
Global learning of decision trees by an
evolutionary algorithm 1

Marek Krętowski, Marek Grześ

Faculty of Computer Science, Białystok Technical University, Wiejska 45a, 15-
351 Białystok, Poland, e-mail: {mkret, marekg}@ii.pb.bialystok.pl

Abstract: In the paper, an evolutionary algorithm for global induction of decision
trees is presented. In contrast to greedy, top-down approaches it searches for the
whole tree at the moment. Specialised genetic operators are proposed which
allow modifying both tests used in the non-terminal nodes and structure of the
tree. The proposed approach was validated on both artificial and real-life
datasets. Experimental results show that the proposed algorithm is able to find
competitive classifiers in terms of accuracy and especially complexity.

Keywords: Data mining, decision trees, evolutionary algorithms, global induction

1 Introduction

Amount of information, which is gathered in business and scientific database
systems, is growing faster and faster. Efficient analysis of huge available data
becomes one of the most crucial problems in computer science. Knowledge
discovery in databases (KDD) is newly emerged discipline trying to cope with this
problem [9]. One of the most well known data mining techniques used in KDD
process is extraction of decision trees (DT). Many induction algorithms have been
proposed so far, e.g. CART [5] or C4.5 [16] (see [15] for exhausting
multidisciplinary review). The advantages of the DT-based approach include
among other things natural representation and ease of interpretation.

Finding the best decision tree is very difficult optimisation problem (NP-complete)
[10] and therefore most of the existing DT systems use heuristic approach based
on the top-down induction. Starting from the root node, which contains all feature
vectors from the learning set, an optimal split is searched. If effective test is found
input vectors from the considered node are divided among newly created sub-
1 This work was supported by the grant W/WI/1/02 from Białystok Technical

University

K. Saeed, J. Pejaś: Information Processing and Security Systems, pp. 401-410, 2005.
© 2005 Springer Science+Business Media, Inc.

nodes and for each one the procedure is recursively called. Such a greedy search
technique is fast and generally leads to acceptable results in typical applications. In
[14] effectiveness of the top-down induction was investigated on artificial datasets
with known optimal tree and near optimal solution was found in most of the cases.
However, it is evident that for certain classification problems (e.g. classical
“chessboard” problem [3]) top-down approach fails and more sophisticated
method should be applied.

In this paper, a global approach to decision tree induction is advocated. In contrast
to typical stepwise construction, in the proposed method the whole tree is searched
at the time. It means simultaneous search for an optimal structure of the tree and
for all tests in non-terminal nodes. As it could be expected, global tree
construction is far more complicated and computationally complex problem. As a
first step toward global induction limited look-ahead algorithms are proposed (e.g.
APDT [17] evaluates goodness of a split based also on the degree of linear
separability of sub-nodes). Another approach consists in a two-stage induction,
where a greedy algorithm is applied in the first stage and then the tree is refined to
be as close to optimal as possible (e.g. GTO [1] is an example of linear
programming based method for optimising trees with fixed structures). In [11]
Koza proposed adopting genetic programming (GP) methods for evolving LISP S-
expressions corresponding to decision trees. Another GP-based system for
induction of classification trees with limited oblique splits is presented in [4].

The proposed approach consists in developing a specialised evolutionary
algorithm for generation of decision tree classifiers. Evolutionary algorithms (EA)
are flexible optimisation techniques, which were inspired by the process of
biological evolution [13]. Their main advantage over greedy search methods is
their ability to avoid local optima. Several EA-based systems, which learn decision
trees in the top-down manner (e.g. BTGA [7], OC1-ES [6], DDT-EA [12]), have
been proposed so far. Generally, they applied evolutionary approach to the test
search, especially in the form of hyper-planes.

The rest of the paper is organised as follows. In the next section, the proposed
evolutionary algorithm for global induction of decision tree is presented in details.
Section 3 contains experimental validation of the approach on both artificial and
real-life classification problems. In the last section conclusions and possible
directions of the future work are presented.

2 Evolutionary Decision Tree Learning

The proposed evolutionary algorithm follows the general framework presented in
[13]. In this section, only application-specific issues are described: representation,
genetic operators and the fitness function.

2.1 Representation, initialisation and termination condition

There are two the most common strategies of applying evolutionary approach to
solve optimisation problems. In the first approach, the candidate solutions are
encoded in the fixed-size (usually binary) chromosomes, which allow using
standard genetic operators: crossover and mutation. The second approach consists
in applying more sophisticated representations (e.g. variable-length) and
developing specialised genetic operators.

Decision trees are complicated tree structures, in which number of nodes, type of
the tests and even number of test outcomes are not known in advance. It is why the
second aforementioned approach is the most adequate, especially if the whole tree
is searched in one run of EA. In our system, decision trees are not especially
encoded in individuals and they are represented in their actual form.

Each test in non-terminal nodes concerns only one attribute. Depending on the
type of the feature used (nominal or continuous-valued) two test forms are
possible. In case of a nominal attribute each value is associated with one branch.
For a continuous-valued feature only typical inequality test with two outcomes is
allowed (attributei ≤ thresholdi). It was shown [8] that for finding the maximum of
certain class of target functions it is sufficient to consider only so-called boundary
thresholds as potential splits. A boundary threshold for the given attribute is
defined as a midpoint between such a successive pair of examples in the sequence
sorted by the increasing value of the attribute, that one of the examples is positive
and the other is negative (Fig. 1). The above property also holds for our fitness
function.

 class A

 class B boundary thresholds

Fig. 1. The notion of the boundary threshold for the given attribute.

Hence before starting the actual evolutionary algorithm, all boundary thresholds
for each continuous-valued attribute are calculated. It enables to significantly limit
the number of possible spits and focus the search process. As a result the algorithm
is faster and more robust.

Each individual in the initial population is generated as follows. The classical top-
down algorithm is applied, but tests are chosen in a dipolar way [12]. Among
feature vectors located in the considered node two objects from different classes
are randomly chosen. An effective test, which separates two objects into sub-trees,
is created randomly taking into account only attributes with different feature

values. Recursive divisions are repeated until stopping conditions are met. Finally,
the resulting tree is post-pruned based on the fitness function.

The algorithm terminates if the fitness of the best individual in the population does
not improve during the fixed number of generations (default value is equal 1000),
which signalises, that the algorithm converged. Additionally the maximum number
of generations is specified, which allows limiting the computation time in case of a
very slow convergence (default value: 10000).

2.2 Genetic operators

Two specialised and complex genetic operators are proposed: CrossTrees and
MutateNode. The first one is an equivalent of the standard crossover operator. It
alters two chromosomes by exchanging certain parts of input trees. There are three
possible types of the exchange: two types of sub-trees exchange and exchange of
only tests. At the beginning, regardless of the type, one node in each tree is
randomly chosen. Then the type of exchange between trees is decided. In the
system implementing the presented EA, all variants of CrossTree operator are
equally probable. In the simplest situation, sub-trees starting from the chosen
nodes are substituted (Fig. 2a). This variant is analogous to the typical crossover
operator utilised in genetic programming. The second possibility consists in
exchanging tests, which are associated with the chosen nodes (Fig. 2b). This type
of the operator is only possible, when tests have the same number of outcomes.
The last variant of the CrossTree seems to be the most complicated. Branches (and
their sub-trees), which start from the chosen nodes are exchanged in random order
(Fig. 2c). It could be observed that the last possibility is somehow redundant,
because the same effect can be achieved by combining two (or more) exchanges of
the first type.

It should be noted that in all variants after application of the operator, locations of
input feature vectors in altered parts of the tree should be determined once again.
This can lead to such a situation, where there are nodes (or even sub-trees) without
any feature vectors from the learning set. As a result, empty parts of trees have to
be removed.

The second operator MutateNode is a mutation-like one and it is applied with the
given probability (default value: 0.05) to every single node of the tree. This
operator can cause a modification of the test or a change of the node structure. If a
non-terminal node is concerned it can be pruned to a leaf or its test can be altered.
When modifying the test the following four possibilities are equally probable:

- a new threshold can be randomly chosen without changing the attribute
used in the test,

- a completely new test is applied with another randomly chosen attribute
and threshold,

- the current sub-tree can be replaced by a sub-tree copied from the
neighbouring node (this does not apply to the root node),

- the test can be exchanged with another test taken from randomly chosen
son-node (this does not apply to nodes with only leaves as sons).

If a leaf node containing feature vectors from different classes is concerned two
options are possible. The leaf can be replaced by:

- a non-terminal node with a new randomly chosen test,

- a sub-tree generated according to dipolar algorithm applied for
initialisation.

a)

b)

c)

Fig. 2. CrossTree operator: a) exchange of sub-trees, b) exchange of tests in the randomly
drawn nodes; the structure of sub-trees remains not changed, but input vectors can be

redirected, c) exchange of branches in random order.

As a selection mechanism the linear ranking selection [13] is applied.
Additionally, the chromosome with the highest value of the fitness function in the
iteration is copied to the next population (elitist strategy).

2.3 Fitness function

The simplest form of the target function, which can be optimised in classification
problems, concerns only the quality of reclassification. However, it is well known
fact that this can lead to overspecialisation of the classifier. Introducing a
complexity term allows mitigating the over-fitting problem. The fitness function,
which is maximised, has the following form:

Fitness=QRclass−α⋅S , (1)

where QRclass is the classification quality estimated on the learning set, S is the size
of the tree (number of nodes) and α - is a relative importance of the complexity
term and a user supplied parameter. It seems rather obvious that there is no one
optimal value of α for all datasets and this parameter can be tuned for specific
problems.

3 Experimental results

In this section some preliminary experimental results are presented. First, a few
artificial datasets from so-called chessboard domain are analysed. It is well known
that such problems are difficult to solve for traditional, top-down decision tree
systems. In the second group of experiments, some real life datasets taken from
UCI Repository [2] are used to generate DT classifiers. Classification accuracy is
estimated by running 10 times either the complete ten-fold cross-validation or by
using a test set. Size of the classifier is given as a number of all nodes in the tree.
Our system (described as a GDT-EA in tables) is run with default parameters
mentioned earlier in the system description. The population size is set to 50. For
the purpose of the comparison, results obtained by one of the most popular
decision tree system - C4.5 (release 8, default parameters) [16] are also presented.

3.1 Artificial datasets

Two examples of chessboard training datasets are depicted in Figure 3. Decision
borders are defined analytically and both training and test sets were created by
using random number generator (number of feature vectors in each compartment is
equal 100).

a) b)

Fig. 3. Examples of chessboard datasets: a) 2x2, b) 3x3.

In the global approach parameter α from the fitness function can be used for
finding appropriate balance between re-classification accuracy and generalisation
power related to the tree complexity. In the first experiments, it is verified how
GDT-EA is sensitive to the choice of α parameter (Figure 4). It can be observed
that for relatively broad range of values (0.01-0.001) optimal trees were found.
Further decrease of α parameter results in performance deterioration especially in
terms of tree simplicity. All subsequent experiments are run with α equal 0.0025.

Fig. 4. Impact of α on classification quality and tree size (chessboard 3x3 dataset)

Results obtained by GEA-DT and by C4.5 are compared in Table 1. As it could be
expected, global induction of decision tree allowed outperforming one of the most
popular representatives of the top-down approach. It is especially visible for even
problems, where C4.5 is able to only find trees degenerated to root nodes. It is
worth to emphasise that decision trees proposed by GEA-DT were not only
optimal or almost optimal in terms of the classification quality but also they were
very compact.

Data set GEA-DT C4.5
Quality [%] Size Quality [%] Size

2x2 99.9 ± 0.1 7.0 ± 0.0 50.0 1.0

3x3 99.1 ± 0.2 17.0 ± 0.0 98.6 23.0

4x4 97.9 ± 0.2 31.0 ± 0.0 50.0 1.0

Tab. 1. Results obtained for chessboard datasets.

EA-based methods are sometimes criticised as being too slow to be applied for
really big datasets. In the last experiment, we try to verify how GDT-EA scales
with the growth of learning set size. For this purpose a series of datasets with
number of objects varying from 100 to 100000 corresponding to the chessboard
3x3 problem was prepared. In Figure 5 obtained results in terms of classification
accuracy and computation time are depicted (on log scale). It should be noticed
that even for the biggest dataset GDT-EA is able to find the optimal solution in
reasonable time (approximately 1.5h).

Fig. 5. Performance of GDT-EA with increasing dataset size (chessboard 3x3 domain).

3.2 Real datasets

Description of analysed real-life datasets is presented in Table 2 and results of
experiments are collected in Table 3.

Name Number of
cases

Number of
attributes

Number of
classes

breast (bcw) 683 9 2
bupa 345 6 2
cmc 1473 9 3
iris 150 4 3

Name Number of
cases

Number of
attributes

Number of
classes

page-blocks 5473 10 5
pima 768 7 2
vehicle 846 18 4
wine 178 13 3

Tab. 2. Description of the real datasets.

It could be observed that results in terms of the classification quality obtained by
the proposed approach and C4.5 are at least comparable. In a few domains GEA-
DT performed better and in the others C4.5 was slightly more efficient. It could be
also noticed that evolutionary approach was more efficient in term of the size of
the classifier. Trees are significantly simpler and it is especially important in the
context of understandability of discovered knowledge.

Dataset GEA-DT C4.5
Quality [%] Size Quality [%] Size

breast (bcw) 95.4 ± 0.2 7.7 ± 0.1 94.9 26.0
bupa 65.6 ± 0.4 21.5 ± 0.2 64.7 44.6
cmc 54.9 ± 0.2 10.7 ± 0.2 52.2 223.8
iris 95.3 ± 0.2 8.2 ± 0.1 94.7 8.4
page-blocks 95.3 ± 0.1 8.2 ± 0.2 97.0 82.8
pima 73.8 ± 0.3 7.4 ± 0.2 74.6 40.6
vehicle 69.7 ± 0.3 29.6 ± 0.5 72.3 129.0
wine 88.1 ± 2.1 9.8 ± 0.4 85.0 9.0

Tab. 3. Results obtained for real datasets.

4 Conclusion

In the paper global approach to induction of decision trees is presented.
Specialised evolutionary algorithm is proposed as an efficient search mechanism.
Experimental validation shows that the proposed method is able to find accurate
and very compact classifiers. Moreover, some improvement can still be obtained.

Several directions of future research exist. One of them could be more
sophisticated fitness function, especially in part dealing with complexity of the
classifier. We also plan to incorporate into the induction process variable
misclassification costs and feature's cost, which could be especially useful in
medical decision support. Another idea is an extension of the presented approach
to induction of oblique trees, where not only axis-parallel tests are applied to split
the data.

5 References

[1] Bennett K., “Global tree optimization: A non-greedy decision tree algorithm”,
Computing Science and Statistics 26, pp.156-160, 1994.

[2] Blake C., Merz C., “UCI Repository of machine learning databases”
[http://www.ics.uci.edu/~mlearn/MLRepository.html] Irvine, CA: University
of California, 1998.

[3] Bobrowski L. “Piecewise-linear classifiers, formal neurons and separability of
the learning sets”, Proc. of ICPR'96, IEEE CS Press, pp. 224-228, 1996.

[4] Bot M., Langdon W., “Application of genetic programming to induction of
linear classification trees”, Proc. of EuroGP, LNCS 1802, pp.247-258, 2000.

[5] Breiman L., Friedman J., Olshen R., Stone C., “Classification and Regression
Trees”, Wadsworth International Group, 1984.

[6] Cantu-Paz E., Kamath C., “Inducing oblique decision trees with evolutionary
algorithms”, IEEE Trans. on Evol. Computation 7(1), pp. 54-68, 2003.

[7] Chai B., Huang T., Zhuang X., Zhao Y., Sklansky J., “Piecewise-linear
classifiers using binary tree structure and genetic algorithm”, Pattern
Recognition 29(11), pp. 1905-1917, 1996.

[8] Fayyad U., Irani K., “Multi-interval discretization of continuous-valued
attributes for classification learning”, Proc. of IJCAI'93, Morgan Kaufmann,
pp. 1022-1027, 1993.

[9] Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R., (eds.) Advances
in Knowledge Discovery and Data Mining, AAAI Press, 1996.

[10] Hayfil L., Rivest R., “Constructing optimal binary decision trees is NP.-
complete”, Information Processing Letters 5(1), pp. 15-17, 1976.

[11] Koza J., “Concept formation and decision tree induction usisng genetic
programming paradigm”, Proc. of PPSN 1, LNCS 496, pp. 124-128, 1991.

[12] Krętowski M., “An evolutionary algorithm for oblique decision tree
induction”, Proc. of ICAISC’04, Springer, LNCS 3070, pp.432-437, 2004.

[13] Michalewicz Z., “Genetic Algorithms + Data Structures = Evolution
Programs”, Springer, 1996.

[14] Murthy S., Salzberg S., “Decision tree induction: How effective is the greedy
heuritics?”, Proc. of KDD-95, 1995.

[15] Murthy S., “Automatic construction of decision trees from data: A multi-
disciplinary survey”, Data Mining and Know. Disc. 2, pp. 345-389, 1998.

[16] Quinlan J., “C4.5: Programs for Machine Learning”, Morgan Kauf., 1993.

[17] Shah S., Sastry P., “New algorithm for learning and pruning oblique decision
trees”, IEEE Trans. on SMC - Part C 29(4), pp. 494-505, 1999.

