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Abstract. A new approach to the liver segmen-

tation from 3D images is presented and com-

pared to the existing methods in terms of quality

and speed of segmentation. The proposed tech-

nique is based on 3D deformable model (active

surface) combining boundary and region infor-

mation. The segmentation quality is compara-

ble to the existing methods but the proposed

technique is significantly faster. The exper-

imental evaluation was performed on clinical

datasets (both MRI and CT), representing typi-

cal as well as more challenging to segment liver

shapes.

1 Introduction

Development of effective and reliable segmentation meth-

ods is one of the most important tasks in the medical im-

age analysis. Outlining of the organs and pathological

changes is the necessary stage in the preoperative plan-

ning [12], diagnostics and visualization. The manual seg-

mentation is labor-intensive, especially in the case of large

MRI or CT data sets. Usage of reliable segmentation tools

can shorten time and increase precision and reproducibil-

ity of the results.

Fig. 1: Problems with the liver segmentation: insufficient
separation from other organs and ambiguous boundaries.

The liver segmentation is a particularly difficult task.

Irregularity of the liver shape and ambiguous boundaries

with the adjacent organs (see Fig. 1) are the greatest chal-

lenges for automatic and semi-automatic methods [7].

In this work we propose a new 3D segmentation

method based on geometric deformable models [13]. This

method uses an active 3D surface that expands inside the

organ volume. The process is driven by the edge in-

formation and intensity statistics of the surface interior.

The proposed method was tested on various hepatic data

sets and evaluated with the standard segmentation qual-

ity measures. This approach was implemented in our in-
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tegrated segmentation environment and it enabled us to

compare it with our previously developed tools.

2 Segmentation methods

Several methods for the liver segmentation were used in

the past [7]. One can order them using several criteria:

a) interactive (where a trained operator guides the

method in some way to get valuable results [15, 2]) vs. au-

tomatic (where very little or no user interaction is needed

at all [22, 3]): in general the interaction assures bet-

ter quality but increases the total segmentation time and

makes it more tedious;

b) pixel-based (where the segmented object is a sim-

ple collection of independent points [16]) and producing

higher-level shapes (where it is represented by some or-

dered structures: lines, surfaces, etc. [6, 22]);

c) model-based (where the method is preliminary

trained on manually labeled images to discover some

knowledge about the segmented data [22, 6]) vs. free-

form (where the method does not need the training

stage [15]): the need of training data is sometimes a prob-

lem, moreover - only cases similar to the training data sets

are well segmented;

d) 2D (where each 2D slice is segmented sepa-

rately, sometimes using an initialization from the previ-

ous slice [21], and the volume is reconstructed from the

independent 2D segmentations [5]) vs. true 3D (where

the complete 3D neighborhood of each segmented point

is taken into account [6, 2]): in general the true 3D ap-

proach yields more coherent results, but can be difficult to

construct and implement.

Segmentation of the 3D images is in general a time-

consuming task. Methods evaluated in [7] are reported to

take several minutes (except the simplest region growing)

to segment one image on a standard computer (from 5.5

to 60 minutes). It makes the interactive work with them

(e.g. during a medical consultation) almost impossible.

In our previous work we focused on interactive 2D

methods [14]. Currently, the development of the active

contour based methods (snakes) are the main focus of our

research. The snake is defined as a deformable paramet-

ric curve, which deforms under influence of internal and

external forces. The goal of the evolution process is to

minimize the total energy of the snake. With the contour

defined as v(s) = (x(s), y(s)) where s ∈ [0, 1], the total

snake energy could be written as:

E∗snake =

1∫
0

Esnake(v(s))ds

=

1∫
0

Eint(v(s))+Eimage(v(s))+Econ(v(s))ds

(1)

whereEint is the internal energy (controlling bending and

stretching), Eimage is the image force (moving the snake

toward desired features) and Econ represents other pos-

sible constraints. The original snake model [9] have sig-

nificant limitations. The necessity of initialization near

the segmented object boundaries led to the introduction

of inflation forces [4] or local gradient expansion [20]

that would push the snake toward desired image features.

Contour subdivision methods [10] were also introduced

to overcome the inflexibility of the standard snake fixed

topology. Many 3D deformable surfaces were also pro-

posed [13] and successfully used in medical image seg-

mentation [19].

3 Combining region and boundary
criteria

In this work we present a new segmentation method based

on Geometrically Deformed Model (GDM) [13]. This

model is represented as a deformable polygon mesh that

evolves under the influence of external image features and

internal smoothness constraints. Normal vectors of the

surface are used as a direction of the deformation of each
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vertex, giving the surface the ability to fill the segmented

region.

3.1 Surface evolution

The evolution process aims to minimize the global energy

of the surface by moving the vertices to new positions

with a lower potentials. The potential function C(v) at

the current location of the vertex v can be described as

C(v) = a0D(v) + a1I(v) + a2T, (2)

where D(v) is the directional deformation potential, I(v)

is the image features term, T is the topology smoothness

measure and a0 − a2 are the weights. The image term is

originally defined as

I(V ) =

{
0 Img(v) < t;
Img(v)− t Img(v) ≥ t. (3)

where Img(v) is the data intensity at the position of the

voxel v and t is the intensity threshold of the segmented

object. The smoothness of the mesh T is assured by keep-

ing each vertex as close as possible to its neighbors, max-

imizing the coplanarity of the model faces.

The model is also capable to dynamically adapt its

topology using a subdivision procedure that multiplies the

points count in order to increase the accuracy of the seg-

mentation. This procedure can be performed globally or

only on the faces that meet the resampling criteria. The

use of the local subdivision condition is necessary, be-

cause the redundant resampling increases the computation

time and does not affect the final results of the segmenta-

tion. The area of a face can be used as a resample condi-

tion, enabling the mesh to maintain a given level of detail.

Additionally, we use a second condition that prevents the

subdivision of the faces composed from vertices that are

already placed in their minimum energy positions.

The simplicity of this discrete model allows it to be

computationally efficient and easy to visualize. Seg-

mented volume is sampled only on the surface and no in-

formation of the interior of the surface is used.

3.2 Internal region potential

The incorporation of the internal region characteristics ex-

pands the effectiveness of the method, originally making

use only of the edge information. The interior of the sur-

face is calculated with an efficient polygon mesh voxeliza-

tion algorithm [17]. The algorithm uses the raycasting to

calculate the model volume: since the surface is closed,

counting its intersections with the ray casted from a voxel

can tell whether the voxel is inside the surface. The op-

timized algorithm casts one ray along the entire row of

voxels and applies a quad tree partitioning of the surface

faces in order to minimize the number of the ray-face in-

tersection tests.

With the internal region computed, the default image

term (3) can be modified as:

I(v) =

{
0 |Img(v)− µ| < kσ;
|Img(v)− µ| |Img(v)− µ| ≥ kσ. (4)

where µ and σ are the intensity mean and standard devia-

tion of the surface region and k is a user-defined constant.

Such a solution eliminates the specific intensity threshold

and increases the robustness of the method.

Fig. 2: Block diagram for the proposed algorithm.
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3.3 Steps of the algorithm

The proposed segmentation procedure (see Fig. 2) con-

sists of the following steps.

a) Initialization: the user is required to place an initial

model inside the liver. The start mesh can be also rescaled

to fit the segmented organ. Given the size of the liver, this

procedure is not particularly difficult. The start mesh is an

icosphere – a spherical solid created by dividing the faces

of an icosahedron. The icosphere is used due to its regular

topology, suitable for further subdivisions.

b) Preprocessing: in order to smooth the liver internal

volume while preserving the edge information, we apply

a bilateral filter [18] to the original images (see Fig. 3).

c) Voxelization: the interior of the start surface is calcu-

lated and the intensity characteristics (mean and standard

deviation) of the region are computed.

d) Deformation stage: the surface vertices are moved to

the position of the lowest potential in their neighborhood.

The movement direction of each point is calculated from

the vectors normal to the faces containing the vertex. The

deformation potential pushes the vertex along this vector,

resulting in the expansion of the surface. This step con-

tinues for a given iteration count, as long as the image and

curvature constraints are satisfied. The usual movement

distance is constrained to the range of two voxels. The

distance can be also reduced by half if the vertex remains

unmoved. The movement step and the iteration and re-

ductions count can be adjusted by the user.

e) Topology modification: the surface mesh is refined

using the given area and movement criteria. Additionally

to the minimal face area condition, an upper limit of the

faces number can be set. The final mesh is then returned

to the user and another cycle can be performed.

f) Stop condition: the process can stop when no further

surface deformation is possible or when the user finds the

result satisfying.

(a) (b)

(c) (d)

Fig. 3: The preprocessing step: the edge map (b) gener-
ated from the original image (a) contains more undesir-
able noise than the edge map (d) obtained from the image
with the bilateral filter applied (c).

4 Experimental validation

The proposed methods were validated on various hepatic

MRI and CT sets, gathered at the Pontchaillou University

Hospital, Rennes, France. Time and quality of the seg-

mentation were evaluated and compared with other ac-

tive contour methods using a segmentation testing envi-

ronment.

4.1 Framework

Our method is being developed as a part of an integrated

segmentation and visualization environment that provides

extensible templates for creating 2D and 3D active con-

tours. Each template can be extended with custom defor-

mation methods, energies/cost functions and other con-

straints that can be dynamically reconfigured at runtime

and extended using a scripting language. The environ-

ment is using a server-client architecture, moving the re-

sponsibility of computations and data storage from the

client to the server. Using the framework we incorporated

the standard edge and the proposed region terms into the
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implemented active surface. Then the performance of the

proposed approach was compared with our previously de-

veloped tools [14]: the region growing and merging with

an automatic seed point initialization based on anatomical

information and the 2D active contour with an ability to

progress over a series of images.

4.2 Data sets

The tests were performed mostly on MRI hepatic data sets

of about 100 images in series, image resolution of 256 ×
256 pixels (downsampled in the case of larger images),

with the pixel spacing from 0.5 to 1.5 mm and the inter-

slice spacing from 2 to 3 mm. We present the method

results for three selected data sets:

• MRI-1, containing 100 images of a standard liver

MRI;

• MRI-2, containing 100 images of MRI with a patho-

logically changed liver and particularly separated left

and right organ lobes;

• CT-1, with 165 hepatic CT images, selected for eval-

uating the proposed method on a different imaging

modality.

4.3 Segmentation quality measures

The segmentation quality was evaluated with three com-

monly used error measures [7], where A is the tested seg-

mentation and B is the reference. The first one is the

Overlap Error (OE), defined as:

OE(A,B) = 100(1− (|A
⋂
B|/|A

⋃
B|)) (5)

The 0 value indicates that the two sets are identical and

100 that the sets do not overlap.

The second measure is the Relative Volume Difference

(RVD), defined as:

RVD(A,B) = 100((|A| − |B|)/|B|) (6)

(a) (b)

(c) (d)

Fig. 4: Segmentation of MRI-1 set: sample image (a) and
the manual liver outline (b), corresponding segmentation
(c) and the final surface (d).

Combined with other measures that consider the actual

set overlap, it can indicate a tendency to over- or under-

segmentation of the method.

The third measure is the Average Symmetric Surface

Distance (ASD) that computes an average distance (in

millimeters) between the surfaces of segmentationsA and

B. With S(X) as the set of surface voxels of segmenta-

tionX and d(v, S(X)) as a shortest distance from a voxel

v to surface S(X), ASD can be defined as:

ASD(A,B) =
1

|S(A)|+ |S(B)|

 d∑
sA∈S(A)

d(sA, S(B))

+
∑

sB∈S(B)

d(sB , S(A)

 (7)

The distance of 0 indicates the ideal segmentation.

4.4 Results

The manual reference segmentation was performed by an

experienced user. The quality measures of the results are

presented in Tab. 4.3 and the average time of the segmen-
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Fig. 5: Surface evolution during four cycles of the seg-
mentation of MRI-1.

Measures
Method OE RVD ASD

MRI-1 Region Grow. 14.47 -5.54 2.79
2D Snake 9.31 -4.43 2.43

3D Surface 12.10 -6.89 3.07

MRI-2 Region Grow. 16.44 -10.17 2,07
2D Snake 11.27 -2.40 1.89

3D Surface 25.67 -24.63 4,64

CT-1 Region Grow. 8.89 -0.57 0.94
2D Snake 12.45 4.17 2.61

3D Surface 14.10 -7.83 1.71

Tab. 1: Segmentation quality

tation is enclosed in Tab. 4.3. The calculations were per-

formed on a desktop machine with 2.66 GHz Core2 Quad

processor and 3 GB RAM. The average cycle of the al-

gorithm was 5 s long and a usual segmentation process

required 3 to 5 cycles (see Fig. 5) plus additional 5 sec-

onds for the preprocessing. The usual final surface mesh

was composed of approximately 2500 vertices and 5000

triangle faces.

Comparing with our previously developed tools, the

proposed active surface method shows a significant time

(a) (b)

(c) (d)

Fig. 6: Segmentation of MRI-2 set: the final segmentation
(b) do not fully match the reference region (a) and one of
the liver lobes (c) is completely absent from the segmen-
tation (d).

Data set Manual R.Grow. Snake Surface
MRI-1 25-30 10-15 6-8 0.33
MRI-2 40-45 10-15 7-10 0.4
CT-1 45-50 28-20 10-15 0.5

Tab. 2: Segmentation time (in minutes)

gain, at the slight expense of the overall quality. The

biggest errors could be noticed in the outermost images in

the sets, especially at the narrow bottom of the right liver

lobe, due to the high force of the curvature constraint and

the presence of the partial volume effect [1].

Due to the adaptive nature of the proposed method, the

default values of most of its parameters were usually used.

The deformation distance was set to 0.01 (about 2 voxels),

with 3 reduction cycles and 10 iterations. These values

enabled the fast expansion of the model inside the organ.

The curvature level was the parameter that needed some

interactive adjustments. To achieve the accurate results

near the edges, the curvature had to be slightly decreased

in the final cycle of the algorithm.

The volumetric representation of the surface enables

the segmentation result to be instantly visualized for fur-

ther validation and correction. The first set (see Fig. 4)
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represents a fairly standard case, where the results were

acceptable without the need of extensive manual refine-

ment. Even with the possible correction, the overall time

gain is still preserved. The second set, however, was a

greater challenge: the surface usually segmented only one

of the main lobes. A precise initialization was necessary

to deal with this case, but even with it the results were

unsatisfying (see Fig. 6).

5 Conclusion and future work

We propose a fast, semi-automatic method for 3D liver

segmentation using an active surface that evolves un-

der the influence of edge and region image forces. The

method significantly speeds up the segmentation time.

However, it shows some difficulties with segmentation

of organs with atypical shape and features. The method

could be improved with an introduction of a global re-

gion of interest [8], which would represent a deformation

potential, based on the internal region statistics of the sur-

face. The current intensity-based characteristics could be

also replaced with textural features. A more advanced

topology resampling algorithm [11] can be used to im-

prove the segmentation of the narrowings in the organ.

The presented method is a part of our currently devel-

oped segmentation and visualization environment, that is

planned to be made available as a web application. The

computational logic of the system will be deployed on

powerful multi-core machines. That would open the a

possibility of parallelization of the implemented method.
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