W) Check for updates

nternational Journal of

HIGH PERFORMANCE

Special Issue Paper COMPUTING APPLICATIONS

The International Journal of High
Performance Computing Applications
2018, Vol. 32(4) 496-511

© The Author(s) 2016

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342016677586
journals.sagepub.com/home/hpc

®SAGE

GPU-based computational modeling of
magnetic resonance imaging of
vascular structures

Krzysztof Jurczuk', Marek Kretowski' and Johanne Bezy-Wendling®”*

Abstract

Magnetic resonance imaging (MRI) is one of the most important diagnostic tools in modern medicine. Since it is a high-
cost and highly-complex imaging modality, computational models are frequently built to enhance its understanding as
well as to support further development. However, such models often have to be simplified to complete simulations in a
reasonable time. Thus, the simulations with high spatial/temporal resolutions, with any motion consideration (like blood
flow) and/or with 3D objects usually call for using parallel computing environments.

In this paper, we propose to use graphics processing units (GPUs) for fast simulations of MRI of vascular structures. We
apply a CUDA environment which supports general purpose computation on GPU (GPGPU). The data decomposition
strategy is applied and thus the parts of each virtual object are spread over the GPU cores. The GPU cores are responsi-
ble for calculating the influence of blood flow behavior and MRI events after successive time steps. In the proposed
approach, different data layouts, memory access patterns, and other memory improvements are applied to efficiently
exploit GPU resources. Computational performance is thoroughly validated for various vascular structures and different
NVIDIA GPUs. Results show that MRI simulations can be accelerated significantly thanks to GPGPU. The proposed
GPU-based approach may be easily adopted in the modeling of other flow related phenomena like perfusion, diffusion or
transport of contrast agents.

Keywords
Comeputational modeling, graphics processing unit, magnetic resonance imaging, parallel computing, vascular structures

imaging equipment and also the necessity to employ
skilled personnel to operate and maintain MRI scan-
ners. MRI simulations can effectively eliminate the
high cost related to the skilled personnel and physical
devices (Benoit—Cattin et al., 2005). Moreover, simula-
tions can be performed without the need for patients to
participate and thus are not limited by the examination
duration.

In this paper, we focus on MRI of vascular struc-
tures. Although MRI is known as a highly detailed
three-dimensional (3D) imaging modality, there are still
a lot of difficulties in vascular image formation and

| Introduction

The rapid development of computers and programming
techniques that started in the second half of the 20th
century led to tremendous changes in conducting
research. Instead of building physical models, a lot of
experiments are currently performed in a virtual world
with the use of computers and computational models
(Zeigler, 2000). Such computer simulations (called in-
silico experiments) have a lot of advantages over in vivo
and in vitro experiments. For example, they are usually
cheaper and more effortless, actual systems (like the
human body) are not exposed to damage, and a
broader range of problems can be studied since several

simulations can run simultaneously.

The paper concerns the computational modeling of
magnetic resonance imaging (MRI) (Westbrook et al.,
2011) which is one of the most important diagnostic
tools in modern medicine. However, scientists and phy-
sicians still have restricted access to MRI equipment.
This is partly due to the high cost connected with

'Faculty of Computer Science, Bialystok University of Technology, Poland
ZINSERM, Rennes, France
3University of Rennes |, Rennes, France

Corresponding author:

Krzysztof Jurczuk, Faculty of Computer Science, Bialystok University of
Technology, Wiejska 45a, 15-351 Bialystok, Poland.

Email: k.jurczuk@pb.edu.pl

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/1094342016677586
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342016677586&domain=pdf&date_stamp=2016-12-01

Jurczuk et al.

497

interpretation (Van Der Graaf et al., 2014; Rahimi
et al., 2015). Imaging of blood flow areas is crucial
since vascular diseases are the cause of large mortality
rates (Aiyagari and Gorelick, 2011; Garin et al., 2013).
On the one hand, pathology detection and characteriza-
tion can be improved by using the intrinsic motion sen-
sitivity of MRI. For example, blood flow-related signal
diminution can be identified in zones of abnormal ves-
sel shapes (like an aneurysm) that can have serious con-
sequences and even cause death (Lasheras, 2007). On
the other hand, a flow during MRI acquisition can give
arise to various image artifacts. They introduce addi-
tional difficulties in image analysis which can lead to
image misinterpretation and inappropriate patient
treatment. Hence, the understanding of magnetic reso-
nance (MR) flow image formation is of importance,
due to clinical assessment of the disease as well as prob-
lems with artifacts.

Computational models have often been used to
understand and/or explain MRI processes that are
unclear, complex or difficult to observe. For instance,
the models can help to study the relationships between
vascular geometry changes and hemodynamic factors in
silico (Dyverfeldt et al., 2009). The connection between
fluid flow and image appearance can also be investi-
gated (Lorthois et al., 2005). Turning on/off particular
physical phenomena and the evaluation of various com-
binations of MRI equipment parameters are often time
consuming and in some cases even impossible. On the
other hand, in computational models it is far easier to
switch on/off their components and to study the contri-
bution of different factors (each factor separately or all
factors together). Therefore, such modeling can cer-
tainly contribute in the understanding of pathological
processes and improving MRI sequence design. Finally,
controlled simulation experiments are also a valuable
way of educating.

The in-silico modeling of MR flow imaging is not a
trivial task. It requires the integration of many techno-
logical processes, phenomenon and factors linked to
anatomy, physiology, hemodynamics, and imaging
technology, in one computational model (Jurczuk et al.,
2014). Besides addressing questions about the integra-
tive model quality and the level of its detail, the chal-
lenge of such an approach lies also in the demand for
high performance computing which is required to per-
form simulations within a reasonable period of time.
Simulations of each physical phenomenon itself as well
as interactions between them require many calculations.
Large vascular simulations are vital to correctly investi-
gate internal processes in human bodies (Grinberg
et al., 2011) and the computational needs grow fast with
the size of vascular structures.

There have been many proposed approaches in the
modeling of MR flow imaging (Lorthois et al., 2005;
Dyverfeldt et al., 2009; Marshall, 2010; Jurczuk et al.,

2013), to name a few. The long simulation time was
always one of the main factors limiting the extension of
these models to a 3D version or to study complex vas-
cular networks. Thus, it seems that further progress in
computational modeling of MRI does not only depend
on sophisticated equations but also on the development
of parallel architectures and the algorithms. In our
recent study (Jurczuk et al., 2014), we applied cluster
computing in the modeling of MR flow imaging, which
allowed us to investigate more complex vascular
structures.

In this paper, we propose to use graphics process-
ing units (GPUs) in the modeling of MR flow ima-
ging. GPUs of modern graphics cards are equipped
with hundreds or even thousands of small, energy
efficient computing units (GPU cores) for handling
multiple tasks in parallel and managing workloads
efficiently (Wilt, 2013). Thus, general purpose compu-
tation on GPU (GPGPU) has gained in popularity
(Yuen et al., 2013).

Our motivation is to exploit those GPU’s computa-
tional resources and bring the possibility to perform
fast MRI simulations on a single workstation. This
way, complex vascular structure simulations can
become independent of computer clusters that might be
expensive, maintenance demanding and are not always
accessible. In addition, modern GPUs often provide
lower price/performance ratio than computer clusters.
What is also important is that the parallel approach
proposed in this paper may be easily applied in the
modeling of other flow related imaging like perfusion,
diffusion or contrast agents transport in MRI. As far
as we know, the proposed computational model is the
first GPU-based approach to the simulation of MRI of
vascular structures. Our initial efforts to create the pre-
sented solution are described in the conference paper
(Jurczuk et al., 2016).

The rest of the paper is organized as follows. Section
2 gives a brief introduction to MRI, then it presents the
in-silico model of interest. The section ends with
a related works part. In Section 3 we propose a
GPU-based approach to in-silico modeling of MRI of
vascular structures. Section 4 presents the performance
evaluation of the proposed approach. In the last section
conclusions and possible future works are sketched.

2 Computational model description

This section contains a brief introduction of MRI prin-
cipals, followed by a description of the computational
model and a related works part.

2.1 Magnetic resonance imaging

MRI is one of the most important tomography meth-
ods in medicine (Westbrook et al., 2011). Due to its

498

The International Journal of High Performance Computing Applications 32(4)

numerous advantages and applications it has revolutio-
nized diagnostic imaging in medical science. MRI pro-
duces sharp high-resolution images. Moreover, it
provides a unique contrast between soft tissues, which
is generally superior to that of computed tomography
(CT). So far, it seems to have no side effects related to
radiation exposure, especially in comparison to CT or
positron emission tomography (PET). Its clinical appli-
cations are still expanding rapidly as hardware and
imaging technology overcome successive limitations.
Some of them include functional MRI (fMRI), MR
angiography (MRA), diffusion MRI (dMRI) or MR
spectroscopy (MRS).

MRI relies on the intrinsic magnetic properties of
body tissues in an external magnetic field (Kuperman,
2000). Hydrogen protons are usually used because of
their high natural abundance in body tissues (in water
and fat). When a patient is put in an MRI scanner
equipped with a strong magnet, the body is temporarily
magnetized. Then, an oscillating radio frequency (RF)
pulse is additionally transmitted with an appropriate
frequency to fit the frequency of the magnetized parti-
cles. As a result, the particles can absorb this additional
energy. This process is known as excitation and it can
cause the appearance of the resultant magnetization in
the plane perpendicular to the main magnetic field.

After the RF pulse is turned off, the particles lose
the absorbed energy and tend to realign with the main
magnetic field. The process of particles returning to the
equilibrium is called relaxation. Two independent
relaxations take place. The amount of longitudinal
magnetization gradually increases due to giving up the
absorbed energy (longitudinal relaxation). The rate of
longitudinal magnetization recovery is an exponential
process with the time constant 7y: 1 —exp(—¢/T}). At
the same time, but independently, the value of the
transverse magnetization decreases since the nuclei lose
coherency due to dephasing (transverse relaxation).
The decay of the transverse magnetization is an expo-
nential process with the time constant 75: exp (— ¢/T3).

According to the Faraday’s law of electromagnetic
induction, if a receiver coil or any conductive loop is
placed in the area of a changing magnetic field, a vol-
tage is induced in this coil (Bernstein et al., 2004). Since
the magnetic moments of the particles rotate/spin, they
can induce a voltage in a receiver coil. Such induced
current is the MR signal that is measured. It is then
recorded and can be further processed. The spinning
magnetic moments of the particles are often called
spins.

The receiver coils are used during the relaxation,
since different tissues return to equilibrium at different
speeds. The number of the particles participating in
MR, so-called proton density, also influences the
received signal. The acquired signal is collected in a
k-space matrix. The signal from a single excitation is

Vascular systems modeling

MR flow imaging modeling

Figure 1. Three-component MRI model overview. The model
allows us to generate vascular structures (1), then simulate flow
behavior (Il) and finally reproduce MRI processes (lll).

the sum of all subsignals coming from all excited parti-
cles. Thus, the magnetic gradients are used to encode
spatial directions.

The signal acquired after one excitation is insuffi-
cient to encode the nuclei in all directions. It is neces-
sary to apply RF pulses multiple times with various
gradients to spatially encode the signal of a 3D area.
Then, signal series are collected and the image can be
reconstructed based on them. The fast Fourier trans-
form (FFT) (Aibinu, 2008) is used to transform the
k-space matrix to the desired image.

MRI events (excitation, signal acquisition, spatial
encoding, etc.) are spread over time. The temporal
arrangement of the events (to form an image) is called
a pulse sequence. There are two basic pulse sequences:
spin echo (SE) and gradient echo (GE). Other more
advanced pulse sequences are based on these two and
additionally include some improvements e.g. in terms
of time to obtain an image or better image contrast.

2.2 Computational model

In our previous research, we developed a three-
component model of MR flow imaging (Jurczuk et al.,
2014) (Figure 1). The first component is used for

Jurczuk et al.

499

generating the vascular structures based on physiologi-
cal and hemodynamic parameters (Kretowski et al.,
2003). The second one allows flow simulations to be
performed in the generated vascular structures
(Jurczuk et al., 2013). The last component makes use of
the generated vascular structures and flow characteris-
tics to simulate MRI of vascular structures. Since, in
this paper, the algorithm of imaging is parallelized,
only the last model component is described.

The 3D imaged area (object) is divided into cubic
elements (Jurczuk et al., 2013). For each cubic element
basic MR parameters (proton density, relaxation
times), determined by the represented part of a tissue,
are assigned. In addition, each cubic element contains
hydrodynamic parameters (generated by the flow
model) that are represented by the dimensionless lattice
velocity u = u, i + u,j + u.k, where i, js k are unit vec-
tors in Xx, y, z directions. The flow velocity for station-
ary tissue structures (e.g. vessel walls, bones,
parenchyma) equals zero.

Imaging simulation is divided into short time periods
called time steps Ar. After each time step, local magneti-
zations of all cubic elements are modified taking into
account both the flow influence (AMy) and MRI events

(AmRI1)

M(r,t + Af) |
= AMRri(r, AD)[M(r, 1) + AMg(r, At)] (1)

where M is the magnetization of the cubic element at
spatial position r.

First, the flow influence is computed (see top part of
Figure 2). In each cubic element the magnetization frac-
tions are propagated to the neighboring cubic elements
(see black rectangles labeled by ”a”, ”b” and ”c”). This
way, parts of magnetization can leave some cubic ele-
ments. At the same time, the magnetization fractions
that leave some cubic elements enter neighboring cubic
elements. The mean magnetization changes during a
time step At for a cubic element at position r are mod-
eled as follows

AMF(I', Al) = AMIN(I‘, Al) — AMOUT(I‘, AI) (2)

where AMjn denotes the inflow magnetization, while
AMoyr is the outflow magnetization.

The AMgyurt value is calculated based on the flow
properties and the local magnetization of the consid-
ered cubic element

AMour(r, Af) = M(r, £)[|ux(r)||u,(r)] 3)
+ ()1 = Juy(0)]) + (1 = fux(0)]y (r)]]

Meanwhile, the fractions of magnetization entering into
a cubic element are calculated with the use of the mag-
netizations of its neighboring clements as well as the
flow properties of this cubic element, as follows

Flow modifications
+AMFLOW(At)

Ad

Ad
Magnetization transport
between neighboring elements

+

MRI processes
* AMRI(At)

precgession

Magnetization evolution
independently in each element

Figure 2. The connection of MRI and magnetization transport
algorithms.

AM]N(I', At)

= M(_ad 05 a0 g t)|ux(r)|u)|
()] Juy (r)| .

N M(r -ad, ﬂ)qu(r)|(1 — ()

. M(VR)(1)]y)
(1)

(4)

In 3D modeling, each sum component in equations (3)
and (4) is made up of two more cases in accordance
with the |u.(r)| or (1 — |u,(r)|) term.

Later, the MRI influence is computed (see bottom
part of Figure 2). It is modeled by the Bloch equation
(Bloch et al., 1946). We apply its discrete time solution
proposed by Bittoun et al. (1984). It uses the rotation
matrices and exponential scaling to represent the
response of spins’ magnetization to magnetic field
changes. Such an approach (used in many advanced

500

The International Journal of High Performance Computing Applications 32(4)

MRI simulators, e.g. SIMRI (Benoit—Cattin et al.,
2005), ODIN (Jochimsen, 2006)) allows one to follow
the variations of spins’ magnetization during the whole
MRI sequence without any integration. Based on it, in
each cubic element, the following mathematical formu-
las are used to calculate the MRI influence

Amri(r, Ar) (5)
= ErpLax(r, AHR:(O6)R-(O)Rer(r, At)

where Erppax represents the relaxation phenomena

ErerLax(r, Af)
:(ﬁang_ﬁﬁ)ﬂx_ﬁ@kl<—e(_%ﬁw (6)

R. is the rotation matrix around the z-axis used to
model the influence of the spatial encoding gradient G
(rotation through angle ®4(r, Af) = G - ryAf) and mag-
netic field inhomogeneities AB (rotation through angle
O (r, At) = yAB(r)A¢)

cosf sinf O
R.(#) = | —sin® cosf O (7)
0 0 1

v is the gyromagnetic ratio and Rgp is the rotation
matrix describing the influence of the RF pulse and the
slice selection gradient (Jurczuk et al., 2013).

Based on Faraday’s law of an electromagnetic
induction, the MR signal coming from the imaged
object at a time 7 is expressed as a sum of the transverse
magnetizations

S() = > Mi(ro, i + Y My, 0f (8)

r,eC r,eC

where C is the collection of all cubic elements of the
imaged area. Each subsequent excitation is performed
with a different phase encoding step and the acquired
signals fill the successive matrix rows. The MR image is
created by applying an FFT to the fully filled matrix.

In the model, the ideal spoiling of transverse magne-
tization is used. After each readout, the transverse mag-
netization of all cubic elements is set to zero. In
addition, the so-called hard-pulse approximation is
implemented to represent different RF pulse shapes
(Bernstein et al., 2004). It allows the shaped RF pulses
to be approximated by the sequence of short constant
pulses of equal duration separated by periods of free
precession, which perfectly suits the applied iterative
approach of MRI and flow simulations.

By default, the time step for the modeling of MR
flow imaging is equal to the time step from the flow
modeling. If needed (for quick trial calculations or time
optimization issues), this time step can be changed.
Moreover, it may be different during various stages of
imaging, e.g. shorter during a slice selection and longer
after a signal acquisition up to the time of the next

excitation when there is less change in magnetization,
which can lead to significant computational savings in
simulation studies. However, this time step cannot be
longer than the shortest time needed by all the fluid to
pass from one grid node to another. In the other case, it
is possible that the magnetization fractions can go
(jump) more than one grid node in a single time step.

As regards the grid resolution, a restriction arises
because of the need to have an appropriate number of
cubic elements in each image voxel. Due to the applied
discrete-event solution of the Bloch equation, simula-
tions are performed at discrete spatial locations and a
continuous distribution of spins has to be imitated.
Thus, the number of cubic elements (also called iso-
chromats) in each image voxel has to be chosen care-
fully to generate a smooth image intensity.

2.3 Related works

There have been several proposed approaches in the
modeling of MR flow imaging. They can be divided
into two groups: Lagrangian-based (Jou et al., 1996;
Marshall, 2010) or Eulerian-based (Jou and Saloner,
1998; Lorthois et al., 2005). In Lagrangian-based solu-
tions, the flow pathlines are calculated first. Then, the
temporal tracking of spin magnetizations along these
pathlines is performed. While this approach is physi-
cally intuitive, it is known to be computationally expen-
sive and not so efficient in complex geometries where
particle tracking can fail (Marshall, 2010). Moreover,
the algorithms for the compensation of regions of low
particles density (e.g. close to vessel walls) might be
needed since the densities of particles are not uniform
over space, while in real fluids they are.

On the other hand, in Eulerian-based approaches a
fixed grid of nodes is considered. Such a grid is used to
represent the area under investigation. The magnetiza-
tion values of the nearest spins are associated with each
node. When the spins move, their magnetizations are
transferred to neighboring nodes according to the fluid
flow. Eulerian-based models inherently provide the uni-
form particle density and therefore, the aforementioned
problems of low particles density are eliminated. The
necessity to track magnetic particles along pathlines
during imaging is also eliminated and consequently,
simulations are often less time consuming.
Nevertheless, the Eulerian-based approaches can hin-
der the modeling of the spatial-temporal interaction of
flow with MRI events. Therefore, additional geometri-
cal procedures had to be developed to take into
account the displacement artifact (Nishimura et al.,
1991), e.g. mesh transformation for mapping the physi-
cal plane into the MR image plane (Lorthois et al.,
2005). As a result, other gradient arrangements, differ-
ent RF pulses or 3D imaging may require additional
mechanisms or some improvements in the existing
algorithms.

Jurczuk et al.

501

The advantage of our approach (described in
Section 2.2) stems from the coupling of the magnetiza-
tion transport algorithm (2D/3D analytical operations)
with the discrete-time solution of the Bloch equation.
Hence, the Eulerian coordinate approach is retained
and at the same time, flow-related artifacts are auto-
matically taken into account. Such an approach allows
us to closely follow the physical process of MRI, along
with the automatic incorporation of flow-related arti-
facts. Thus, there is no need for geometrical procedures
for mapping the physical plane to the image plane, such
as a mesh transformation (Lorthois et al., 2005). Flow
is automatically considered during most MRI events,
e.g. during excitation, signal acquisition, and spatial
encoding.

In our recent research, we extended this MR flow
imaging model and investigated its MPI parallelization
on a computer cluster (Jurczuk et al., 2014). The paral-
lelization used the master-slave paradigm (Grama et al.,
2003) together with the data decomposition strategy
and managed to achieve up to 75 speedup with 128
CPU cores.

A GPU-based MRI simulator (Xanthis et al., 2014a)
was also published recently. It allows only the station-
ary magnetization (without blood flow) to be investi-
gated. The same research group extended their
simulator to model various motions (Xanthis et al.,
2014b). However, their extended solution still does not
enable vascular structures to be taken into account as
the magnetization transport algorithm is significantly
simplified. Moreover, it uses the Lagrangian-based
approach and it was tested only with a single straight
tube.

To the best of our knowledge, there are no other
studies in the literature about the simulation of MRI
on vascular structures using the GPU-based approach
yet. Our initial efforts to create the presented solution
are described in the conference paper (Jurczuk et al.,
2016). In comparison to this conference work, in this
paper, we present an optimized version of the model
and we provide new results and thorough performance
analysis of the initial and the current implementations.
The new contributions presented in this paper are as
follows.

1. Optimized computational kernels (SoA-based
memory organization (Strzodka, 2012), different
padding mechanisms).

2. An in-depth analysis of the performance of our
model concerning performance across various
GPUs, both Kepler- and Maxwell-based ones, as
well as concerning scalability, threads/blocks con-
figurations, padding mechanisms, etc. Two addi-
tional GPUs are also added. It makes the model
implementation more portable/optimized across
different GPU devices.

3. A thorough analysis of the models performance in
response to successive model improvements, from
the initial and the current implementations (differ-
ent memory layouts along with additional exten-
sions like padding).

4. Profiling results of the CPU implementation as
well as GPU-accelerated one are provided and
analyzed.

3 GPU-accelerated approach

The most time consuming part of the MR flow imaging
algorithm is the tracking of magnetizations M(r, ¢) in
time. A new magnetization value (M(r, ¢ + A¢)) has to
be calculated after each time step Az. The time step has
to be small enough (usually of the order of tens to hun-
dreds of microseconds) to take into account the
dynamic blood behavior appropriately.

Moreover, in each time step, both the blood flow
and the influence of the MRI have to be considered in
each cubic element at position r. The size of cubic ele-
ments has to be small enough to provide the imitation
of a continuous distribution of spins and, thus, the
smooth image intensity changes. Its size is usually of
the order of tens to hundreds of micrometers. The
detailed performance analysis (using GNU gprof profi-
ler (Von Hagen, 2006)) showed us that the calculation
of M(r, ¢ + Af) consumes, on average, more than 99%
of the total CPU time that is required to obtain final
MR images (sec Table 1).

The general flowchart of our GPU-based approach
is illustrated in Figure 3. One can observe that an MRI
simulation is run in a sequential way on a CPU and the
most time consuming operations concerning the evolu-
tion of magnetization values are delegated to a GPU.
This way, the parallelization does not affect the beha-
vior of the original sequential algorithm.

The algorithm starts with the initialization of the 3D
object and the experiment parameters at a CPU
(Figure 3). Then, they are sent to the GPU and saved in
the allocated space in global memory. This CPU-GPU

Table |. Fraction of total execution time devoted to particular
actions of MRl modeling for a straight tube geometry filled
completely by blood (the contribution of MRI/flow influence can
different for other objects, depending on the number of cubic
elements filled by fluid).

Actions Time fraction
I. Object and experiment initialization <0.01%
2. Magnetization changes modeling: 99.99%
- MRl influence 42.20%
- Flow influence 57.79%
3. Image reconstruction (FFT) <0.01%
4. Others <0.01%

502

The International Journal of High Performance Computing Applications 32(4)

G o
< f S
CPU GPU
c Object and
XS] experiment init
©
N]
o
E Copy object g Allocate memory
and experiment Receive data
| Excitation |<:>|Magnetization evolutionl
c
il
,g | Spatial encoding |<:>|Magnetization evolutionl
°
©
g
= <:>| Signal readout |
% Acqusition — -
<:>|Magnet|zat|on evolut|0n|
Relaxation |<:>|Magnetization evolution|
[next repetition] l
_ g
Copy k-space Send data
c matrix <
2 Deallocate memory
s i
©
£ Image
- reconstruction

CPU

MRI event init

1 Calling kernel
\i
T

s |

GPU

MRl influence
Flow influence

Loop

Calling kernel

In more
detail
CPU GPU
Acqusmon |n|t
Calling kernel
> ' Jrgreme Slgnal readout1
In more l Calling k]
detail &= T rerme Slgnal readout2
S|E
= l
Calling kernel VIRI |nfluence
l Calling kernel

FIow influence

Figure 3. The general flowchart of the GPU-accelerated algorithm of MR flow imaging.

data transfer is performed only once before the MRI
simulation and the data is kept on the GPU till the
MRI experiment is finished. This way, data transfer is
substantially reduced, especially for large objects, and
each GPU thread has access to the data. Moreover,
batching many small data transfers into a single larger
one always performs more efficiently than executing
each transfer separately (Cheng et al., 2014).

After the initialization, the MR image formation is
started and here the GPU-based parallelization is
applied. Each time when there is a need to compute
new magnetization values, the CPU requests the GPU
to perform calculations (see calling kernel in Figure 3).
The data decomposition strategy is used. The 3D object
is decomposed into multiple subdomains that are pro-
cessed by GPU cores in parallel.

The following subsections describe in more detail
the GPU-parallelized algorithm, along with the data
decomposition strategy as well as additional optimiza-
tions that shorten the simulation time further.

3.1 GPU-parallelized magnetization evolution

The 3D object is decomposed into two levels (Figure 4).
At first it is spread into parts (subsets of cubic elements)
that are processed by different GPU blocks. We decided
to use the 2D grid of blocks along the directions of the
phase encoding gradients. Next, in each block, the cubic
elements along the direction of frequency encoding gra-
dient are spread further over the threads. By default,
the number of blocks and threads are set to the number
of cubic elements (object size) in the considered direc-
tions. If the object size exceeds the maximum number
of threads/blocks, then the maximum value is used and
a single thread/block processes more than one cubic ele-
ment. The maximum numbers of threads/blocks are the
algorithm parameters, however, they can also be hard-
ware dependent.

Magnetization evolves in response to various MRI
events (e.g. excitation, spatial encoding, relaxation) that
are applied in appropriate order and with chosen para-
meters (see equation (5)). Each such an event is

Jurczuk et al.

503

1
1
]
2 192 od
Q
= L o
A | L
8] [~ e
Kl -
]
z // ,'\\0‘\
g &
= ¥
o
_— L Q‘Q‘z’%
Frequency encoding direction
| | Cutting a 3D object
\/ into multiple subdomains
A4 44
I S S A)
S et P AR EL Y S 3
[LA
' [T
block (*,k) [i
e R Sy
It’l "
P R 1 ',.:'
I B | I
D I - poa]
bocksy | LT L
D - o og
x P
block (*,0) | I | | T €3
T % e
5 % %
SE = o, <
T 3 T % 9,
g g g 2, <
£ = = 2

Figure 4. Data decomposition strategy. First, the 3D object is
divided into parts along the phase encoding directions and these
parts are spread over blocks. Second, each object part is divided
further along the frequency encoding direction into smaller
parts that are processed by various block threads. 2D grid of
blocks and 1D blocks of threads are applied.

simulated in consecutive time steps (Af) because of
blood flow that transports magnetizations between
cubic elements. The magnetization of a cubic element
in the next time step depends not only on its current
magnetization value and the MRI influence (time
dependency) but also on the magnetization of its neigh-
boring cubic elements (spatial dependency), in accor-
dance with equations (3) and (4). For this reason, each
MRI event consists of a CPU loop that calls GPU ker-
nels as it is illustrated in Figure 3.

As regards the excitation, relaxation and spatial
encoding events, two kernel functions are called in each
time step. The first one is responsible for the MRI influ-
ence, while the second one for the magnetization trans-
port induced by the blood flow. Such an approach
provides the synchronization for all threads (both inside
and between blocks) after each time step. As a result,
the time and spatial dependency between magnetiza-
tions of cubic elements is provided. During the MRI

Listing 1: Pseudo code of the kernel function responsible for
MRI influence.

1_global__ procedure MRI_influence (gradients) {
2 int x, y, z, index;

3

4 z=blockIdx.x;

5 while z<zSize do

6 y=blockIdx.y;

7 while y<ySize do

8 x=threadIdx.x;

9 while x<xSize do

10 id=index3DtolD(z, y, x, ySize, xSize);
11 pd=PD[id];

12 t1=T1[id];

13 t2=T2[id];

14 magX=magnetX[id];

15 magY=magnetY [id];

16 magZ=magnetZ[id];

17

18 //spatial encoding

19 if gradients then
20 df=calculateRotation(gradients);
21 end if
22
23 //help calculations
24 sinRotation=sin (df);
25 cosRotation=cos (df);
26 El=exp (-deltaT/tl);
27 E2=exp (-deltaT/t2);
28
29 //calculate new magnetization
30 tMagX=magXx (E2xcosRotation)-mag¥+ (E2«sinRotation) ;
31 tMagY=magX* (E2«sinRotation) +magY¥+ (E2xcosRotation);
32 tMagZ=El*magZ+pdx* (1-E1) ;

33

34 magnetX[id]=tMagX;
35 magnetY[id]=tMagy;
36 magnetZ[id]=tMagZ;
37

38 x+=blockDim.x;

39 end while
40 y+=gridDim.y;
41 end while
42 z+=gridDim.x;
43 end while
44 end

Listing |: Pseudo code of the kernel function responsible for
MRl influence.

influence calculations, each thread accesses only the
local magnetization values. However, during the mag-
netization transport calculations, threads have to also
reach into neighboring cubic elements to read their
magnetization values. These values are required to
exchange magnetizations between neighboring cubic
elements. Listings 1 and 2 show these two kernels func-
tions in more detail.

The signal acquisition phase differs a little from
other MRI events. Here, not only the MRI and flow
influences are simulated, but also the signal from all
cubic elements has to be read and saved in the k-space
matrix. This operation is carried out by two additional
kernel functions (signal readoutl and signal readout2,
see Figure 3). These two functions, in a single time step,
provide the sum of all magnetizations (from all cubic
elements). The first kernel performs the reduction of
magnetization values for cubic elements inside blocks.
The second kernel finishes the reduction with the use of
one block where the number of treads equals to the
number of blocks from the first kernel function.

504 The International Journal of High Performance Computing Applications 32(4)

Listing 2: Pseudo code of the kernel function responsible for
magnetization transport.

1__global__ procedure flow_influence() {

2 int x, y, z, index;

3 float xvel, yvVel, zvel;

4

5 =z=blockIdx.x;

6 while z<zSize do

7 y=blockIdx.y;

8 while y<ySize do

9 x=threadIdx.x;

10 while x<xSize do

11 id=index3DtolD(z, y, x, ySize, xSize);

12 if cubicType[index]=='fluid’ then

13 xVel=cubicXVelocity[id];

14 yVel=cubicYVelocity[id];

15 //third direction is omitted in the further code
16 //since of analogy to the x and y directions
17 //zVel=cubicZVelocity[id];

18

19 //count AMout and AMN

20 //propagation to right and top directions
21 if xVel>=0 && yVel>=0 then

22 //index of the left neighbor

23 idL=id-1;

24 //index of the bottom neighbor

25 idB=index3DtolD(z, y-1, x, ySize, xSize);
26 //index of the bottom left neighbor

27 idBL=index3DtolD(z, y-1, x-1, ySize, xSize);
28

29 partA=velXsvelY;

30 partB=(1-velX) «velY;

31 partC=velX« (1-velY);

32

33 magnetXIN=magnetX [idBL]+«parth;

34 magnetYIN=magnetY[idBL] «partA;

35 magnetZIN=magnetZ[idBL] +parth;

36

37 magnetXIN+=magnetX[idB] +partB;

38 magnetYIN+=magnetY [idB]«partB;

39 magnetZIN+=magnetZ[idB]+partB;

40

41 magnetXIN+=magnetX [idL]+partC;

42 magnetYIN+=magnetY[idL]+partC;

43 magnetZIN+=magnetZ[idL] +partC;

44

45 magnetXOUT=magnetX [id] » (partA+partB+partC);
46 magnetYOUT=magnetY [id]+ (partA+partB+partC);
47 magnetZOUT=magnetZ[id] + (partA+partB+partC);
48 end if

49

50 //propagation to right and bottom directions
51 if xVel>=0 && yVel<0 then

52 //in analogy ...

53 end if

54

55 //propagation to left and top directions
56 if xVel<0 && yVel>=0 then

57 //in analogy ...

58 end if

59

60 //propagation to left and bottom directions
61 if xVel<0 && yVel<0 then

62 //in analogy ...

63 end if

64 end if

65 deltaMagnetX[id] += magnetXIN - magnetXOUT;
66 deltaMagnetY[id] += magnetYIN - magnetYOUT;
67 deltaMagnetZ[id] += magnetZzIN - magnetZOUT;
68 x+=blockDim.x;

69 end while

70 y+=gridDim.y;

71 end while

72 z+=gridDim.x;

73 end while

74

75 //propagate magnetizations M = M + Mix — Mout
76 z=blockIdx.x;

77 while z<zSize do

78 y=blockIdx.y;

79 while y<ySize do

80 x=threadIdx.x;

81 while x<xSize do

82 id=index3DtolD(z, y, x, ySize, xSize);

83 if cubicTypel[index]=="fluid’ then

84 magnetX[id]+=deltaMagnetX[id];

85 magnetY [id]+=deltaMagnetY[id];

86 magnetZ[id] +=deltaMagnets[id];

87 end if

88 x+=blockDim.x;

89 end while

90 y+=gridDim.y;

91 end while

92 z+=gridDim.x;

93 end while

94 end

Listing 2: Pseudo code of the kernel function responsible for
magnetization transport.

Listing 3: AoS vs SoA memory layouts.

1 //M - number of cubic elements
2
3 //Array of Structs (AoS)

4 struct Magnetization {

5 float x;
6 float y;
7 float z;
8}

9 Magnetization objMagnetization[M];
10 objMagnetization[4].x = 1;

11

12 //Structure of Arrays (SoA)

13 struct Magnetization({

14 float x[M];
15 float y[M];
16 float z[M];
17}

18 Magnetization objMagnetization;

19 objMagnetization.x[4] = 1;

Listing 3: AoS vs SoA memory layouts.

After each repetition a successive line of the k-
space matrix is filled by the MR signal. If the next
repetition is needed, the algorithm starts again from
the excitation. Otherwise, the k-space matrix is trans-
ferred from the GPU to the CPU. Finally, the MR
image is created by the application of FFT to the
received matrix at the CPU.

3.2 Memory access patterns

The GPU memory has a hierarchical structure
(NVIDIA, 2015b). Several types of memories are pro-
vided with different scope, latency access, lifetime, and
caching behavior. GPU memories can be grouped into
two classes: small, fast on-chip memory (cache, resis-
ters, etc.) and global memory (residing in device
DRAM) with larger capacity but much higher latency
access. In order to efficiently use these hardware
resources, some algorithm improvements are added to
the basic parallelization.

In GPU-parallelized applications the selection of an
appropriate data layout for multi-valued data/contain-
ers (set of 3D points, 3D magnetization, etc.) is an
important issue since it can drastically impact on com-
putational efficiency (Mei and Tian, 2015). Generally,
there are two major data layouts: Array-of-Structures
(AoS) and Structure-of-Arrays (SoA) (see Listing 3),
and the other more sophisticated are hybrid formats,
like Array-of-Structures-of-Arrays (Strzodka, 2012).
Although the same data is represented in both cases,
each of these layouts implies a completely different
memory access pattern. To improve overall perfor-
mance, the memory access pattern should, primarily,
minimize the number of memory transactions on the

Jurczuk et al.

505

off-chip global memory. Although SoA layout is often
preferable from a GPU performance perspective, it is
not always obvious which data layout gives better com-
putational efficiency for a particular application
(Govender et al., 2014; Giles et al., 2013). Thus, we
decided to evaluate both layouts AoS and SoA.

In the algorithm, the most frequently read/written
data is the information about the imaging object. At
the same time, this information is also the largest data.
In the global GPU memory the following parameters
for each cubic element are stored:

® magnetization (three 32-bit floats, one for each
direction);

® hydrodynamic properties (three 32-bit floats, one
for each direction);

® MR characteristics: proton density, T1 and T2
relaxation times (three 32-bit floats).

In case of the SoA layout, all of these cubic para-
meters are organized in three structures (struct
Magnetization, struct Flow, struct
MRIParam). Each structure consists of three one-
dimensional arrays of M floating point values (in accor-
dance with Listing 3, lines 12-17). This provides coa-
lesced memory access by accessing consecutive
elements by threads within the same warp (or half-warp
in older hardware) (Wilt, 2013). The coalesced global
memory accessed by threads of a warp minimizes the
number of memory transactions and as a result, mini-
mizes DRAM bandwidth. In addition to the access to
continuous memory locations, the memory alignment
is also important. Thus, a padding mechanism (Cook,
2012) is applied to the SoA-based memory organiza-
tion, in order to ensure data alignment in every row of
an array. The mechanism pads extra cubic elements
(filled by zero) to each row to meet the alignment
requirements of a given device and thus, it may prove
an additional speedup (Rojek et al., 2015).

In the case of the AoS layout, all of the cubic para-
meters are organized in three one-dimensional arrays
(Magnetization tabM M], Flow tabF M,
MRIParam tabMRI[M]). Each array consists of M ele-
ments where each element is a three floating point val-
ued container (in accordance with Listing 3, lines 3-8).
The structure size of 12 bytes is suboptimal, since most
types of memory are optimized for data access, where a
chunk size is a power of two. CUDA specification says
that if a global memory read/write operation does not
fulfill the required size (1, 2, 4, 8, or 16 bytes) or the
required alignment (its address is not a multiple of that
size), the memory access can not be realized by a single
memory transaction (NVIDIA, 2015a). In order to
meet the 16 bytes alignment, for each of the structures
a hidden 4 byte padding element is implicitly inserted
by adding the specifier @ aling (16). Such a

structure (called Array-of-aligned-Structures, AoaS)
occupies 16 bytes in memory (more than it is needed)
but when it is used in an array, all array elements start
at an address that is a multiple of 16 (which prevents
from an interleaved memory access pattern).
Moreover, to explore more of this data layout, we
added to the solution another way to ensure the size
requirement for the alignment using built-in data type
floatd.

At the beginning of each kernel function, data that is
stored in the global memory and is frequently used (e.g.
cubic element magnetization) is copied to local kernel
variables explicitly. At the end of the kernel, the data is
transferred back into the global memory containers.
This way, each thread tries to accumulate temporary
values (e.g. for magnetization) into registers (fast on-
chip memory but of small capacity). If the data can not
fit into register space, it is stored in a per-thread local
memory which is nevertheless slower than registers.
Local thread variables (for magnetization, flow and
MR parameters) are stored in not aligned structures (or
float3 variables) since limited register space is a more
important issue.

In the sequential algorithm implementation, the
results of some repeated calculations are saved in auxili-
ary arrays before the MRI procedure and then used
when needed (e.g. partial computation of the magneti-
zation increase during relaxation after each time step Atz
individually for each cubic element: exp (— Az/Ti(r)),
exp (— At/Ty(r), etc.). In the GPU-parallelized algo-
rithm, such global auxiliary arrays are not used. Results
of frequently repeated calculations are saved locally in
a kernel function when they are computed for the first
time. Although it increases the number of arithmetic
operations, it reduces redundant loads from the GPU
global memory.

The GPU shared memory is used when the signal
acquisition phase is simulated. The first kernel function
performs the reduction of magnetization values for
cubic elements inside blocks. It uses the shared memory
inside thread blocks. The second kernel finishes the
reduction with the use of one block and an array in glo-
bal memory space. In addition, the possibility to finish
the reduction at the CPU is added.

4 Performance analysis

This section shows the performance of the proposed
GPU-based algorithm. Experiments were performed on
different vascular structures using various NVIDIA
graphics cards. In the paper, we focus on execution time
and, in particular, on speedup relative to the sequential
implementation. Moreover, the speedup obtained with
the use of a few CPU cores by an OpenMP paralleliza-
tion is also presented.

506

The International Journal of High Performance Computing Applications 32(4)

Table 2. Processing and memory resources of the NVIDIA graphics cards used in the experiments.

NVIDIA graphics card Engine Memory Compute
No. CUDA cores Clock rate (MHz) Size (GB) Band width (GB/s) capability
Geforce GTX 760 1152 980 2 192.2 3.0
Quadro K5000 1536 706 4 173.0 3.0
Geforce GTX 780 2304 863 3 288.4 35
Geforce GTX Titan Black 2880 889 6 336.0 35
Geforce GTX Titan X 3072 1000 12 336.5 52
200 - T T T
0:] _ Intel Core i7 - 6 cores EXXX
180 |- Geforce GTX 760
TR=200ms TE=5ms FA=30 Quadro K5000
160 + Geforce GTX 780 K |
@ Geforce GTX Titan Black z=z==1
140 Geforce GTX Titan X E | <"
o 120
_x__ @ 8o N
TR=200ms TE=5ms FA=30 60 /] - N
40
O 2.6 2.5] 2.6 2.9
(a) (b) (c) (d)
MR image

C .
<2

TR=50ms TE=20ms FA=30

Figure 5. Geometry of tested objects/phantoms and examples
of simulated MR images: (a) a single vessel, (b) a single
bifurcation, (c) multiple bifurcations, (d) slice through the liver
volume with many vascular structures.

4.1 Setup

All experiments were performed on a workstation
equipped with Intel Xeon CPU E5-2620 v3 (15 MB
Cache, 2.40 GHz), 64 GB RAM and a single graphics
card. We tested five different NVIDIA graphics cards
described in Table 2 (four Kepler-based GPUs and one
Maxwell-based: GTX Titan X). For each graphics card
we gather basic specifications that cover the number of

Figure 6. Speedup of the GPU-accelerated algorithm using the
SoA + padding memory layout. Objects that are shown in Figure
5 and five different GPUs are tested. Moreover, the speedup of
an OpenMP parallelization using six CPU cores is presented.

CUDA cores, a clock rate, available memory, band-
width, and compute capability.

We used 64-bit Ubuntu Linux 14.04.02 LTS as an
operating system. The sequential algorithm was imple-
mented in C++ and compiled with the use of gcc ver-
sion 4.8.2. The GPU-based parallelization was
implemented in CUDA-C and compiled by nvce
CUDA 7.0 (NVIDIA, 2015a).

We present the results of four various vascular struc-
tures investigated in our previous papers (Jurczuk et al.,
2013, 2014), where detailed flow and MRI settings were
reported. Figure 5 shows the geometry of MRI phan-
toms (objects) and examples of simulated MR flow
images with more and more complicated vascular struc-
tures. The GE imaging sequence (Bernstein et al., 2004)
was used to obtain the images. Other basic imaging
parameters are reported next to the MR images.

4.2 Results

Figure 6 shows the obtained speedup of the proposed
GPU-accelerated algorithm in comparison to its
sequential version. Speedups for various GPUs as well
as for four different vascular structures (from a straight

Jurczuk et al.

507

Table 3. GPU profiling results for four objects shown in Figure
5 and three GPUs.

NVIDIA GTX Titan X

Kernel Time fraction (%)

(@) (b) () ()
MRI influence 24.17 21.64 17.98 26.18
Flow influence 74.38 63.56 59.04 49.52
Signal readout | 1.21 727 11.86 14.82
Signal readout 2 0.24 7.53 11.12 9.48

Geforce GTX Titan Black

Kernel Time fraction (%)

(@) (b) () (d)
MRI influence 25.86 21.96 17.56 25.56
Flow influence 73.19 6791 56.76 47.97
Signal readout | 0.71 4.43 14.95 17.19
Signal readout 2 0.24 5.69 10.73 9.28

Geforce GTX 760
Kernel Time fraction (%)

@ (b) © ()
MRI influence 24.28 21.3 259 2591
Flow influence 74.78 70.84 53.39 53.39
Signal readout | 0.83 5.01 16.5 16.49
Signal readout 2 0.11 2.85 4.21 4.21

vessel, through a few bifurcations and finally a liver
volume with many vascular structures) are included
separately. Moreover, the speedup obtained with the
use of all six CPU cores by an OpenMP parallelization
is also presented. It is clearly visible that the proposed
GPU-based parallelization provides a significant
decrease in computation time. All GPUs are able to
obtain a speedup of at least one order higher than the
OpenMP parallelization.

The results suggest that with the proposed approach
even a regular PC with a medium-class graphics card is
enough to accelerate the MRI simulations significantly.
As it is expected, better graphics cards manage to
achieve much better accelerations. The most expensive
tested graphics cards in comparison to the cheapest
ones are often 2 times faster and is able to simulate
MRI of vascular structures about 180 times faster than
the sequential simulations. With such accelerations, the
speedup achieved by a six-core CPU using only
the OpenMP parallelization is, to put the mildly - not
very impressive.

The scale of the improvement is even more visible
when the execution time between the sequential and
parallel versions of the solution are compared.
Currently, the time needed to simulate e.g. MR image
in Figure 5(d) equals about 1 h with the use of Titan X

GPU, instead of about 7-8 days by a single core CPU
or 2-3 days using the OpenMP parallelization and six
CPU cores. Moreover, the achieved speedup is compa-
rable (images (a-c)) or even higher (image (d)) than the
one obtained by a computer cluster of 16 nodes each
equipped with 2 quad-core CPUs (Xeon 2.66 GHz)
(128 CPU cores in total) and 16 GB RAM (Jurczuk
et al., 2014).

There is also a difference in speedup between tested
objects. The first reason could be the fraction of cubic
elements that represent the object/image background
where no MRI is simulated (black areas in images). The
second one is the size of the object/image that does not
always allow computational resources to be exploited
efficiently. The object size and fraction of background
elements were as follows: (a) 940X 190, 0, (b)
167 X 543, 0.6, (c) 572 X 740, 0.7, (d) 1000 X 1000 X 70,
0. The simulation box can differ from the object size
due to additional background cubic elements added to
objects in order to obtain the power of two image sizes,
that allowed a FFT algorithm to be applied. After a
reconstruction phase, the additional background black
areas were cropped from the images (Jurczuk et al.,
2013). The worst results are obtained for the single
bifurcation object, where there are a lot of background
elements and the horizontal object (167) as well as
simulation box size (320) are too small to efficiently use
GPU resources. The best speedup, in turn, is achieved
for image (d) since there are no background elements
and the object size is big enough.

The differences in speedup between tested objects
can be further explained by the GPU profiling results
included in Table 3. Calculating the flow influence
demands much more memory transactions to/from glo-
bal memory (read magnetizations from all neighboring
cubic elements) than the MRI simulation itself, thus,
the former operation is at the first place in all cases.
For the straight tube geometry, in all cubic elements
the flow has to be simulated, thus, the kernel responsi-
ble for this phenomena dominates over other actions.
Also in geometry (d) all cubic elements take part in
simulations, however, only a small fraction of them
(where the vessels are present) need both MRI and flow
influences calculations. It is a part of the reason why
the speedup for (d) geometry is higher than for the
straight tube geometry. Generally, the more time spent
for flow influence calculations, the lower speedup we
obtain. However, also the time spent for readout ker-
nels and the ratio of the number of fluid cubic elements
to the total number of cubic elements have to be taken
into account. For the straight tube geometry, the read-
out kernels take a very small time fraction because cal-
culations in other kernels dominate as this ratio equals
1 (the highest ratio from all the objects). The signal
readout kernels have to fill all k-space cells by signals
from all object cubic elements no matter what a cubic

508

The International Journal of High Performance Computing Applications 32(4)

element represents: fluid, stationary tissue or back-
ground. The results obtained using different GPUs for
particular objects are coherent. Moreover, in many
cases, they are very similar.

In further part of this section, the proposed GPU-
accelerated algorithm is thoroughly verified, concerning
added improvements, object size, blocks X threads con-
figurations and the size of data alignment. Figure 7
shows the influence of the successively added improve-
ments to the basic parallelization:

AoS1 - basic parallelization using AoS data layout;
A0S2 - AoS1 + the reduction is finished by GPU;
Ao0S3 - AoS2 + data stored in global memory and
frequently used is copied to local kernel variables
explicitly;

AoaS - AoS3 + structure alignment;

SoA - all earlier improvements + SoA data layout;
SoA + padding.

The results concern the straight tube geometry. It can
be observed that the best results are obtained when the
SoA data layout is applied. The smallest change in
simulation time provides the AoS2 improvement. The
biggest improvement is achieved when data alignment
is added to the structure definition (AoaS data layout)
as well as when SoA data layout is used. Also in the
case of SoA-based memory organization, the memory
alignment is important. We did not find any remark-
able performance gains between using built-in data
type £loat4 and specifier _aling (16).

We also verified execution times with respect to the
object size for the straight vessel geometry (Figure 8).
The following lattice sizes are tested: 1000, 2000, 4000,
8000, 16000, which provide the straight tube geometries
consisting of 237X49, 471X96 and 940X 190,
1880 X 380, 3760 X 760 cubic elements (original/flow
object sizes), respectively. We observe that the speedup
increases when the lattice size grows. For the lattice size
of 1000, the results are not so different between GPUs
in comparison to higher spatial resolution images. This
may suggest that when the object size is too small, there
are not enough jobs in face of the increasing number of
CUDA cores provided by more powerful GPUs. For
the lattice size between 2000 and 16000, we clearly see
that as the clock rates and the number of cores increase,
simulations finish faster. The only exception is the
GTX 760 GPU which achieves much lower speedup
than other Kepler-based GPUs despite the fact that its
clock rate is higher than other GPUs. This GPU is,
however, equipped with at least two times less CUDA
cores as well as its memory bandwidth is also lower
than other faster GPUs.

We have also experimentally checked if different
sizes of the data processed in each block/thread influ-
ences the algorithm speedup. Figure 9 presents the

100 T T

AoS1 m—
A0S2 E==X
AoS3 =z
Aoa8S E \|
So0A EXXX

SoA+padding Bz

60

Speedup
7=
L

—

780 Titan Black
GPU

Titan X

Figure 7. The influence of successive improvements.

140 ; : .
Geforce GTX Titan X ---—+---
Geforce GTX Titan Black ------
120 Geforce GTX 780 ---0--- o
Geforce GTX 760 AT
100 [e
S 8 T -
o 40) o
8 >(©
S 60 e BT

20 - R

0
1000 2000 4000

Lattice size

8000 16000

Figure 8. The influence of the object size.

speedup for the straight tube geometry of different spa-
tial resolution for three graphics cards (Geforce GTX
760, Titan Black and Titan X). The tested Kepler-based
GPUs achieve the best speedup when the number of
threads is not too high (not more than 512). For Titan
X GPU, it can be observed that for higher resolution
(bigger object size) the configuration of blocks X th-
reads equal to 1024 X 512 fits the best, whereas for
smaller ones it is not so evident (and other configura-
tions win). Since the memory bandwidths of GTX
Titan Black and Titan X are almost the same, the rea-
son can be found in the number of CUDA cores and
the clock rates which are higher for the second GPU.
However, the differences between verified configura-
tions are always in range of 0 — 20.

The influence of the size of memory alignment in
SoA layout has also been verified. Figure 10 shows the
speedup for various GPUs when different padding size
is used. The size of the data alignment is expressed in
bytes and is selected from the set [32; 64; 128; 256, 512,
1024]. For GTX 760 GPU the optimal memory

Jurczuk et al.

509

60 T T T
128x256 —>—
256x256 —8—
512x256 —e—
1024x128 -~
1024x256 ---4---
1024x512 ---o--- B
40 [o =
[oR
>
kel
[N - ~Z e
(]
Q.
n
20 g =
0 1 1 1
1000 2000 4000 8000 16000
Lattice size
(a) Geforce GTX 760
120 T T T
128x256 —x—
256x256 —8—
100 | 512x256 —e—
1024x128 ------
1024x256 ---O3---
1024x512 ---o---
8O |
o
>
8 60
Q.
)
40
20 -
O 1 1 1
1000 2000 4000 8000 16000
Lattice size
(b) Geforce GTX Titan Black
120 T T T
128x256 —<— o
256x256 —&— BT
100 b 512x256 —e— 7
1024x128 ------
1024x256 ---3---
1024x512 ---6---
8O |
o
>
8 60 -
Q.
%]
40 |/ -
20 -
O 1 1 1
1000 2000 4000 8000 16000
Lattice size
(c) Geforce GTX Titan X

Figure 9. The
Different object

influence of the number of blocks X threads.
lattice sizes and the straight tube geometry

using various GPUs are considered.

alignment equals 128 B. The other GPUs provide the
best performance when the size equals 256 B.

Having the performance results for different gra-
phics cards, for various objects and with different con-
figurations gives us an opportunity to estimate the
mean speedup for particular GPUs (see Table 4). As
expected, the best performance is achieved using the
most powerful Maxwell-based GPU: Geforce GTX
Titan X. We also observe that the GTX 780 and the
GTX Titan Black GPUs give very similar performance.
Concerning the GTX 760 and the Quadro K5000
GPUs, they achieve the worst speedup, but still high
enough to be successfully used in fast MRI simulations.

5 Conclusion and future works

MRI simulators play an important role in improving
this imaging modality and developing new imaging
techniques. However, MRI models are often simplified
to complete simulations in a reasonable time. In this
paper, the authors propose a GPU-based paralleliza-
tion to accelerate simulations of MRI of vascular struc-
tures. To efficiently exploit GPU resources, different
memory layouts and further additional optimizations
(like padding) are applied. A CUDA programming
model is used.

The approach was tested with various GPUs (both
Kepler- and Maxwell-based) and using different vascu-
lar structures. Moreover, its performance was analyzed
in-depth in response to successive improvements and
with various configurations, concerning scalability,
thread/blocks settings and padding size. The results
show that our solution is fast and scalable. It provides
the speedup of at least one order higher than an
OpenMP parallelization. The time to simulate MR
image in Figure 5(d) decreases from several days to a
few hours. Even a regular PC equipped with a medium-
class graphics card is sufficient for our algorithm to
reduce simulation time significantly. We believe that it
opens a perspective to simulate more and more complex
(that is more realistic) vascular structures. Moreover,
the proposed GPU-based approach may be easily
adapted in other algorithms concerning related phe-
nomena like diffusion or perfusion.

We see many promising directions for the future
research. We plan to deal with a multi-GPU paralleli-
zation to speedup the MRI simulations even further.
Using OpenCL interface, instead of CUDA, could pro-
vide further improvements and the portability to GPUs
from multiple vendors (McIntosh-Smith et al., 2015).
Another improvement may refer to asynchronous
(Farber, 2011) or collaborative (Mittal, 2015)
CPU + GPU execution. We also plan to use the pre-
sented parallelization in the modeling of contrast agent

The International Journal of High Performance Computing Applications 32(4)

510
T
32 B
100 - 64B E==3
128 B ezz2
256 B oy
512 B EXxXX
80 I- 1024 B 1
g N
2 60
[
Q
Q.
%)
40 B4
N
20
0
760 780 Titan Black Titan X
GPU

Figure 10. The influence of the size of memory alignment in
SoA layout.

Table 4. Mean speedups over all tested images using optimal
configurations.

NVIDIA graphics card Mean speedup

Geforce GTX 760 47
Quadro K5000 42
Geforce GTX 780 75
Geforce GTX Titan Black 80
Geforce GTX Titan X 100

propagation and dynamic contrast-enhanced MRI
(Mescam et al., 2010).

Acknowledgements

I would like to thank student Dariusz Murawski for his C++
implementation effort on the initial version of the algorithm,
as well as Wojciech Kwedlo and Marcin Czajkowski for pro-
viding NVIDIA Geforce GTX 760 and NVIDIA Geforce
GTX Titan Black graphics cards.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the Grants W/W1/2/2014
and S/WI/2/2013 from Bialystok University of Technology.

References
Aibinu AM, Salami MJE, Shafie AA, et al. (2008) MRI
reconstruction using discrete Fourier transform: A tutor-

ial. World Academy of Science Engineering and Technology
18: 179-185.

Aiyagari V and Gorelick PB (2011) Hypertension and Stroke:
Pathophysiology and Management. Totowa, NJ: Humana
Press.

Benoit—Cattin H, Collewet G, Belaroussi B, et al. (2005) The
SIMRI project: A versatile and interactive MRI simulator.
Journal of Magnetic Resonance 173(1): 97-115.

Bernstein MA, King KF and Zhou XJ (2004) Handbook of
MRI Pulse Sequences. Burlington, MA: Elsevier Academic
Press.

Bittoun J, Taquin J and Sauzade M (1984) A computer algo-
rithm for the simulation of any nuclear magnetic resonance
(NMR) imaging method. Magnetic Resonance Imaging
2(2): 113-120.

Bloch F, Hansen WW and Packard M (1946) Nuclear induc-
tion. Physical Review 69: 127.

Cheng J, Grossman M and McKercher TY (2014) Profes-
sional CUDA C Programming. Indianapolis, IN: Wrox.
Cook S (2012) CUDA Programming: A Developer’s Guide to
Parallel Computing with GPUs. Waltham, MA: Morgan

Kaufmann.

Dyverfeldt P, Gardhagen R, Sigfridsson A, et al. (2009) On
MRI turbulence quantification. Magnetic Resonance Ima-
ging 27(7): 913-922

Farber R (2011) CUDA Application Design and Development.
Waltham, MA: Morgan Kaufmann.

Garin E, Lenoir L, Edeline J, et al (2013) Boosted selective
internai radiation therapy with 90 Y-loaded glass micro-
spheres (B-SIRT) for hepatocellular carcinoma patients:
A new personalized promising concept. European Jour-
nal of Nuclear Medicine and Molecular Imaging 40(7):
1057-1068.

Giles MB, Mudalige GR, Spencer B, et al. (2013) Designing
OP2 for GPU architectures. Journal of Parallel and Distrib-
uted Computing 73(11): 1451-1460.

Govender N, Wilke DN, Kok S, et al. (2014) Development of
a convex polyhedral discrete element simulation frame-
work for NVIDIA kepler based GPUs. Journal of Compu-
tational and Applied Mathematics 270: 386-400.

Grama A, Karypis G, Kumar V, et al. (2003) Introduction to
Parallel Computing. Boston, MA: Addison—Wesley.

Grinberg L, Cheever E, Anor T, et al. (2011) Modeling blood
flow circulation in intracranial arterial networks: A com-
parative 3-D/1-D simulation study. Annals of Biomedical
Engineering 39(1): 297-3009.

Jochimsen TH, Schafer A, Bammer R, et al. (2006) Efficient
simulation of magnetic resonance imaging with Bloch—
Torrey equations using intra-voxel magnetization gradi-
ents. Journal of Magnetic Resonance 180(1): 29-38.

Jou LD and Saloner D (1998) A numerical study of magnetic
resonance images of pulsatile flow in a two dimensional
carotid bifurcation: A numerical study of MR images.
Medical Engineering & Physics 20(9): 643—652.

Jou LD, van Tyen R, Berger SA, et al. Calculation of the
magnetization distribution for fluid flow in curved vessels.
Magnetic Resonance in Medicine 35(4): 577-584.

Jurczuk K, Kretowski M, Bellanger JJ, et al. (2013) Compu-
tational modeling of MR flow imaging by the lattice Boltz-
mann method and Bloch equation. Magnetic Resonance
Imaging 31(7): 1163-1173.

Jurczuk K, Kretowski M, Eliat PA, et al. (2014) In silico mod-
eling of magnetic resonance flow imaging in complex

Jurczuk et al.

511

vascular networks. IEEE Transactions on Medical Imaging
33(11): 2191-2209.

Jurczuk K, Murawski D, Kretowski M, et al. (2016) GPU
accelerated simulations of magnetic resonance imaging of
vascular structures. Lecture Notes in Computer Science
9573: 389-398.

Kretowski M, Rolland Y, Bezy—Wendling J, et al. (2003) Phy-
siologically based modeling for medical image analysis:
Application to 3D vascular networks and CT scan angio-
graphy. IEEE Transactions on Medical Imaging 22(2):
248-257.

Kuperman V (2000) Magnetic resonance imaging physical prin-
ciples and applications, San Diego: Academic Press.

Lasheras JC (2007) The biomechanics of arterial aneurysms.
Annual Review of Fluid Mechanics 39: 293-319.

Lorthois S, Stroud—Rossman J, Berger S, et al. (2005) Numer-
ical simulation of magnetic resonance angiographies of an
anatomically realistic stenotic carotid bifurcation. Annals
of Biomedical Engineering 33(3): 270-283.

Marshall I (2010) Computational simulations and experimen-
tal studies of 3D phasecontrast imaging of fluid flow in
carotid bifurcation geometries. Journal of Magnetic Reso-
nance Imaging 31(4): 928-934.

Mclntosh-Smith S, Price J, Sessions RB, et al. (2015) High
performance in silico virtual drug screening on many-core
processors. [International Jowrnal of High Performance
Applications 29(2): 119-134.

Mei G and Tian H (2016) Impact of data layouts on the effi-
ciency of GPU-accelerated IDW interpolation. Springer-
Plus 5(104): 1-18.

Mescam M, Kretowski M and Bezy—Wendling J (2010) Mul-
tiscale model of liver DCE-MRI towards a better under-
standing of tumor complexity. IEEE Transactions on
Medical Imaging 29(3): 699-707.

Mittal S and Vetter J (2015) A survey of CPU-GPU heteroge-
neous computing techniques. ACM Computing Surveys
47(4): 69:1-69:35.

Nishimura DG, Jackson JL and Pauly JM (1991) On the
nature and reduction of the displacement artifact in
flow images. Magnetic Resonance in Medicine 22(2):
481-492.

NVIDIA (2015a) CUDA C Programming Guide. Technical
Report, NVIDIA. Available at: https://docs.nvidia.com/
cuda/cuda-c-programming-guide/

NVIDIA (2015b) CUDA C Best Practices Guide in CUDA
Toolkit. Technical Report, NVIDIA. Available at: https://
docs.nvidia.com/cuda/cuda-c-best-practices-guide/.

Rahimi MS, Holmes JH, Wang K, et al. (2015) Flow-induced
signal misallocation artifacts in two-point fatwater chemi-
cal shift MRI. Magnetic Resonance in Medicine 73(5):
1926-1931.

Rojek K, Ciznicki M, Rosa B, et al. (2015) Adaptation of
fluid model EULAG to graphics processing unit architec-
ture. Concurrency Computation: Practice and Experience
27(4): 937-957.

Strzodka R (2012) Abstraction for AoS and SoA layout, in
C++ Computing Gems: Jade Edition. Waltham, MA:
Morgan Kaufmann.

van der Graaf AWM, Bhagirath P, Ghoerbien S, et al. (2014)
Cardiac magnetic resonance imaging: Artefacts for clini-
cians. Netherlands Heart Journal 22(12): 542-549.

von Hagen W (2006) The Definitive Guide to GCC. 2nd ed.
Berkeley, CA: Apress.

Westbrook C, Roth CK and Talbot J (2011) M RI in Practice.
4th ed. Oxford: Wiley—Blackwell.

Wilt N (2013) Cuda Handbook: A Comprehensive Guide to
GPU Programming. Upper Saddle River, NJ: Addison—
Wesley.

Xanthis CG, Venetis IE and Aletras AH (2014) High perfor-
mance MRI simulations of motion on multi-GPU systems.
Journal of Cardiovascular Magnetic Resonance 16: 48.

Xanthis CG, Venetis IE, Chalkias AV, et al. (2014) MRISI-
MUL: A GPU-based parallel approach to MRI simulations.
IEEE Transactions on Medical Imaging 33(3): 607-617.

Yuen D, Wang L, Chi X, et al. (2013) GPU Solutions to
Multi-scale Problems in Science and Engineering. Berlin:
Springer.

Zeigler BP, Prachofer H and Kim TG (2000) Theory of Mod-
eling and Simulation. San Diego, CA: Academic Press.

Author Biographies

Krzysztof Jurczuk completed his joined PhD between
the University of Rennes 1, France, and the Faculty of
Computer Science, at the Bialystok University of
Technology, Poland, in 2013. He is currently working
as an Assistant Professor in the Faculty of Computer
Science at the Bialystok University of Technology,
Poland. His research interests focus on biomedical
informatics and parallel computing.

Marek Kretowski received a joined PhD degree in 2002
from the Faculty of Computer Science, at the
Bialystok University of Technology, Poland, and from
the University of Rennes 1, France. He is currently
working as a Professor at the Faculty of Computer
Science at the Bialystok University of Technology,
Poland. His research interests focus on biomedical
applications of computer science (modeling for image
understanding, image analysis), bioinformatics and
data mining.

Johanne Bezy—Wendling received a PhD degree from
the University of Rennes 1, France, in 1997. She is
Associate Professor at the Signal and Image Processing
Laboratory, in the University of Rennes 1, INSERM
U1099, France. She has been working on medical
image analysis and modeling for 15 years in close colla-
boration with clinicians. Her work is devoted to image
analysis and physiological modeling of tissues and vas-
cular systems with main application to the liver.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

