
image is created by the application of FFT to the
received matrix at the CPU.

3.2 Memory access patterns

The GPU memory has a hierarchical structure
(NVIDIA, 2015b). Several types of memories are pro-
vided with different scope, latency access, lifetime, and
caching behavior. GPU memories can be grouped into
two classes: small, fast on-chip memory (cache, resis-
ters, etc.) and global memory (residing in device
DRAM) with larger capacity but much higher latency
access. In order to efficiently use these hardware
resources, some algorithm improvements are added to
the basic parallelization.

In GPU-parallelized applications the selection of an
appropriate data layout for multi-valued data/contain-
ers (set of 3D points, 3D magnetization, etc.) is an
important issue since it can drastically impact on com-
putational efficiency (Mei and Tian, 2015). Generally,
there are two major data layouts: Array-of-Structures
(AoS) and Structure-of-Arrays (SoA) (see Listing 3),
and the other more sophisticated are hybrid formats,
like Array-of-Structures-of-Arrays (Strzodka, 2012).
Although the same data is represented in both cases,
each of these layouts implies a completely different
memory access pattern. To improve overall perfor-
mance, the memory access pattern should, primarily,
minimize the number of memory transactions on the

Listing 2: Pseudo code of the kernel function responsible for
magnetization transport.

Listing 3: AoS vs SoA memory layouts.

504 The International Journal of High Performance Computing Applications 32(4)



off-chip global memory. Although SoA layout is often
preferable from a GPU performance perspective, it is
not always obvious which data layout gives better com-
putational efficiency for a particular application
(Govender et al., 2014; Giles et al., 2013). Thus, we
decided to evaluate both layouts AoS and SoA.

In the algorithm, the most frequently read/written
data is the information about the imaging object. At
the same time, this information is also the largest data.
In the global GPU memory the following parameters
for each cubic element are stored:

� magnetization (three 32-bit floats, one for each
direction);

� hydrodynamic properties (three 32-bit floats, one
for each direction);

� MR characteristics: proton density, T1 and T2
relaxation times (three 32-bit floats).

In case of the SoA layout, all of these cubic para-
meters are organized in three structures (struct
Magnetization, struct Flow, struct
MRIParam). Each structure consists of three one-
dimensional arrays of M floating point values (in accor-
dance with Listing 3, lines 12–17). This provides coa-
lesced memory access by accessing consecutive
elements by threads within the same warp (or half-warp
in older hardware) (Wilt, 2013). The coalesced global
memory accessed by threads of a warp minimizes the
number of memory transactions and as a result, mini-
mizes DRAM bandwidth. In addition to the access to
continuous memory locations, the memory alignment
is also important. Thus, a padding mechanism (Cook,
2012) is applied to the SoA-based memory organiza-
tion, in order to ensure data alignment in every row of
an array. The mechanism pads extra cubic elements
(filled by zero) to each row to meet the alignment
requirements of a given device and thus, it may prove
an additional speedup (Rojek et al., 2015).

In the case of the AoS layout, all of the cubic para-
meters are organized in three one-dimensional arrays
(Magnetization tabM[M], Flow tabF[M],
MRIParam tabMRI[M]). Each array consists of M ele-
ments where each element is a three floating point val-
ued container (in accordance with Listing 3, lines 3-8).
The structure size of 12 bytes is suboptimal, since most
types of memory are optimized for data access, where a
chunk size is a power of two. CUDA specification says
that if a global memory read/write operation does not
fulfill the required size (1, 2, 4, 8, or 16 bytes) or the
required alignment (its address is not a multiple of that
size), the memory access can not be realized by a single
memory transaction (NVIDIA, 2015a). In order to
meet the 16 bytes alignment, for each of the structures
a hidden 4 byte padding element is implicitly inserted
by adding the specifier __aling__(16). Such a

structure (called Array-of-aligned-Structures, AoaS)
occupies 16 bytes in memory (more than it is needed)
but when it is used in an array, all array elements start
at an address that is a multiple of 16 (which prevents
from an interleaved memory access pattern).
Moreover, to explore more of this data layout, we
added to the solution another way to ensure the size
requirement for the alignment using built-in data type
float4.

At the beginning of each kernel function, data that is
stored in the global memory and is frequently used (e.g.
cubic element magnetization) is copied to local kernel
variables explicitly. At the end of the kernel, the data is
transferred back into the global memory containers.
This way, each thread tries to accumulate temporary
values (e.g. for magnetization) into registers (fast on-
chip memory but of small capacity). If the data can not
fit into register space, it is stored in a per-thread local
memory which is nevertheless slower than registers.
Local thread variables (for magnetization, flow and
MR parameters) are stored in not aligned structures (or
float3 variables) since limited register space is a more
important issue.

In the sequential algorithm implementation, the
results of some repeated calculations are saved in auxili-
ary arrays before the MRI procedure and then used
when needed (e.g. partial computation of the magneti-
zation increase during relaxation after each time step Dt
individually for each cubic element: exp (� Dt=T1(r)),
exp (� Dt=T2(r), etc.). In the GPU-parallelized algo-
rithm, such global auxiliary arrays are not used. Results
of frequently repeated calculations are saved locally in
a kernel function when they are computed for the first
time. Although it increases the number of arithmetic
operations, it reduces redundant loads from the GPU
global memory.

The GPU shared memory is used when the signal
acquisition phase is simulated. The first kernel function
performs the reduction of magnetization values for
cubic elements inside blocks. It uses the shared memory
inside thread blocks. The second kernel finishes the
reduction with the use of one block and an array in glo-
bal memory space. In addition, the possibility to finish
the reduction at the CPU is added.

4 Performance analysis

This section shows the performance of the proposed
GPU-based algorithm. Experiments were performed on
different vascular structures using various NVIDIA
graphics cards. In the paper, we focus on execution time
and, in particular, on speedup relative to the sequential
implementation. Moreover, the speedup obtained with
the use of a few CPU cores by an OpenMP paralleliza-
tion is also presented.
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4.1 Setup

All experiments were performed on a workstation
equipped with Intel Xeon CPU E5-2620 v3 (15 MB
Cache, 2.40 GHz), 64 GB RAM and a single graphics
card. We tested five different NVIDIA graphics cards
described in Table 2 (four Kepler-based GPUs and one
Maxwell-based: GTX Titan X). For each graphics card
we gather basic specifications that cover the number of

CUDA cores, a clock rate, available memory, band-
width, and compute capability.

We used 64-bit Ubuntu Linux 14.04.02 LTS as an
operating system. The sequential algorithm was imple-
mented in C++ and compiled with the use of gcc ver-
sion 4.8.2. The GPU-based parallelization was
implemented in CUDA-C and compiled by nvcc
CUDA 7.0 (NVIDIA, 2015a).

We present the results of four various vascular struc-
tures investigated in our previous papers (Jurczuk et al.,
2013, 2014), where detailed flow and MRI settings were
reported. Figure 5 shows the geometry of MRI phan-
toms (objects) and examples of simulated MR flow
images with more and more complicated vascular struc-
tures. The GE imaging sequence (Bernstein et al., 2004)
was used to obtain the images. Other basic imaging
parameters are reported next to the MR images.

4.2 Results

Figure 6 shows the obtained speedup of the proposed
GPU-accelerated algorithm in comparison to its
sequential version. Speedups for various GPUs as well
as for four different vascular structures (from a straight

Figure 6. Speedup of the GPU-accelerated algorithm using the
SoA+ padding memory layout. Objects that are shown in Figure
5 and five different GPUs are tested. Moreover, the speedup of
an OpenMP parallelization using six CPU cores is presented.

Table 2. Processing and memory resources of the NVIDIA graphics cards used in the experiments.

NVIDIA graphics card Engine Memory Compute

No. CUDA cores Clock rate (MHz) Size (GB) Band width (GB/s) capability

Geforce GTX 760 1152 980 2 192.2 3.0
Quadro K5000 1536 706 4 173.0 3.0
Geforce GTX 780 2304 863 3 288.4 3.5
Geforce GTX Titan Black 2880 889 6 336.0 3.5
Geforce GTX Titan X 3072 1000 12 336.5 5.2

Figure 5. Geometry of tested objects/phantoms and examples
of simulated MR images: (a) a single vessel, (b) a single
bifurcation, (c) multiple bifurcations, (d) slice through the liver
volume with many vascular structures.
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vessel, through a few bifurcations and finally a liver
volume with many vascular structures) are included
separately. Moreover, the speedup obtained with the
use of all six CPU cores by an OpenMP parallelization
is also presented. It is clearly visible that the proposed
GPU-based parallelization provides a significant
decrease in computation time. All GPUs are able to
obtain a speedup of at least one order higher than the
OpenMP parallelization.

The results suggest that with the proposed approach
even a regular PC with a medium-class graphics card is
enough to accelerate the MRI simulations significantly.
As it is expected, better graphics cards manage to
achieve much better accelerations. The most expensive
tested graphics cards in comparison to the cheapest
ones are often 2 times faster and is able to simulate
MRI of vascular structures about 180 times faster than
the sequential simulations. With such accelerations, the
speedup achieved by a six-core CPU using only
the OpenMP parallelization is, to put the mildly - not
very impressive.

The scale of the improvement is even more visible
when the execution time between the sequential and
parallel versions of the solution are compared.
Currently, the time needed to simulate e.g. MR image
in Figure 5(d) equals about 1 h with the use of Titan X

GPU, instead of about 7-8 days by a single core CPU
or 2–3 days using the OpenMP parallelization and six
CPU cores. Moreover, the achieved speedup is compa-
rable (images (a-c)) or even higher (image (d)) than the
one obtained by a computer cluster of 16 nodes each
equipped with 2 quad-core CPUs (Xeon 2.66 GHz)
(128 CPU cores in total) and 16 GB RAM (Jurczuk
et al., 2014).

There is also a difference in speedup between tested
objects. The first reason could be the fraction of cubic
elements that represent the object/image background
where no MRI is simulated (black areas in images). The
second one is the size of the object/image that does not
always allow computational resources to be exploited
efficiently. The object size and fraction of background
elements were as follows: (a) 9403 190, 0, (b)
1673 543, 0.6, (c) 5723 740, 0.7, (d) 10003 10003 70,
0. The simulation box can differ from the object size
due to additional background cubic elements added to
objects in order to obtain the power of two image sizes,
that allowed a FFT algorithm to be applied. After a
reconstruction phase, the additional background black
areas were cropped from the images (Jurczuk et al.,
2013). The worst results are obtained for the single
bifurcation object, where there are a lot of background
elements and the horizontal object (167) as well as
simulation box size (320) are too small to efficiently use
GPU resources. The best speedup, in turn, is achieved
for image (d) since there are no background elements
and the object size is big enough.

The differences in speedup between tested objects
can be further explained by the GPU profiling results
included in Table 3. Calculating the flow influence
demands much more memory transactions to/from glo-
bal memory (read magnetizations from all neighboring
cubic elements) than the MRI simulation itself, thus,
the former operation is at the first place in all cases.
For the straight tube geometry, in all cubic elements
the flow has to be simulated, thus, the kernel responsi-
ble for this phenomena dominates over other actions.
Also in geometry (d) all cubic elements take part in
simulations, however, only a small fraction of them
(where the vessels are present) need both MRI and flow
influences calculations. It is a part of the reason why
the speedup for (d) geometry is higher than for the
straight tube geometry. Generally, the more time spent
for flow influence calculations, the lower speedup we
obtain. However, also the time spent for readout ker-
nels and the ratio of the number of fluid cubic elements
to the total number of cubic elements have to be taken
into account. For the straight tube geometry, the read-
out kernels take a very small time fraction because cal-
culations in other kernels dominate as this ratio equals
1 (the highest ratio from all the objects). The signal
readout kernels have to fill all k-space cells by signals
from all object cubic elements no matter what a cubic

Table 3. GPU profiling results for four objects shown in Figure
5 and three GPUs.

NVIDIA GTX Titan X

Kernel Time fraction (%)

(a) (b) (c) (d)

MRI influence 24.17 21.64 17.98 26.18
Flow influence 74.38 63.56 59.04 49.52
Signal readout 1 1.21 7.27 11.86 14.82
Signal readout 2 0.24 7.53 11.12 9.48

Geforce GTX Titan Black

Kernel Time fraction (%)

(a) (b) (c) (d)

MRI influence 25.86 21.96 17.56 25.56
Flow influence 73.19 67.91 56.76 47.97
Signal readout 1 0.71 4.43 14.95 17.19
Signal readout 2 0.24 5.69 10.73 9.28

Geforce GTX 760

Kernel Time fraction (%)

(a) (b) (c) (d)

MRI influence 24.28 21.3 25.9 25.91
Flow influence 74.78 70.84 53.39 53.39
Signal readout 1 0.83 5.01 16.5 16.49
Signal readout 2 0.11 2.85 4.21 4.21
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element represents: fluid, stationary tissue or back-
ground. The results obtained using different GPUs for
particular objects are coherent. Moreover, in many
cases, they are very similar.

In further part of this section, the proposed GPU-
accelerated algorithm is thoroughly verified, concerning
added improvements, object size, blocks3 threads con-
figurations and the size of data alignment. Figure 7
shows the influence of the successively added improve-
ments to the basic parallelization:

� AoS1 - basic parallelization using AoS data layout;
� AoS2 - AoS1 + the reduction is finished by GPU;
� AoS3 - AoS2 + data stored in global memory and

frequently used is copied to local kernel variables
explicitly;

� AoaS - AoS3 + structure alignment;
� SoA - all earlier improvements + SoA data layout;
� SoA + padding.

The results concern the straight tube geometry. It can
be observed that the best results are obtained when the
SoA data layout is applied. The smallest change in
simulation time provides the AoS2 improvement. The
biggest improvement is achieved when data alignment
is added to the structure definition (AoaS data layout)
as well as when SoA data layout is used. Also in the
case of SoA-based memory organization, the memory
alignment is important. We did not find any remark-
able performance gains between using built-in data
type float4 and specifier __aling__(16).

We also verified execution times with respect to the
object size for the straight vessel geometry (Figure 8).
The following lattice sizes are tested: 1000, 2000, 4000,
8000, 16000, which provide the straight tube geometries
consisting of 2373 49, 4713 96 and 9403 190,
18803 380, 37603 760 cubic elements (original/flow
object sizes), respectively. We observe that the speedup
increases when the lattice size grows. For the lattice size
of 1000, the results are not so different between GPUs
in comparison to higher spatial resolution images. This
may suggest that when the object size is too small, there
are not enough jobs in face of the increasing number of
CUDA cores provided by more powerful GPUs. For
the lattice size between 2000 and 16000, we clearly see
that as the clock rates and the number of cores increase,
simulations finish faster. The only exception is the
GTX 760 GPU which achieves much lower speedup
than other Kepler-based GPUs despite the fact that its
clock rate is higher than other GPUs. This GPU is,
however, equipped with at least two times less CUDA
cores as well as its memory bandwidth is also lower
than other faster GPUs.

We have also experimentally checked if different
sizes of the data processed in each block/thread influ-
ences the algorithm speedup. Figure 9 presents the

speedup for the straight tube geometry of different spa-
tial resolution for three graphics cards (Geforce GTX
760, Titan Black and Titan X). The tested Kepler-based
GPUs achieve the best speedup when the number of
threads is not too high (not more than 512). For Titan
X GPU, it can be observed that for higher resolution
(bigger object size) the configuration of blocks3 th-
reads equal to 10243 512 fits the best, whereas for
smaller ones it is not so evident (and other configura-
tions win). Since the memory bandwidths of GTX
Titan Black and Titan X are almost the same, the rea-
son can be found in the number of CUDA cores and
the clock rates which are higher for the second GPU.
However, the differences between verified configura-
tions are always in range of 0� 20.

The influence of the size of memory alignment in
SoA layout has also been verified. Figure 10 shows the
speedup for various GPUs when different padding size
is used. The size of the data alignment is expressed in
bytes and is selected from the set [32; 64; 128; 256, 512,
1024]. For GTX 760 GPU the optimal memory

Figure 7. The influence of successive improvements.

Figure 8. The influence of the object size.
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alignment equals 128 B. The other GPUs provide the
best performance when the size equals 256 B.

Having the performance results for different gra-
phics cards, for various objects and with different con-
figurations gives us an opportunity to estimate the
mean speedup for particular GPUs (see Table 4). As
expected, the best performance is achieved using the
most powerful Maxwell-based GPU: Geforce GTX
Titan X. We also observe that the GTX 780 and the
GTX Titan Black GPUs give very similar performance.
Concerning the GTX 760 and the Quadro K5000
GPUs, they achieve the worst speedup, but still high
enough to be successfully used in fast MRI simulations.

5 Conclusion and future works

MRI simulators play an important role in improving
this imaging modality and developing new imaging
techniques. However, MRI models are often simplified
to complete simulations in a reasonable time. In this
paper, the authors propose a GPU-based paralleliza-
tion to accelerate simulations of MRI of vascular struc-
tures. To efficiently exploit GPU resources, different
memory layouts and further additional optimizations
(like padding) are applied. A CUDA programming
model is used.

The approach was tested with various GPUs (both
Kepler- and Maxwell-based) and using different vascu-
lar structures. Moreover, its performance was analyzed
in-depth in response to successive improvements and
with various configurations, concerning scalability,
thread/blocks settings and padding size. The results
show that our solution is fast and scalable. It provides
the speedup of at least one order higher than an
OpenMP parallelization. The time to simulate MR
image in Figure 5(d) decreases from several days to a
few hours. Even a regular PC equipped with a medium-
class graphics card is sufficient for our algorithm to
reduce simulation time significantly. We believe that it
opens a perspective to simulate more and more complex
(that is more realistic) vascular structures. Moreover,
the proposed GPU-based approach may be easily
adapted in other algorithms concerning related phe-
nomena like diffusion or perfusion.

We see many promising directions for the future
research. We plan to deal with a multi-GPU paralleli-
zation to speedup the MRI simulations even further.
Using OpenCL interface, instead of CUDA, could pro-
vide further improvements and the portability to GPUs
from multiple vendors (McIntosh-Smith et al., 2015).
Another improvement may refer to asynchronous
(Farber, 2011) or collaborative (Mittal, 2015)
CPU+GPU execution. We also plan to use the pre-
sented parallelization in the modeling of contrast agent

Figure 9. The influence of the number of blocks3threads.
Different object lattice sizes and the straight tube geometry
using various GPUs are considered.
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propagation and dynamic contrast-enhanced MRI
(Mescam et al., 2010).
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