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Summary. This paper presents a two-dimensional deformable model-based image
segmentation method that integrates texture feature analysis into the model evolu-
tion process. Typically, the deformable models use edge and intensity-based features
as the influencing image forces. Incorporation of the image texture information can
increase the methods effectiveness and application possibilities. The algorithm gen-
erates a set of texture feature maps and selects the features that are best suited for
the currently segmented region. Then, it incorporates them into the image energies
that control the deformation process. Currently, the method uses the Grey Level
Co-occurrence Matrix (GLCM) texture features, calculated using hardware accel-
eration. The preliminary experimental results, compared with outcomes obtained
using standard energies, show a clearly visible improvement of the segmentation on
images with various texture patterns.

1 Introduction

Efficient and robust image segmentation is one of the main challenges in com-
puter vision. Deformable models [1] are a widely used class of segmentation
methods. Generally, a deformable model is an active shape (e.g., a 2D contour
or a 3D surface) that tries to adapt to a specific image region. This adaptation
process is influenced by external and internal forces that deform the shape to-
wards the boundaries of the segmented region. The external forces attract the
model to desired image features, while the internal forces control its smooth-
ness and continuity. This formulation allows the models to overcome many
problems, like image noise and boundary irregularities. External forces can
come from a variety of image features. The most common approaches use the
edge or intensity statistics of the segmented region [2, 3, 4]. This makes the
deformable models well suited for extraction of areas with distinctive (but
not necessary continuous) borders and fairly uniform texture. However, larger
patterns with high contrast pose a greater challenge to traditional methods.
Deformable models were introduced with a seminal “snake” algorithm [2],
which was a parametric active contour with an edge-based image force and a
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set of internal energies that controlled bending and stretching of the curve.
Since then, the classical model has been heavily modified and extended, e.g.,
with addiction of expansion forces [5], edge-based vector field energies [3],
adaptive topology mechanisms [6] and region-based image energies [4, 7]. Fur-
thermore, methods combining deformable models with texture extraction and
classification [8] were also introduced. Texture-based methods generally fall
into two categories: utilising information obtained from supervised texture
analysis, or using the calculated features without earlier classification. The
supervised methods can require an initial analysis stage, which provides in-
formation about the number and characteristics of distinctive patterns in the
image [9], or they can use a selected set of features to create a deformation
map that influence the evolution of the model [10]. Unsupervised methods can
extract the required information using the initial region intensity statistics to
create a likelihood deformation map [11], or, in case of patters with a larger
scale, use a small bank of Gabor filters to extract the features [12, 13]. Texture
features can also be used to improve the segmentation process alongside other
image characteristics [14].

In this paper, we present a texture-based image energy for a two-dimen-
sional parametric active contour. The energy incorporates texture features
into our template active contour framework [15]. The proposed energy can
be used alongside other image forces, expanding the application possibili-
ties of the method. Currently, the energy utilises features based on Gray-
Level Co-occurrence Matrices (GLCM) [16]. The features are generated using
hardware-accelerated implementation, which allows an efficient creation of a
large feature set. The preliminary experiments were performed on synthetic
images with various texture patterns and show a visible improvement over
typical image energies.

2 Texture-based active contour

The proposed algorithm incorporates a texture-based image energy into a
discrete parametric snake [17] with an adaptive topology reformulation abili-
ties [6]. The energy makes the snake to expand into a region with a uniform
texture that is similar to the initial region of the contour.

Firstly, the snake is manually initialised inside the segmented region. Next,
the algorithm generates a set of texture feature maps and selects the features
that are best suited for the currently segmented area. Finally, the contour
evolution process expands the snake under the influence of the texture energy,
which is based on the selected features. This algorithm can be presented in a
pseudocode:

Require: Initialisation of the snake s
1: Generate the initial texture feature maps set Tt
2: Initialise empty set Theq: for selected texture feature maps
3: for all texture feature map t € T;,,;; do
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if t meets the selection condition then
add t to Tpest
end if
end for
: Create external energy Ei., using Tpest
: repeat
10: for all snake point p € contour s do
11: Minimise the local energy of p using E;., and other energies
12: end for
13: until convergence of snake s
14: return the segmented region.
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The detailed descriptions of the algorithm steps are presented below.
Initialisation

Initialisation of the contour is the crucial step in the current version of our
algorithm. The initial snake should be manually placed inside the segmented
area and in a region of a possibly uniform texture. Furthermore, the contour
area should be large enough to cover the texture pattern and capture the
entirety of its characteristics, preferably by including several texture pattern
tiles.

Texture feature maps generation and selection

The next step of our algorithm is generation of the texture feature maps. The
features are calculated for each pixel of the source image, that results in a set
of feature maps.

The currently used texture features, generated from the Grey-Level Co-
occurrence Matrix, are: Entropy, Correlation, Homogeneity, Contrast and En-
ergy. The maps are generated for different sets of GLCM parameters: window
size (from 3x3 to 11x11 by default), displacement (from 1 to 3 pixels) and
orientation (0°, 45°, 90°, 135°and for all four angles). The algorithm, how-
ever, is not limited to the GLCM approach — any method that can generate
a feature map of the segmented image can be used.

The following algorithm step selects the texture feature maps that will be
used in the segmentation process. The algorithm prefers features that have a
low dispersion inside the initial contour region. In order to mark the region,
a binary mask is created from the initial curve. For the pixels covered by
the mask in each of the feature images ¢;, the mean of the feature values Z;,
standard deviation o; and Relative Standard Deviation %RSD; = % x 100
are calculated. The texture feature maps used for the segmentation process
must have the %RSD lower than a user-specified threshold (equal to 65% by
default). As there is no supervised texture classification step and the number of
different textures in the image is not known, this condition selects the texture
features that, hopefully, will distinguish the segmented area from regions with
different textures.

189



Additionally, the selection step can reduce the number of maps by analysing
their similarity for different orientations in groups with the same feature, win-
dow size and displacement. By default, the algorithm generates one map for
each of the orientations and one extra map with an averaged response for
all angles. Then, it selects only the directional maps which have their fea-
ture value mean (inside the initial region) sufficiently different (at least 50%
by default) from the feature mean in the averaged map. However, in case
of a clearly isotropic texture pattern, generation of the maps with different
orientations can be manually turned off and simplified by creating only the
averaged response map.

Contour evolution process

The snake evolution process aims to minimise the energies of the contour
points (snaxels) by moving them to the positions of the lowest local energy. A
typical intensity energy E? , for a snaxel s and a potential destination point p
can be defined as:

1 . _
o 1 otherwise,

where I(p) is the intensity value in point p, T and o are the intensity mean
and standard deviation in the snake initial region, 6 is the user-specified sen-
sitivity threshold and d(s,p) is the distance between the location of snaxel s
and point p. As the energy is inversely proportional to the distance between
the current snaxel and its potential position, it prefers more distant points,
enabling the expansion of the contour.

Our texture energy Iy, works in a way similar to the energy described
above, but it takes all the generated texture feature map into consideration:
the current snaxel can be moved into the new position only if the similarity
condition is fulfilled for all the selected texture feature maps, as defined in:

pe gy [ V€ T )~ <000
“ 1 otherwise,

where t is a texture feature map in the selected set Tyest, Z; and oy are the
feature mean and standard deviation in the snake initial region, val:(p) is the
value of the texture feature in the point p, and € is a user-defined constant.
This energy works under two assumptions: (a) features with a low dispersion in
the initial snake region have a potential to discriminate it from other patterns
and (b) a significant value change in one of the maps blocks the current snaxel
from further movement.

190



Fig. 1. Segmentation of a high contrast pattern: (a) result of the segmentation with
the default intensity energy (initial circular contour visible in blue), (b) calculated
GLCM Contrast map and (c) result of the proposed energy.

Fig. 2. Segmentation of a coarse-grained texture: (a) initialisation (in blue) and
result (in yellow) using the default intensity energy and (b) result using the proposed
energy.

3 Experimental results

This section shows the segmentation results of the proposed method. The
experiments were performed on a machine with AMD FX 8150 Eight-Core
processor, 16 GB RAM, Nvidia GeForce GTX 660 graphics card (with 960
CUDA cores), and running on Ubuntu 12.04. The total segmentation time
was less than 5 seconds for each of the presented examples.

The algorithm was implemented using the MESA system [15] — a plat-
form for designing and evaluation of the deformable model-based segmenta-
tion methods. MESA provides a template system for construction of active
contours from exchangeable elements (i.e., models, energies and extensions),
allowing an easy comparison of the proposed approach with other energies.
The GLCM texture generation algorithm was implemented in OpenCL [18]
and integrated with the existing code using a Java binding library (JOCL from
www.jocl.org). OpenCL allowed utilisation of the graphical processing units,
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(a) (b)

Fig. 3. Example of a fine-grained texture segmentation: (a) result with the intensity
energy, (b) result with the texture-based energy and (c) a sample texture map
(GLCM Energy) that discriminates the two regions.

which effectively led to a significant speedup of the algorithm (from a few
minutes on CPU-based implementation to a few seconds using the hardware-
accelerated version).

The method was tested on 256 x 256 synthetic images created using the
Brodatz texture database [19]. The initial contours were manually placed in-
side the desired region and scaled to the preferred size. During the exper-
iments, only the sensitivity parameter 6 was modified (between 3 and 4),
while the other parameters were left constant on default values.

The first example (see Fig. 1) presents a segmentation of a region with a
high contrast texture. The size and intensity dispersion of the pattern make it
impossible to segment with an edge-driven force or with the described default
intensity-based energy (see Fig. 1(a)). However, using a GLCM Contrast map
(see Fig. 1(b)), the texture-based energy managed to correctly drive the snake
to the region boundaries (see Fig. 1(c)).

The second example (see Fig. 2) shows the result for a more coarse-grained
pattern. Again, the intensity-based energy failed to distinguish between two
regions with a similar average intensity. The third example (see Fig. 3) shows
a difficult situation, where two regions with different textures not only have
a similar average intensity, but also do not have an evident border between
them. While the intensity-based energy could not be adjusted to segment
the region, the texture-based approach easily separates the two problematic
areas. The last example (see Fig. 4) highlights the importance of the texture
map orientation selection. In a case of a highly directional texture, the energy
without angle selection fails to segment the region (see Fig. 4(a)). With this
selection enabled, the region is correctly separated from the other textures
(see Fig. 4(b)).
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Fig. 4. Importance of the texture orientation selection: (a) result without the angle
selection and (b) segmentation with orientation selection enabled.

4 Conclusions and future work

In this paper a texture-based energy for the two-dimensional parametric ac-
tive contour is presented. This energy improves the segmentation performance
on images with textures of various size, contrast and complexity. Moreover,
the algorithm does not require any previous information about the texture
classes in the segmented image. Despite the relatively large number of the
utilised features, an efficient GPU-accelerated texture generation method en-
ables a high performance of the segmentation process. The currently proposed
approach gives promising results on artificially composed images. We are cur-
rently investigating the performance and possible application of the method
on natural and medical images.

The present form of the algorithm is in an early stage of development
and can benefit from many possible improvements. An initial analysis of the
start region can be used to find an optimal parameter set for the generated
features. Furthermore, the texture feature maps in the initial step can be
calculated only for the start region of the snake, while the generation of the
complete maps can be performed after the selection, which will improve the
performance. Moreover, the currently utilised feature set (based on GLCM)
can be easily extended by incorporation of other texture feature extraction
methods, like Gabor filters [12].
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