
Special Issue Paper

Fitness evaluation reuse for accelerating
GPU-based evolutionary induction
of decision trees

Krzysztof Jurczuk , Marcin Czajkowski and Marek Kretowski

Abstract
Decision trees (DTs) are one of the most popular white-box machine-learning techniques. Traditionally, DTs are induced
using a top-down greedy search that may lead to sub-optimal solutions. One of the emerging alternatives is an evolu-
tionary induction inspired by the biological evolution. It searches for the tree structure and tests simultaneously, which
results in less complex DTs with at least comparable prediction performance. However, the evolutionary search is
computationally expensive, and its effective application to big data mining needs algorithmic and technological progress. In
this paper, noting that many trees or their parts reappear during the evolution, we propose a reuse strategy. A fixed
number of recently processed individuals (DTs) is stored in a so-called repository. A part of the repository entry (related
to fitness calculations) is maintained on a CPU side to limit CPU/GPU memory transactions. The rest of the repository
entry (tree structures) is located on a GPU side to speed up searching for similar DTs. As the most time-demanding task
of the induction is the DTs’ evaluation, the GPU first searches similar DTs in the repository for reuse. If it fails, the GPU
has to evaluate DT from the ground up. Large artificial and real-life datasets and various repository strategies are tested.
Results show that the concept of reusing information from previous generations can accelerate the original GPU-based
solution further. It is especially visible for large-scale data. To give an idea of the overall acceleration scale, the proposed
solution can process even billions of objects in a few hours on a single GPU workstation.

Keywords
Big data mining, CUDA, decision trees, evolutionary algorithms, graphics processing unit, parallel computing

1. Introduction

Although the era of big data and data mining (Zhou et al.,

2017) have been going on for some time, the problem of

adapting many interesting ideas and algorithms to the new

reality is still very relevant. Even the most popular data

mining techniques such as decision trees (DTs) (Loh,

2014) struggle when it comes to large-scale data despite

so many available parallelization techniques. Unfortu-

nately, not all problems are embarrassingly parallel and

often there is a strong need to incorporate knowledge about

the specificity of a problem to achieve high efficiency and

to exploit the full potential of parallelization.

The problem addressed in this paper is no different.

Evolutionary induced DTs (Barros et al., 2012) are an

important and relatively new alternative to popular greedy

solutions that offer trees only with local, sub-optimal tests.

Evolutionary algorithms (EA) (Michalewicz, 1996) that are

inspired by the biological evolution make possible a global

DT induction in which the tests and the tree structure are

searched at the same time. As a result, the generated trees

are significantly smaller and often more accurate as of the

induced by top-down alternatives. However, the main

inconvenience of the evolutionary search is its high com-

putational requirements (Barros et al., 2012), making it

hard or even impossible to apply it directly to big data.

In this paper, we extend a GPU-based global induction of

classification trees (Jurczuk et al., 2017) to accelerate the

evolutionary search for the large-scale data. Noting that a lot

of trees or their parts reappear during the evolutionary

search, we examine if and when it is worth to archive the

most popular individuals (DTs) and reuse them. We intro-

duce a concept of a repository of previously evaluated indi-

viduals to limit the fitness recalculation of the new ones

founded by EA. The search of the same (or similar) DTs is

performed fully on the GPU side where they are stored as a

Faculty of Computer Science, Bialystok University of Technology,

Bialystok, Poland

Corresponding author:

Krzysztof Jurczuk, Faculty of Computer Science, Bialystok University

of Technology, Wiejska 45a, 15-351 Bialystok, Poland.

Email: k.jurczuk@pb.edu.pl

The International Journal of High
Performance Computing Applications
2021, Vol. 35(1) 20–32
ª The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020957393
journals.sagepub.com/home/hpc

https://orcid.org/0000-0001-6469-1769
https://orcid.org/0000-0001-6469-1769
mailto:k.jurczuk@pb.edu.pl
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020957393
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020957393&domain=pdf&date_stamp=2020-09-15

part of the repository. The second part of the repository,

which gathers the corresponding fitness results, is located

on the CPU side to limit CPU/GPU memory transfers. We

consider different levels of DT similarity. If the same tree is

archived in the repository, then the fitness-related data is

simply associated with the evaluated tree. If similar (par-

tially the same) trees are found, fitness information from the

matched trees’ parts is reused and the GPU is called to fill

the missing information. Otherwise, the GPU has to evaluate

the tree (all nodes) from the ground up. The reuse strategy is

not new in EA, however, it was studied in the context of

improving the genetic diversity (Acan and Tekol, 2003) or

encouraging chromosome revisits by replacing by the most

similar (and already evaluated) solution (Charalampakis,

2012). According to our knowledge, it has not been applied

to evolutionary data mining and especially DT induction.

Our research was performed on a Global Decision Tree

(GDT) system (Kretowski, 2019) which allows evolving

different types of classification and regression trees and may

be applied in real-life applications (Czajkowski and Kre-

towski, 2019). In the GPU-supported version of the GDT

(Jurczuk et al., 2017), the main evolutionary loop (selection,

genetic operators, etc.) is performed sequentially on a CPU,

while the most time-consuming operations like fitness cal-

culation are delegated to a GPU. The proposed reuse strat-

egy extends this approach by introducing the repository of

DTs to decrease the induction time as well as to observe the

population behaviour. Our preliminary studies on the fitness

evaluation reuse are described in the conference paper (Jurc-

zuk et al., 2019). In this paper, we improve the reuse strategy

and perform its thorough analysis. In particular, we:

� consider more levels of DT similarity, starting from the

identical tree, then, a root and its left or right subtree

and so on;

� propose various strategies of updating the repository,

FIFO and modified FIFO;

� evaluate thoroughly the improvement on both real-life

and artificially generated datasets;

� analyse performance across various GPUs cards (with

Keppler-, Maxwell- and Pascal-based architectures),

different repository settings, dataset size/dimension.

This paper is organized as follows. Section 2 provides a

brief background on DTs, the GDT system, and the related

works. Section 3 describes in detail the proposed fitness

evaluation reuse for accelerating GPU-based evolutionary

induction of decision trees. Section 4 presents the experi-

mental validation of our approach on artificial and real-life

datasets. In the last section, the paper is concluded and

possible future works are outlined.

2. Background

2.1. Decision trees

Decision trees (DTs) (Loh, 2014) play a key role as effec-

tive non-parametric machine learning techniques for

classification and regression problems. They are especially

useful as ‘white box’ approaches because their prediction

models can be easily visualized and interpreted. From a

structural point of view, DT is a directed acyclic graph. It

starts at a single node called the root which may have at

least two outgoing edges (called branches) that lead to other

nodes. If a node has an outgoing edge, then we call it an

internal node, otherwise, it is called a terminal node (or a

leaf). To find a prognosis that is a class label or a value, the

DT makes a sequence of hierarchical tests (splits).

We can distinguish many types of decision trees and

their division may depend on:

� the type of a problem to which they are applied. If the

target feature is discrete, we deal with classification

trees. Each leaf has assigned a class label which is the

majority class of training instances that reach the leaf.

Regression trees are induced when a target is

continuous;

� the type of splits in the internal nodes. Most of DTs use

inequality tests and splits with a single feature. Such

trees are often called univariate ones as they partition

the feature space with axis-parallel decision borders.

Multivariate decision trees use multiple features tests.

The test often has a form of an oblique split which is

based on a linear combination of features.

� the way the DTs are induced. Hunt’s algorithm is one of

the earliest approaches of building DT (Rokach and

Maimon, 2005) and it serves as a basis for the most

popular solutions like C4.5 (Quinlan, 1993) or CART

(Breiman et al., 1984). It uses a top-down approach

where a DT is created recursively until stopping criteria

are met (e.g., a node contains only the training instances

from the same class). Each split in the internal node

uses a local search and makes a decision according to

the given optimality measure. One of emerging alter-

natives to such a greedy approach is a global DT

induction which may be realized by using various

meta-heuristics such as evolutionary algorithms

(Barros et al., 2012).

Despite over 50 years of research (Loh, 2014), there are

still problems that DTs need to be faced to, especially in the

context of new challenges like big data mining. The rest of

the background focuses on evolutionary induced univariate

classification trees and their speedup in the context of

large-scale data analysis.

2.2. Evolutionary induction of decision trees

Evolutionary algorithms (EA)s are the meta-search heuris-

tics that mimic the process of the biological evolution

(Michalewicz, 1996). Like in nature, the individuals, which

represents a candidate solution to the target problem, con-

stitute a population which evolves and adapts to the envi-

ronment. The individuals can be represented in various

ways, e.g. as an encoded fixed-length linear string (GA

approach) or by tree-encoding schema (GP approach). In

Jurczuk et al. 21

general, the initial population should be created at random,

but for efficiency reasons, some greedy heuristics are often

applied. However, it is important to preserve a balance

between exploitation and exploration.

In each evolutionary iteration, individuals are evaluated

with the fitness function, which measures their perfor-

mance, and ones with higher quality are more likely to be

selected for reproduction. At least two objectives need to be

minimized in the context of DTs: prediction error and the

number of nodes. The role of the second objective is essen-

tial as it mitigates the over-fitting problem due to over-

grown trees. In greedy top-down inducers, this issue is

partially addressed by a stopping criterion and additional

post-pruning (Esposito et al., 1997).

Genetic operators such as crossover (also called recom-

bination) and mutation produce new offspring which

replace individuals (parents) in the next generation. The

recombination mechanism is inspired by the sexual repro-

duction of living organisms. It allows combining the infor-

mation from two individuals and creates two novel

solutions with mixed genotypes of their parents. The muta-

tion operator causes small random changes of the selected

individual. The process is iteratively repeated until some

stopping criteria are met and, finally, a single DT with the

best fitness is returned.

The main drawback of classical top-down inducers is a

greedy search that may lead to sub-optimal solutions and

over-fitting the training data. One of the remedies for this

problem is the ensemble of trees (Breiman, 2001), how-

ever, the comprehensibility of analysing a single DT is lost.

Evolutionary DT induction process allows not only per-

forming a robust global search but also to preserve the

simplicity of the prediction model (Barros et al., 2012).

The strength of the evolutionary approach lies in the ability

to escape from local optima as the searches for the overall

tree structure as well as for the splits in the internal nodes

are performed simultaneously. As a result, EAs tend to

induce smaller and often more accurate trees than greedy

solutions. Another advantage of evolutionary induced DT

is the ability to perform multi-objective optimization (Czaj-

kowski and Kretowski, 2019), which is often crucial in

many real-life problems.

2.3. Global decision tree system

The Global Decision Tree (GDT) system (Kretowski,

2019) is capable of inducing various DTs with the evolu-

tionary approach. The GDT system follows a typical EA

schema and here its description is limited to the univariate

classification trees to improve the clarity of description and

avoid less important details. Individuals in the population

are not encoded and processed in their actual form. They

are initialized with a semi-random top-down strategy that is

applied to a small fraction of the training data. In each non-

terminal node, a random test that separates two instances

allocated in the considered node but from different classes

is selected (mixed dipole strategy) (Kretowski, 2019). The

mixed dipole is a pair of objects belonging to the different

classes. The first object can be chosen completely random.

The second one is chosen from the remaining objects of

other classes.

The GDT system offers several specialized variants of

mutation and crossover operators that impact not only the

tests in the internal nodes but overall tree structure, e.g.:

� change internal node into the leaf (acts like pruning

procedure);

� transform leaf into an internal node by using a new test

created on a randomly chosen dipole;

� modify the test in the internal node (shift threshold) or

replace it with a new one on a different attribute;

� exchange subtrees/branches/tests between two affected

individuals (variants of crossover operator – see

Figure 1).

The selection of an affected node depends on its location

(modification of nodes from the upper levels results in

more global changes so it is performed less frequently) and

its quality (less accurate nodes are more likely to be mod-

ified). The application probability of each operator and its

variants may also vary.

Univariate classification version of GDT uses a

weighted form of the fitness function which maximizes

accuracy (AðTÞ) estimated on the training dataset and mini-

mizes the size (SðTÞ) of the tree T calculated as the number

of nodes:

FðTÞ ¼ AðTÞ � a � ðSðTÞ � 1:0Þ; ð1Þ

where a is a user-defined parameter that reflects the rela-

tive importance of the complexity term.

The linear ranking selection (Michalewicz, 1996) is

used as the selection mechanism together with the elitist

strategy that assures that the best individual founded so far

will appear in the next population. GDT terminates evolu-

tion when it reaches the maximum number of generation or

there is no improvement of the fittest individual by a fixed

number of iterations.

2.4. Related works

The main drawback of EAs in DT induction is related to

high time requirements, which is particularly visible nowa-

days in the context of big data analysis. Fortunately, the

advances in parallel processing have enabled EAs to work

in much a shorter time or/and to process much larger data-

sets (Bacardit and Llorà, 2013; Cano, 2018). We can dis-

tinguish three main strategies for EA parallelization/

distribution (Chitty, 2012):

� master � slave paradigm that parallelizes the most

time-consuming operation in each evolutionary itera-

tion, the master spreads tasks or data over the slaves

and, finally, it gathers and merges the results;

22 The International Journal of High Performance Computing Applications 35(1)

� island (coarse-grained) model that evolves indepen-

dently sub-populations distributed between islands;

� cellular (fine-grained) algorithm which defines neigh-

bourhood topology that limits the communication

(selection and reproduction) between redistributed indi-

viduals to the nearest ones.

As the EAs work on a population of independent indi-

viduals, the computational load may be distributed among

multiple processors through a population decomposition

approach (also known as a control approach). Despite its

undoubted simplicity, this solution is poorly scalable when

analysing large-scale data. An alternative is a data decom-

position approach that gradually distributes the dataset

among the processors. This is a much more scalable

approach since the chunks of the dataset are evaluated in

parallel.

The parallelization of various evolutionary computation

methods is well-studied (Alba and Tomassini, 2002; Cano,

2018; Tsutsui and Collet, 2013). In recent years, there has

been a strong interest in using GPUs as an implementation

platform (Franco and Bacardit, 2016; Maitre et al., 2012).

However, it seems that the problem of speeding up the

evolutionary DT induction is still not adequately explored.

To the best of the authors’ knowledge, only the GDT sys-

tem was investigated in the context of MPI/OpenMP (Czaj-

kowski et al., 2015), Spark (Reska et al., 2018) and GPU

(Jurczuk et al., 2017) parallelizations. Remaining studies

cover either greedy inducers (Lo et al., 2014; Strnad and

Nerat, 2016) either random forests (Grahn et al., 2011;

Marron et al., 2014) which are beyond the scope and inter-

est of the research presented in this paper.

The level of a speedup, as well as the size of datasets

analysed by a parallel version of GDT, strongly depend on

the selected framework. CUDA-based acceleration was

clearly the fastest with acceleration up to 800�, however,

it is limited by the size of the GPU memory (Jurczuk et al.,

2018). This is not a problem to the Spark-based solution,

which may be slower but can be easily scaled up and pro-

cesses datasets with billions of objects. The relatively worst

results were achieved for the GDT system with the

MPIþOpenMP approach in both the speedup and the data-

set sizes. All aforementioned methods used the idea of

isolating the most time-consuming operations (fitness eva-

luation, dipoles searching) and run them parallelly, while

the rest of EA steps are performed sequentially. This way,

the results of the original GDT algorithm and the paralle-

lized one are consistent.

In this work, we investigate acceleration of evolutionary

DT induction using an external repository to store the

bunch of the previously evaluated trees and reduce redun-

dant fitness computations. Moreover, the GPU-support and

CUDA (Storti and Yurtoglu, 2016) programming model are

applied to limit the computational repository overhead. The

basic idea may resemble the external memory implementa-

tions in other evolutionary computation methods such as

ant colony (Acan, 2004) and particle swarm optimizations

(Acan and Unveren, 2009). The types of information stored

in external memory, as well as the ways of using such

information, may vary. Some solutions store the unused

individuals to be used in further populations and to trace

some of the untested search directions (Acan and Tekol,

2003). Others try to increase diversity by storing all the

solutions and using them for a non-revisiting strategy

(Yuen and Chow, 2009). We are particularly interested in

reducing the number of fitness evaluations by reusing past

information if a new individual is similar to ones from the

repository. A similar idea was explored for genetic algo-

rithms where the author examined the concept of storing all

evaluated chromosomes for the future reuse (Charalampa-

kis, 2012). However, the idea of the solution was to encour-

age chromosome revisiting by replacing by the most

similar (and already evaluated) ones from the registry.

3. Repository-supported GPU-based
approach

The accelerated version of the GDT is built on the GPU-

based predecessor (Jurczuk et al., 2017). As it is illustrated

in Figure 2, the core evolution is still run sequentially on a

CPU. The most time-consuming operations (evaluation of

individuals, dipoles searching, . . .) are isolated and dele-

gated to be performed parallel on a GPU. This way, the par-

allelization does not affect the behaviour of the original EA.

The algorithm begins by creating an initial population. It

is performed only once and on small fractions of the data-

set. As a result, it takes an insignificant part of the overall

time (less than 1% of the total execution time) and it is not

parallelized. Next, the fixed-size repository is created. Ade-

quate amounts of memory are allocated both on the GPU

and CPU sides. Initially, the repository is empty. Each

element of the repository (an individual) is archived par-

tially on the GPU side and partially on the CPU side. On the

Crossover variants

P
A
R
E
N
T
S

after crossover
O
F 1 exchange subtrees

F
S
P
R
I
N
G

2 exchange tests 3 exchange branches

V

D C

A

B E

W X

Y

A

B E

C

A V

B 1

2

3

WE

DC

X

Y Z

A

B W

C D

V

E X

Y

V

D X

Y Z W Z

Z

Figure 1. Visualization of crossover variants: (1) exchange sub-
trees, (2) exchange tests, (3) exchange branches.

Jurczuk et al. 23

GPU side, the repository stores the structures of DTs (tree

nodes, branches, tests, etc.). Corresponding fitness results

and dipoles are stored on the CPU side. Such a repository

design allows us to: (i) avoid unnecessary CPU/GPU mem-

ory transfers and (ii) reduce the overhead when searching

for similar DTs.

Before the evolutionary loop starts, the whole training

dataset is sent to the GPU. This CPU-GPU transfer is done

only once and the dataset is kept in the GPU global memory

till the DT induction stops. This way, all threads have con-

stant access to all objects.

In each iteration, when a genetic operator (crossover/

mutation) is successfully applied, there is a need to

evaluate a new individual and then the GPU is called.

This is the most time-demanding part of the algorithm

since all training objects need to be passed through the

tree, starting from the root to an appropriate leaf. Both

the dataset size and tree size influence the computational

requirements. For large datasets, it takes more than 99%
of the total algorithm execution time. Concerning the

selection process, it is run sequentially since it takes

negligible time.

Figure 3 shows more details of the GPU-accelerated eva-

luation of newly created individuals. First, the tree is sent to

the GPU. Then, the GPU searches in the repository for sim-

ilar individuals (step I). If such individuals are found, the

GPU returns their positions in the repository and the levels

of similarity. The CPU uses this information to accelerate

the fitness calculations. If an identical tree is found, then the

CPU only needs to copy all previously calculated statistics

and dipoles from the repository (CPU-CPU transfer). Oth-

erwise, two cases are possible: no similar tree is found or

some parts of the evaluated tree are found in the repository

(we call such trees as similar trees and the identical trees’

parts as matched parts). In both cases, the GPU has to be

asked again to fill the missing information needed to finish

the evaluation (see Figure 3, step II).

Searching in the repository is an overhead thus the algo-

rithm tries to find as large matching parts of the tree as

possible (see Figure 4). The priority is to find the same tree

(similarity at level 0). Otherwise, two types of similarity are

preferable (similarity at level 1). The first case concerns the

situation when the tests in the tree root and in its left subtree

are the same (as in a tree from the repository). The second

case is analogical but it refers to the right subtree of the

root. If any of these similarities is not applicable, then we

go at a lower level of the tree and so on (similarity at level

2, 3, etc.).

If no similarity is found, all fitness-related calculations

have to be performed (as in the algorithm without the repo-

sitory-support). In the case of similar (only partially the

same) trees, the partial fitness information is copied from

Figure 2. The general flowchart of the repository-supported
algorithm for evolutionary induction of decision trees.

Figure 3. Boosted evaluation of individuals using a GPU. First,
similar trees are searched in the repository. If an identical tree is
found, there is no need to ask the GPU to perform fitness-related
calculations. Otherwise, the CPU delegates the calculation to the
GPU. If only similar trees (partially the same) are found, the GPU
fills the missing information. If no similarity is found, all fitness-
related calculations have to be performed by the GPU.

24 The International Journal of High Performance Computing Applications 35(1)

the repository to the evaluated tree. Partial fitness informa-

tion are the class distribution, errors and dipoles in the tree

nodes of the matched trees’ parts. To complete the fitness

calculations, the GPU is then used to fill the missing infor-

mation in the unmatched parts of the tree. For all training

objects that fall into these parts of the tree, appropriate

leaves are searched. The objects are propagated from the

tree root towards these parts as well as inside them. In the

leaves, the number of objects of each class is accumulated

(so-called class distribution) and also some random objects

are stored (for dipoles). Based on the class distribution,

reclassification errors in the leaves are calculated. Finally,

all gathered information: class distribution, errors and ran-

dom objects, are propagated from the leaves towards the

root node and then they are sent back to the CPU. The CPU

uses them to update the considered individual and finally

calculate its fitness value. The following sections describe

in greater detail the fitness reuse strategy as well as the

GPU-based evaluation of individuals.

3.1. Searching similar trees

Two kernel functions are used to search for similar trees in

the repository (see Figure 5). The first kernel (searchpre)

compares the evaluated individual with all trees from the

repository. Two-level data decomposition approach

(Grama et al., 2003) is applied. Individuals from the repo-

sitory are divided between GPU blocks. Inside the blocks,

threads are responsible for comparing different parts of the

trees. In the simplest case, the tree root is assigned to the

first thread, its left and right child to the second and third

one, respectively, and so on. Thus, the comparisons with

different individuals from the repository as well as at var-

ious tree nodes are done in parallel. When a difference is

found, the search inside a block is not finished because

more similar trees can still be found. However, the found

difference is marked in a boolean variable which resides in

shared memory. The number of such boolean variables

depends on the number of different similarity patterns that

are concerned. When synchronization between threads is

needed, atomic exchange operations are used.

On the GPU side, trees are represented as one-

dimensional arrays where the index of the left and right

child of the i-th node equals ð2iþ 1Þ and ð2iþ 2Þ, respec-

tively (Jurczuk et al., 2017). This makes the comparison

between individuals easier. Searching a difference consists

in checking corresponding elements of two arrays (a tree

from the repository and the evaluated individual). Both the

attribute and the threshold of the tests in the tree nodes have

to be verified. To know which nodes (indices of arrays)

have to be checked for different similarity patterns, one-

dimensional binary masks are created before the evolution.

Figure 6 shows sample patterns and the corresponding

masks.

Figure 4. Similarity patterns in the trees’ repository: starting
from an identical tree down to the successive subtrees. The
possible matching parts of a tree at different levels of similarity are
wrapped by dashed lines.

Figure 5. The arrangement of GPU kernels used to evaluate
individuals as well as memory transfers when using the repository.

Jurczuk et al. 25

Finally, the first kernel verifies the level of similarity of

every tree in the repository. The second kernel (searchpost)

reduces the results returned by the first one. It uses only one

block. Each GPU thread is responsible for scanning the

similarity levels of a bunch of individuals. For each of the

similarity patterns, maximum one individual is provided

and its identifier is sent back to the CPU. If no individual

is found, negative identifier is returned. If more than one

individual from the repository fit the same pattern, then the

last one that is verified is retained. Synchronization

between block threads is provided by atomic exchange

operations.

We decided to use the Structure-of-Arrays (SoA) layout

which is usually preferable from GPU performance per-

spective (Mei and Tian, 2016; Strzodka, 2012). In our case,

multi-value data of individuals are stored in separated

arrays (see Listing 1). An alternative is the Array-of-

Structures (AoS) layout that may lead to coalescing issue

(Jurczuk, Kretowski and Bezy–Wendling, 2018). The SoA

layout generally provides full use of memory bandwidth as

well as global memory accesses are always coalesced

(Wilt, 2013). One thread may copy data (e.g., node infor-

mation) to cache for other threads what can decrease the

number of memory transactions and, thus, minimize

DRAM bandwidth.

3.2. Maintaining the repository of individuals

The repository of individuals is a kind of an external mem-

ory (archive) that is used to store a fixed number of previ-

ously considered individuals, next to the population. At the

beginning of the evolution, the repository is empty. It is

filled each time when a new tree appears unless identical

tree is already stored (in other words, it is found in the

repository).

The fixed size of the repository causes that a replace-

ment of individuals is required when it is full. We consider

two strategies. In the first one, a new individual is inserted

in the place of the oldest tree – First In First Out (FIFO)

algorithm. The advantage of such a mechanism is little

overhead because we do not need to search a place for a

newly inserted individual (an index is only required to

indicate the replacement point).

In the second strategy, an additional criterion is intro-

duced: how often a tree was already reused. For this pur-

pose, each tree in the repository has a reuse counter. When

a tree is inserted into the repository, its counter equals 0.

Each time when the tree is reused, its counter is incremen-

ted. Searching for a place of a new tree still uses the FIFO

algorithm but its prioritized version. The oldest tree with a

reuse counter equal to 0 is replaced. If the location in the

repository has the reuse counter not equal to 0, then its

counter value is decremented and the next position is taken

into account, and so on. Such a mechanism favours the

oldest individuals and, at the same time, rarely used, as

candidates to delete from the repository. Nevertheless, the

additional criterion causes memory and time overhead that

should be unnoticeable when larger datasets are processed.

In order to limit CPU/GPU memory transfers, the

repository is divided between CPU and GPU (see

mask

the same tree

test in the root node

 left
subtree

Figure 6. Sample similarity patterns and corresponding masks
for: (a) identical tree, (b) the same tests in the tree root and in its
left subtree, (c) the same root test, the same tests in its left
subtree and in the second subsubtree.

Listing 1. AoS vs SoA memory layouts for an invidual.

26 The International Journal of High Performance Computing Applications 35(1)

Figure 5). The CPU archives the results while the GPU

keeps the structures of trees. Thanks to this, most of the

repository operations (searching, inserting, reuse) need

only CPU-CPU or GPU-GPU memory transfers. Each

time a new tree is inserted, both parts of the repository

are updated. On the GPU side, the tree structures are

copied to the repository (GPU-GPU memory transfer).

As regards the CPU side, the corresponding tree statis-

tics and the dipoles are added to the repository (CPU-

CPU memory transfer). When an identical or similar tree

is found, the tree statistics and the dipoles are copied

from the repository to the evaluated tree (CPU-CPU

memory transfer).

3.3. GPU-supported evaluation

If no similarity is found, the GPU has to calculate the

information for all nodes of the tree. When similar (par-

tially the same) trees are found, the GPU is used to com-

plete the missing information. In both cases, two kernels

are used (Jurczuk et al., 2017). The first kernel (f itnesspre)

(see Figure 5) is called to propagate all objects in the

training dataset from the tree root to appropriate leaves.

The data decomposition approach is applied. The whole

dataset is spread into smaller parts over GPU blocks.

Next, in each block, the assigned objects are further

spread over the threads. In each GPU block, a copy of the

evaluated individual is created and loaded into the shared

memory space. This way, all the threads process the same

individual in parallel but handle different chunks of the

dataset.

If a training object reaches a leaf, the counter of its class

in this leaf is incremented. When f itnesspre kernel finishes,

in each tree leaf, the number of objects of each class that

reach that particular leaf is stored. Moreover, randomly

chosen objects of each class are saved in each tree leaf.

However, the results are spread over the GPU blocks. The

second kernel function (f itnesspost) reduces the results. The

counters of objects from copies of the individual are

summed up, and the total number of objects of each class

in each leaf is obtained (class distribution) and reclassifica-

tion errors are calculated. Then, all gathered information

(class distribution, errors) as well as objects for dipoles are

propagated from the leaves towards the root. Finally, they

are sent back to the CPU to finish the tree evaluation and

the repository is updated.

4. Experimental validation

4.1. Setup

All experiments were performed on a server equipped

with 2 eight-core processors Intel Xeon E5-2620 v4 (20

MB Cache, 2.10 GHz), 256 GB RAM and a single gra-

phics card. We tested three different NVIDIA GPUs

described in Table 1 where we gather basic specifications

that cover the number of CUDA cores, a clock rate, avail-

able memory, bandwidth and compute capability. The

first GPU card is the consumer line GeForce GPU based

on Kepler architecture launched in 2013 but it still quite

powerful. The second GPU card is based on Maxwell

architecture. The last one is the professional-level GPU

accelerator (based on Pascal architecture) that currently

costs about $ 5 000 (almost 10 times more than the

first one).

The server was running 64-bit Ubuntu Linux 16.04.6

LTS. The algorithm was implemented in Cþþ, the GPU-

supported parts in CUDA-C and compiled by nvcc CUDA

10.0 (NVIDIA, 2019) (single-precision arithmetic was

applied). The sequential and OpenMP versions (Czaj-

kowski et al., 2015) were compiled by gcc version 5.4.0.

Experimental analysis was performed on artificially

generated and real-life datasets described in Table 2. Con-

cerning real-life datasets, two large datasets from the UCI

Machine Learning Repository (MLR) (Dua and Karra

Taniskidou, 2019) were tested:

� Higgs – concerns a classification problem to distinguish

between a signal process that produces Higgs bosons

and a background process that does not;

� Suzy – covers the problem of distinguishing between a

signal process that produces super-symmetric particles

and a background process that does not.

Table 1. Basic specification (processing and memory resources) of three NVIDIA graphics cards used in the experiments.

NVIDIA graphics card

Engine Memory

Compute capabilityNo. CUDA cores Clock rate [MHz] Size [GB] Bandwidth [GB/s]

Geforce GTX 780 2 304 863 3 288.4 3.5
Geforce GTX Titan X 3 072 1 000 12 336.5 5.2
Tesla P100 3 584 1 328 12 549.0 6.0

Table 2. Characteristics of the datasets: Name, number of
instances, number of attributes and number of classes.

Dataset No. Inst. No. Attr. No. Class.

Chess 100 000 2 2
1 000 000 2 2

10 000 000 2 2
100 000 000 2 2

1 000 000 000 2 2
Suzy 5 000 000 18 2
Higgs 11 000 000 28 2

Jurczuk et al. 27

The artificially generated dataset called chess3x3 was

analysed. This dataset represents a classification problem

with two classes, two continuous-valued attributes and

objects arranged on a 3� 3 chessboard (Kretowski,

2019). We used the synthetic dataset to scale it freely,

unlike real-life datasets. We examined a various number

of training objects (from hundreds of thousands to a

billion).

All presented results correspond to averages of 5–10

runs and were obtained with a default set of parameters

from the original GDT system, which are briefly listed in

Table 3. For in-depth description and settings of additional

parameters like probabilities of different mutation/cross-

over variants and GPU configurations, please refer to (Jurc-

zuk et al., 2017; Kretowski, 2019). As we are focused in

this paper only on time performance, results for the classi-

fication accuracy are not included, as they are not changed.

4.2. Results

Table 4 presents the mean execution times of the

repository-supported GDT as well as its previous versions

(GPU-based, OpenMP-based and the sequential one). The

strongest GPU card (Tesla P100) as well as the optimal

repository settings (size, similarity levels, . . .) were

applied. We see that the fitness reuse strategy accelerates

the solution further. As it can be expected, the time

decrease is more important when large-scale data is pro-

cessed. For the smallest Chess dataset size (100 000

objects), the reuse strategy only slightly accelerates the

solution (about 3%). What is important that this improve-

ment was obtained with the simpler repository mechanism

(Jurczuk et al., 2019). For the extended strategy (modified

FIFO and more levels of similarity), the overall time was

not improved. However, for the rest of Chess dataset sizes,

the extended version gave clearly better results.

For 1 billion objects, the proposed solution decreases the

induction time by �9 h (it is about 60% faster). We esti-

mated that the sequential GDT version would need over a

year to process such a huge dataset and the OpenMP par-

allelization would decrease this time to a few months.

Concerning real-life datasets (see Table 4), the reuse

strategy also accelerates the induction. For the Suzy dataset,

the improvement is about 22% and it was obtained using

the simpler reuse mechanism (Jurczuk et al., 2019). For the

extended one, the calculation times were comparable with

the version without the repository support. The detailed

profiling (not included) showed that the generated trees and

dataset were not big enough to compensate the repository

overhead. In the case of the Higgs dataset, the improvement

is about 24% and it was obtained with the extended reuse

strategy. The obtained accelerations are lower than for the

Chess dataset with a comparable number of objects. The

probable reason is the higher number of attributes that

increases the search space. As a result, it is harder to find

similar trees (as it will be discussed and shown later in

Figure 9). For both datasets, the induction time decreases

from days/hours to a few minutes compared to the CPU

implementations.

Table 5 shows the mean induction times for three tested

GPU cards. The results suggest that even a cheap GPU card

is enough to accelerate the induction of DTs significantly.

As it is expected, stronger GPUs manage to achieve much

better acceleration. The cheapest tested GPU card

(GeForce GTX 780) in comparison to the most expensive

Table 3. Default parameters of GDT.

Parameter Value

Population size 64 individuals
Crossover rate 20% assigned to the tree
Mutation rate 80% assigned to the tree
Elitism rate 1 individual per generation
Max generations 1 000
Block/Thread numbers 256 � 256

Table 4. Comparison of the mean execution times of the repository-supported version (GPU with REPO) with the previous GPU-
based one (using NVIDIA Tesla P100 GPU card). Executions times of the OpenMP and sequential versions are also included (in seconds,
for larger datasets also time in hours).

Dataset GPU with REPO GPU OpenMP Sequential

Chess 100 000 21.1 21.8 100.2 685
Chess 1 000 000 49.4 62.7 3 605.7 23 536
Chess 10 000 000 439.5 666.7 47 600.4 324 000
Chess 100 000 000 5 047.9 (1.4 h) 7 471.3 (2 h) weeks months
Chess 1 000 000 000 52 691.5 (14.5 h) 84 245.2 (23.5 h) months over a year

Suzy 218.2 266.6 7 h 2 days
Higgs 498.1 632.5 18 h 4 days

Table 5. Mean execution times of the repository-supported
version on three different NVIDIA GPU cards, for artificial and
real-life datasets (in seconds) (* – not enough memory).

Dataset GTX 780 GTX Titan X Tesla P100

Chess 100 000 57.8 27.7 21.1
Chess 1 000 000 116.1 56.9 49.4
Chess 10 000 000 774.7 659.4 439.5
Chess 100 000 000 7 177.4 7 015.4 5 047.9
Chess 1 000 000 000 * 75 343.2 52 691.5

Suzy 346.2 306.1 218.2
Higgs 787.3 695.4 498.1

28 The International Journal of High Performance Computing Applications 35(1)

one (Tesla P100) is about 1.5 times slower. We would

expect a more prominent difference if double-precision

arithmetic operations were applied. It should be noted that

the memory size of the GeForce GTX 780 card is not big

enough to store the biggest dataset.

Concerning the speedup over the corresponding sequen-

tial version of the algorithm, we clearly see that it is very

satisfactory for all tested GPUs and datasets (see Tables 4

and 5). In the case of Tesla P100 for Chess 1 000 000, Suzy

and Higgs datasets it is � 476, � 396 and � 694,

respectively.

Figure 7(a) shows the influence of the repository size on

the evolution time when the size of dataset increases (using

Tesla P100). The bars represent the gain or loss in time (in

percentage) in comparison to the GPU-based GDT without

repository support. It is clearly visible that the gain is more

prominent when the dataset size increases. For more than

10 millions of objects, the repository-supported version is

at least 50% faster than the original GPU-based version.

The optimal size of the repository grows when larger data is

processed (for 100 000 objects 128 trees, for 1 000 000

objects 256 trees, etc.). For the smallest dataset (100 000

objects), the induction time can even increase if too many

trees (more than 256) are archived in the repository.

The observed slowdown of the induction may be

explained by the repository overhead that is illustrated in

Figure 7(b). We see that the time efficiency drop is mainly

blamed by searching in the repository (REPO search). The

time spent on other repository operations is substantially

smaller (REPO insert – inserting new individuals) than the

searching or negligible (REPO apply – reusing stored data).

For the smallest dataset (100 000 objects), the repository

search overhead is not compensated by the time profit of

fitness reuse. When the size of the dataset grows, the eva-

luation of individuals is more time consuming and the repo-

sitory searching overhead becomes negligible.

For better understanding, we have also studied the

searching success ratio, i.e. how often the search in the

(a)

(b)

Figure 7. The influence of the reuse strategy on evolution time
for the increasing Chess dataset size: (a) gain or loss in evolution
time for the different repository size (from 128 to 4096 trees), (b)
detailed time-sharing information (mean time as a percentage) for
the repository size of 256 individuals.

(a) (b)

Figure 8. Success ratio of searching in the repository for the Chess dataset (10 000 000 objects). The repository size increases from
128 to 4096 trees. On the left, for identical trees. On the right, when similar trees are found.

Jurczuk et al. 29

repository ends with a success. Concerning the Chess data-

set, Figure 8 shows that an identical tree was found in a few

percent of cases, from 1% to 5%. This ratio increases when

the repository size grows. However, we cannot forget that,

in this case, the repository overhead also grows what may

diminish the benefits of fitness reuse, especially in the case

of smaller datasets. Much better success ratio is obtained

for similar trees (about 60%) and the influence of dataset

size is not so obvious. It was about 50% in the preliminary

repository-supported version (Jurczuk et al., 2019).

Figure 9 gives success ratio results for the real-life data-

sets. We have examined two cases: (i) a ¼ 0.001 (default

value, as in other experiments), (ii) a¼ 0.0001 (for inducing

bigger trees). We see that identical trees were found more

often than for the Chess dataset (about �2). It can be attrib-

uted to the size of the generated trees which were smaller than

the ones for the Chess dataset. On the other hand, it is also

visible that the number of similar trees is about two times

smaller (completely inverse pattern). It can be probably

explained by more attributes as well as not symmetrical DTs.

When a equals 0.0001, the size of the generated DTs grows

and the success ratios change. There are much more similar

trees, while the number of identical trees decreases slightly.

More detailed analysis of the influence of the attribute num-

ber as well as tree structures is left for future investigations.

5. Conclusion and future work

Big data mining brings new challenges, especially in the con-

text of high computation demanding solutions. In this paper,

we tackle the problem of speeding up the GPU-based evolu-

tionary induction of DTs on large-scale data. With an addi-

tional repository, we store some of previously evaluated

individuals (the most popular) and try to reuse them (or their

parts) in order to skip the fitness evaluation phase which is the

most consuming task of the evolutionary loop. To limit the

computational overhead of the reuse strategy, GPU-support

and CUDA programming model are applied. Extensive

experimental validation shows that the proposed strategy suc-

cessfully accelerate tree induction. The improvement is par-

ticularly noticeable with the large-scale data.

There are many promising directions that we currently

are working on. The first one considers a multi-GPU

approach to scale the solution even further. The repository

could be spread over GPUs that will search in parallel.

Using OpenCL (instead of CUDA) may provide portability

to GPUs of other vendors as well as further time improve-

ment (McIntosh-Smith et al., 2015). On the other side, this

research is also the first step in applying ‘multi-tree’ rep-

resentation. It assumes that similar individuals can be rep-

resented by partially sharing fragments/structures in

memory. Such a solution may allow us to observe and

better understand the evolutionary induction dynamics in

detail, e.g. to follow diversity at each level of a decision

tree. It would also be an interesting challenge to formalize

and generalize the proposed approach (in a similar way as

in Fakhi et al. (2017)), concerning both the fitness evalua-

tion and reuse strategy. Then, the model could be easily

applied in other population-based machine learning tools.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

(a) (b)

(c) (d)

Figure 9. Success ratio of searching in the repository for the Suzy and Higgs datasets. The repository size increases from 128 to 4096
trees. On the left, for identical trees. On the right, when similar trees are found. (a) Suzy, a¼ 0.001, (b) Suzy, a¼ 0.0001, (c) Higgs, a¼
0.001, (d) Higgs, a ¼ 0.0001.

30 The International Journal of High Performance Computing Applications 35(1)

this article: This work was supported by Bialystok Univer-

sity of Technology under the Grant WZ/WI-IIT/3/2020

founded by Ministry of Science and Higher Education.

ORCID iD

Krzysztof Jurczuk https://orcid.org/0000-0001-6469-

1769

References

Acan A (2004) An external memory implementation in ant colony

optimization. In: Marco D, Birattari M, Blum C, et al. (eds),

Ant Colony Optimization and Swarm Intelligence. Berlin:

Springer, pp. 73–82.

Acan A and Tekol Y (2003) Chromosome reuse in genetic algo-

rithms. In: Cantú-Paz E, Foster JA, Deb K, et al. (eds), Genetic

and Evolutionary Computation – GECCO 2003. Berlin:

Springer, pp. 695–705.

Acan A and Unveren A (2009) A memory-based colonization

scheme for particle swarm optimization. In: 2009 IEEE Con-

gress on Evolutionary Computation, Trondheim, Norway, 18–

21 May 2009, pp. 1965–1972.

Alba E and Tomassini M (2002) Parallelism and evolutionary

algorithms. IEEE Transactions on Evolutionary Computation

6(5): 443–462.

Bacardit J and Llorà X (2013) Large-scale data mining using

genetics-based machine learning. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery 3(1): 37–61.

Barros RC, Basgalupp MP, De Carvalho AC, et al. (2012) A

survey of evolutionary algorithms for decision-tree induction.

IEEE Transactions on SMC, Part C 42(3): 291–312.

Breiman L (2001) Random forests. Machine Learning 45(1):

5–32.

Breiman L, Friedman JH, Olshen RA, et al. (1984) Classification

and Regression Trees. Wadsworth Publishing.

Cano A (2018) A survey on graphic processing unit computing for

large-scale data mining. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery 8(1): e1232.

Charalampakis AE (2012) Registrar: a complete-memory opera-

tor to enhance performance of genetic algorithms. Journal of

Global Optimization 54: 449–483.

Chitty DM (2012) Fast parallel genetic programming: multi-core

CPU versus many-core GPU. Soft Computing 16(10):

1795–1814.

Czajkowski M, Jurczuk K and Kretowski M (2015) A parallel

approach for evolutionary induced decision trees.

MPIþOpenMP implementation. In: Rutkowski L, Koryt-

kowski M, Scherer R, et al. (eds), Artificial Intelligence and

Soft Computing, LNCS, vol. 9119. Berlin: Springer, pp.

340–349.

Czajkowski M and Kretowski M (2019) Decision tree underfitting

in mining of gene expression data. An evolutionary multi-test

tree approach. Expert Systems with Applications 137:

392–404.

Dua D and Graff C (2019) UCI Machine Learning Repository.

Irvine, CA: University of California, School of Information

and Computer Science. Available at: http://archive.ics.uci.

edu/ml.

Esposito F, Malerba D and Semeraro G (1997) A comparative

analysis of methods for pruning decision trees. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 19(5):

476–491.

Fakhi H, Bouattane O, Youssfi M, et al. (2017) A multi-agent

model for general-purpose computing on graphics processing

units. Multiagent and Grid Systems 13(3): 237–252.

Franco MA and Bacardit J (2016) Large-scale experimental eva-

luation of GPU strategies for evolutionary machine learning.

Information Sciences 330: 385–402.

Grahn H, Lavesson N, Lapajne MH, et al. (2011) CudaRF: a

CUDA-based implementation of random forests. In: 2011

9th IEEE/ACS international conference on computer systems

and applications (AICCSA), Sharm El-Sheikh, Egypt, 27–30

December 2011, pp. 95–101.

Grama A, Karypis G, Kumar V, et al. (2003) Introduction to

Parallel Computing. Boston: Addison-Wesley.

Jurczuk K, Czajkowski M and Kretowski M (2017) Evolutionary

induction of a decision tree for large-scale data: a GPU-based

approach. Soft Computing 21(24): 7363–7379.

Jurczuk K, Czajkowski M and Kretowski M (2019) Accelerating

GPU-based evolutionary induction of decision trees – fitness

evaluation reuse. In: Wyrzykowski R, Dongarra J, Paprzycki

M, et al. (eds), Parallel processing and applied mathematics,

PPAM’19, LNCS, vol. 12043. Berlin: Springer, pp. 421–431.

Jurczuk K, Kretowski M and Bezy–Wendling J (2018) GPU-

based computational modeling of magnetic resonance imaging

of vascular structures. The International Journal of High Per-

formance Computing Applications 32(4): 496–511.

Jurczuk K, Reska D and Kretowski M (2018) What are the limits

of evolutionary induction of decision trees? In: Auger A, Fon-

seca CM, Lourenço N, et al. (eds), Parallel problem solving

from nature – PPSN XV, LNCS. Berlin: Springer, pp. 461–473.

Kretowski M (2019) Evolutionary Decision Trees in Large-Scale

Data Mining. Berlin: Springer.

Lo WT, Chang YS, Sheu RK, et al. (2014) CUDT: a CUDA based

decision tree algorithm. Scientific World Journal 2014:

745640.

Loh WY (2014) Fifty years of classification and regression trees.

International Statistical Review 82(3): 329–348.

Maitre O, Kruger F, Querry S, et al. (2012) EASEA: specification

and execution of evolutionary algorithms on GPGPU. Soft

Computing 16(2): 261–279.

Marron D, Bifet A and Morales GDF (2014) Random forests of

very fast decision trees on GPU for mining evolving big data

streams. In: 21st European Conference on Artificial Confer-

ence (ECAI’14), Prague, Czech Republic, 18–22 August 2014,

pp. 615–620. Amsterdam: IOS Press.

McIntosh-Smith S, Price J, Sessions RB, et al. (2015) High per-

formance in silico virtual drug screening on many-core pro-

cessors. The International Journal of High Performance

Computing Applications 29(2): 119–134.

Mei G and Tian H (2016) Impact of data layouts on the efficiency

of GPU-accelerated IDW interpolation. SpringerPlus 5(104):

1–18.

Michalewicz Z (1996) Genetic Algorithms þ Data Structures ¼
Evolution Programs. Berlin: Springer.

Jurczuk et al. 31

https://orcid.org/0000-0001-6469-1769
https://orcid.org/0000-0001-6469-1769
https://orcid.org/0000-0001-6469-1769
https://orcid.org/0000-0001-6469-1769
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

NVIDIA (2020) NVIDIA Developer Zone - CUDA Toolkit Doc-

umentation. Available at: https://docs.nvidia.com/cuda/.

Quinlan JR (1993) C4.5: Programs for Machine Learning. Bur-

lington: Morgan Kaufmann.

Reska D, Jurczuk K and Kretowski M (2018) Evolutionary induc-

tion of classification trees on spark. In: Rutkowski L, Rafa S,

Korytkowski M, et al. (eds), Artificial Intelligence and Soft

Computing, LNCS, vol. 10841. Berlin: Springer, pp. 514–523.

Rokach L and Maimon O (2005) Top-down induction of decision trees

classifiers – a survey. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews 35(4): 476–487.

Storti D and Yurtoglu M (2016) CUDA for Engineers: An Intro-

duction to High-Performance Parallel Computing. New York:

Addison-Wesley.

Strnad D and Nerat A (2016) Parallel construction of classifica-

tion trees on a GPU. Concurrency and Computation: Practice

and Experience 28(5): 1417–1436.

Strzodka R (2012) Abstraction for AoS and SoA layout in Cþþ.

In: Hwu WW (ed), GPU Computing Gems Jade Edition. Bur-

lington: Morgan Kaufmann, pp. 429–441.

Tsutsui S and Collet P (eds) (2013) Massively Parallel Evolution-

ary Computation on GPGPUs. Natural Computing Series.

Berlin: Springer.

Wilt N (2013) CUDA Handbook: A Comprehensive Guide to GPU

Programming. Upper Saddle River, NJ: Addison-Wesley.

Yuen SY and Chow CK (2009) A genetic algorithm that adap-

tively mutates and never revisits. IEEE Transactions on Evo-

lutionary Computation 13(2): 454–472.

Zhou L, Pan S, Wang J, et al. (2017) Machine learning on big data:

opportunities and challenges. Neurocomputing 237: 350–361.

Author biographies

Krzysztof Jurczuk received the joined PhD in 2013 from the

University of Rennes 1 (France) and the Faculty of Com-

puter Science, Bialystok University of Technology

(Poland). He is currently Assistant Professor at the Faculty

of Computer Science, Bialystok University of Technology

(Poland). His research interests focus on biomedical infor-

matics (CFD, MRI simulations), parallel computing, and

data mining.

Marcin Czajkowski received the Masters degree (2007) and

the PhD degree with honours (2015) from Computer Sci-

ence, Bialystok University of Technology (Poland). He is

currently Assistant Professor at the Faculty of Computer

Science, Bialystok University of Technology (Poland). His

research activity mainly concerns bioinformatics, machine

learning and data mining, in particular, classification and

regression trees and evolutionary algorithms.

Marek Kretowski received the joined PhD in 2002 from the

University of Rennes 1 (France) and the Faculty of Com-

puter Science, Bialystok University of Technology

(Poland). He is currently Professor at the Faculty of Com-

puter Science, Bialystok University of Technology

(Poland). His research interests focus on biomedical appli-

cations of computer science (modelling for image under-

standing, image analysis), bioinformatics and data mining.

32 The International Journal of High Performance Computing Applications 35(1)

https://docs.nvidia.com/cuda/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

