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Metaheuristics, such as evolutionary algorithms (EAs), have been successfully applied to
the problem of decision tree induction. Recently, an EA was proposed to evolve model
trees, which are a particular type of decision tree that is employed to solve regression prob-
lems. However, there is a need to specialize the EAs in order to exploit the full potential of
evolutionary induction. The main contribution of this paper is a set of solutions and tech-
niques that incorporates knowledge about the inducing problem for the global model tree
into the evolutionary search. The objective of this paper is to demonstrate that specialized
EA can find more accurate and less complex solutions to the traditional greedy-induced
counterparts and the straightforward application of EA.

This paper proposes a novel solution for each step of the evolutionary process and pre-
sents a new specialized EA for model tree induction called the Global Model Tree (GMT). An
empirical investigation shows that trees induced by the GMT are one order of magnitude
less complex than trees induced by popular greedy algorithms, and they are equivalent
in terms of predictive accuracy with output models from straightforward implementations
of evolutionary induction and state-of-the-art methods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The most common predictive tasks in data mining [17] are classification and regression. Decision trees [29,36] are one of
the most popular prediction techniques. The success of tree-based approaches can be explained by their ease of application,
speed of operation, and effectiveness. Furthermore, the hierarchical tree structure, where appropriate tests from consecutive
nodes are sequentially applied, closely resembles a human method of decision making, which makes decision trees natural
and easy to understand even for inexperienced analysts. Regression and model trees [22] are variants of decision trees, and
they have been designed to approximate real-valued functions instead of being used for classification tasks. The main dif-
ference between a regression tree and a model tree is that, in the latter, a constant value in the terminal node is replaced
by a regression plane.

Inducing an optimal model tree, as with the problem of learning an optimal decision tree, is known to be NP-complete
[24]. Consequently, practical decision-tree learning algorithms are based on heuristics such as greedy algorithms, where
locally optimal decisions are made in each tree node. Such algorithms cannot guarantee to return the globally optimal deci-
sion tree. The purpose of this paper is to illustrate the application of a specialized evolutionary algorithm (EA) [27] to the
problem of model tree induction. The objectives are to show that evolutionary induction may result in finding globally
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optimal solutions that are more accurate and less complex than the traditional greedy-induced counterparts and straight-
forward application of EA. This research shows the impact of the application of specialized EAs on the tree structure, tests
in internal nodes, and models in the leaves. By incorporating the knowledge about global model tree induction, the full
potential of EAs is exploited. Local optimizations are also proposed for EAs problem search, which is known as a memetic
algorithm [28,7].

Our previous research showed that global inducers are capable of efficiently evolving accurate and compact univariate
regression trees [25], called Global Regression Trees (GRT), and model trees with simple linear regression in the leaves
[8,10]. In our previous papers, we proposed model trees with multiple linear regression in the leaves [9] and considered
how memetic extensions improve the global induction of regression and model trees [11]. This paper reviews and signifi-
cantly extends our previous work on model trees in almost every step of evolutionary induction. We introduce new special-
ized operators and local search components that improve pure evolutionary methods and propose a smoothing process to
increase the prediction accuracy of the model tree. A new multi-objective optimization strategy (lexicographic analysis) is
verified as an alternative fitness function to a weight formula. Additional data sets and new experiments illustrate the advan-
tage of the global search solutions for popular model tree algorithms.

This paper is organized as follows. The following section provides a brief background on model trees, reviews related
work, and describes some of the advantages with regard to using EAs for model tree induction. Section 3 describes the
approach and demonstrates how each step of the EA can be improved. Section 4 presents a validation of the proposed solu-
tions in three sets of experiments. In the last section, the paper is concluded and possible future works are sketched.

The presented experiments demonstrate how each step of the EA can be improved.
2. Global vs local induction

Decision trees are often built through a process that is known as a recursive partitioning. The most popular tree-induction
is based on the top-down approach [35]. It starts from the root node, where the locally optimal split (test) is searched accord-
ing to the given optimality measure (e.g., Gini, Twoing, or the entropy rule for classification trees and the least squared or
least absolute deviation error criterion for regression trees). Next, the training data is redirected to newly created nodes, and
this process is repeated for each node until some stopping-rule is violated. Finally, post-pruning [15] is applied to improve
the generalization power of the predictive model. Inducing the decision tree through a greedy strategy is fast and generally
efficient in many practical problems, but it usually produces locally optimal solutions.

One of the first and most well-known top-down regression tree solutions is the Classification and Regression Tree (CART)
[5]. The method searches for a locally optimal split that minimizes the sum of squared residuals of the model and builds a
piecewise constant model with each terminal node fitted by the training sample mean. The following solutions managed to
improve the prediction accuracy by replacing single values in the leaves with more advanced models. The M5 system [39]
induces a model tree that contains at leaves multiple linear models analogous to piecewise linear functions. The HTL [41] is
even more advanced and evaluates linear and nonlinear models in terminal nodes.

Multiple authors have proposed methods to limit the negative effects of inducing the decision tree with the greedy strat-
egy. In SECRET [13], authors suggest that changing a regression problem into a classification one may help in finding more
globally optimal partitions. A different solution was proposed in SMOTI [26], where regression models exist not only in the
leaves but also in the upper parts of the tree. The authors suggested that this technique allows individual predictors to have
both global and local effects on the model tree. A more recent innovation for finding optimal splits in nodes was presented in
LLRT [42]. The LLRT solution can do a near-exhaustive evaluation of all possible splits in a node based on the quality of fit of
the linear regression models in the resulting branches.

In the literature, there have been some attempts to apply an evolutionary approach for the induction of decision trees,
including regression and model trees. For an extensive review, please refer to [3]. In TARGET [16], the authors proposed to
evolve a CART-like regression tree with simple genetic operators. The Bayesian information criterion (BIC) [37] was used
as a fitness function, which penalizes the tree for over-parameterization. A more advanced system called E-Motion was pro-
posed in [2]. The authors evolved univariate trees with linear models in the leaves and optimized their prediction errors and
the tree size. E-Motion implements standard 1-point crossover and two different mutation strategies (shrinking and expand-
ing) to variate individuals. The GPMCC [32] approach proposed to evolve model trees with non-linear models in the leaves. In
most of the papers, performing such a global search in the space of candidate solutions successfully competes with popular
greedy methods. However, almost all algorithms from [3] apply only the basic variants of EA, which do not incorporate
knowledge of the decision tree’s induction.

In this paper, we would like to fill this gap by proposing specialized operators and memetic extensions for the evolution-
ary induction of model trees.

To illustrate the simple scenario where evolutionary induced model trees are beneficial, we prepared two artificially gen-
erated datasets, with analytically defined decision borders (1) and (2) illustrated in Fig. 1. Both datasets contain an attribute
that is linearly dependent with one or two independent attributes.

The data set on the left (denoted as split plane3) can be perfectly predictable with regression lines on subsets of the data
resulting from a single partition at threshold x1 ¼ �2, and it is described by Eq. (1). Most of the popular greedy top-down
inducers that minimize the residual sum of squares (like CART) or standard deviation (like M5) will not find the best
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Fig. 1. Examples of artificial datasets: split plane3 – left, armchair3 – right.

Fig. 2. Examples of model trees for data set split plane3 for global approach (left) and greedy M5 algorithm (right) and the corresponding linear models in
the leaves.
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partitions. In Fig. 2, the output trees for the greedy (M5) and evolutionary approach are compared. The evolutionary induced
model tree can partition the data at threshold x1 ¼ �2:00 because it can search globally for the best solution. However, the
M5 algorithm is trapped in the local optima and finds the threshold at x1 ¼ �1:2. A non-optimal partition in the root node
increases the tree size and has a strong influence on prediction errors. For this dataset, the CART also returns non-optimal
solutions and splits the root node at x1 ¼ �0:44. The output tree for CART is not shown, as the algorithm found an even larger
tree than M5.

Data set Armchair3 and its underlying model, Eq. (2) in Fig. 1, is much more complex than dataset split plane3. Many tra-
ditional approaches will fail to efficiently split the data, as the greedy inducers search only for locally optimal solutions (at
the current node). Similar to the previous experiment, evolutionary inducers manage to find the first split at x1 ¼ 1:00 and
induce an optimal tree. Trees induced by greedy algorithms (like M5) need more than 18 multiple linear regression rules
because the split in the root node is incorrect (x1 ¼ 3:73).
3. Evolutionary induction of the global model tree

In this section, we would like to propose the solution called Global Model Tree (GMT), which is an evolutionary approach for
the global induction of model trees. The GMT general structure follows a typical framework for an evolutionary algorithm with
an unstructured population and a generational selection. Each step of the GMT will be discussed separately: representation,
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initialization, fitness function, selection and terminal condition, genetic operators, and smoothing. In each step, knowledge of
the model tree induction was incorporated into the evolutionary search. The process diagram of the GMT algorithm is illus-
trated in Fig. 3.

3.1. Representation

The type and the way of representing the individuals may define the type of EA used. A genetic algorithm is normally used
when solutions are encoded in a fixed-length linear string and only data is encoded. Tree-encoding schemes usually imply
genetic programming (GP), where the solution encodes data and functions [44].

Decision trees are complicated tree structures in which the number of nodes, the type of tests, and even the number of
test outcomes are not known in advance. This is why the second aforementioned approach is more suitable, especially if the
entire tree is searched in one EA run. Therefore, in our system, model trees are not encoded in individuals, and they are rep-
resented in their actual form as typical univariate trees with multiple linear models in the leaves. An example individual
induced in dataset armchair3 is illustrated in Fig. 4a and visualized in Fig. 4b. The image on the right visualizes the partition
space given by the GMT. Each test in a non-terminal node concerns only one attribute (nominal or continuous). In the case of
a continuous-valued attribute, typical inequality tests are applied. For a nominal attribute, at least one value is associated
with each branch. This means that an inner disjunction is built into the induction algorithm.

In each leaf, a multiple linear model is constructed using the standard regression technique [33] with objects associated
with that node. A dependent variable y is explained by the linear combination of multiple independent features x1; x2; . . . ; xq:
y ¼ b0 þ b1 � x1 þ b2 � x2 þ � � � þ bq � xq; ð3Þ
where q is the number of independent variables, x1...q are independent variables, and b0...q are fixed coefficients that minimize
the sum of the squared residuals of the model. If q is equal to zero, the leaf node will be a regression node with single value
equal to b0.
Fig. 3. The GMT process diagram.

(a) (b)

Fig. 4. An example representation of the individual (a) and the input space partition (b) for dataset armchair3.
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In addition, in every node, information about objects and statistics (error, model size) associated with the node is stored
(see Fig. 4a). This enables the algorithm to have a more efficient local structure and tests modifications during applications of
genetic operators. When, for example, an internal node of an individual is modified during mutation or crossover, the GMT
algorithm automatically updates the statistics for its subtree. This way, each node stores actual statistics, and there is no
need to examine the entire individual to obtain information about its error or size.
3.2. Initialization

Traditionally, the initial population should be generated randomly to cover the entire range of possible solutions. In
addition, the direct application of one of the greedy algorithms can trap the EA in local optima. Therefore, while creating
the initial population, we search for a good tradeoff between a high degree of heterogeneity and a relatively low compu-
tation time.

Initial individuals are created by applying the classical top-down algorithm, similar to the M5 approach. At first, we
learn a standard regression tree, where each leaf in the tree contains a sample mean of the dependent variable com-
puted on the set of instances that reach that leaf. The recursive partitioning is finished when all the training objects in
a node are characterized by similar predicted values or there are less than 5 objects in the node. Next, the multiple
linear model is constructed for the instances in each node of the model tree. Instead of using all the attributes, which
is time consuming, the model is restricted to the ones that are referenced by tests somewhere in the subtree of this
node.

To keep the balance between exploration and exploitation, the initial individual is created based on a chosen subsample
of the original training data (10% of data, but not more than 500 examples). To ensure that the subsample contains the
objects with the various values of the predicted attribute, the training data is sorted by predicted value, split into a defined
number of equal-size folds (default: 10), and then, from these folds, objects are randomly chosen and placed into the sub-
sample. Each individual’s non-terminal node test is calculated from a random subset of attributes (default: 50%), and it is
chosen by one of the three memetic search strategies, which involves employing the locally optimized tests:

� Least Squares (LS): this function reduces the node impurity measured by the sum of the squared residuals.
� Least Absolute Deviation (LAD): this function reduces the sum of the absolute deviations. It is more robust and has greater

resistance to outlying values than LS.
� Dipolar: the dipole (a pair of feature vectors) is selected, and then a test is constructed that splits this dipole. The first

instance that constitutes the dipole is selected randomly from the set of instances from the current node. The rest of
the feature vectors are sorted in decreasing order according to the difference between the dependent variable values
and the selected instance. To find a second instance that constitutes the dipole, we applied a mechanism similar to the
ranking linear selection [27].

The choice of strategy affects the EA convergence to the global optima. Selecting a greedy optimal strategy such as LS or
LAD may slow down algorithm convergence, as it is more likely for the EA to be trapped in local optima. On the other side,
seeding the initial population with good solutions can enhance the quality of the search and shorten the execution time.
Therefore, we recommend the mix strategy for choosing non-terminal nodes in which three proposed search strategies
are balanced. Finally, we apply a pessimistic pruning mechanism [15] for individuals. This reduces the tree size of the usually
overgrown initial trees.
3.3. Fitness function

The fitness function is one of the most important and sensitive elements in the design of the EA. It drives the evolutionary
search process by measuring how good a single individual is in terms of meeting the problem objective. A single evaluation
measure may degrade the other measures [6]; therefore, multi-objective optimization may present more acceptable overall
results. In the context of model trees, a direct minimization of the prediction error measured in the learning set usually leads
to the over-fitting problem. In the typical top-down induction of decision trees [36], this problem is partially mitigated by
defining a stopping condition and by applying post-pruning [15].

There are three popular multi-objective optimization strategies [18]: the weight formula, lexicographic analysis, and Par-
eto-dominance. The weight formula transforms a multi-objective problem into a single-objective one by constructing a sin-
gle formula that contains each objective. The main drawback of this strategy is the need to find adjusted weights for the
measures. The lexicographic approach analyzes the objectives values for the individuals one by one based on the priorities.
This approach also requires defining thresholds; however, adding up non-commensurable measures, such as tree error and
size, is not performed. Pareto-dominance searches not for one best solution, but rather for a group of solutions in such a way,
that selecting any one of them in place of another will always sacrifice quality for at least one objective, while improving it
for at least one other. Apart from performance issues, the Pareto approach does not consider the fact that in most research
problems for decision trees, the error minimization is more important than the size of the tree. In this paper, the first two
approaches is applied, leaving Pareto-dominance for future studies.
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Algorithm 1. Lexicographic analysis for two individuals: T1 and T2.
T1; T2  tested individuals (trees)
RSStr  primary measure threshold
Qtr  secondary measure threshold
Wtr  tertiary measure threshold
repeat

if jRSSðT2Þ � RSSðT1Þj > RSStr then
if RSSðT2Þ > RSSðT1Þ then

return T1

else
return T2

end if
end if
if jQðT2Þ � QðT1Þj > Qtr then

if QðT2Þ > QðT1Þ then
return T1

else
return T2

end if
end if
if jWðT2Þ �WðT1Þj > Wtr then

if WðT2Þ > WðT1Þ then
return T1

else
return T2

end if
end if
RSStr ¼ RSStr=2
Qtr ¼ Qtr=2
Wtr ¼Wtr=2

until Individual with higher fitness is not found

In previous work, we have tested various weight formulas as fitness functions: CART-like formula [25], Akaike’s informa-
tion criterion (AIC) [1], and Bayesian information criterion (BIC) [37]. Research shows that the BIC as a fitness function per-
forms well as a weight formula for evolutionary induced regression trees. This measure of the goodness of fit works also as a
penalty for increasing the tree size. The BIC is given by
FitBICðTÞ ¼ �2 � lnðLðTÞÞ þ lnðnÞ � kðTÞ; ð4Þ
where LðTÞ is the maximum of the likelihood function of the tree T;n is the number of observations in the data, and kðTÞ is
the number of model parameters in the tree. Ln (likelihood) function LðTÞ is typical for regression models [20] and can be
expressed as
lnðLðTÞÞ ¼ �0:5n � ½lnð2pÞ þ lnðRSSðTÞ=nÞ þ 1�; ð5Þ
where RSSðTÞ is the residual sum of squares of the tree T. The term kðTÞ can also be viewed as a penalty for over-parameter-
ization. In the GMT, the value of kðTÞ depends on the tree size and the number of attributes in the models in the leaves. This
penalty term in the GMT is parameterized; therefore, there is a possibility to steer the complexity and the performance of the
induced trees.

This paper also tests a lexicographic analysis of the GMT as a fitness function. Each pair of individuals is evaluated by ana-
lyzing, in order of priority, one of three measures: the residual sum of squares RSSðTÞ, the number of nodes QðTÞ in the tree,
and the attributes WðTÞ in multiple linear models. We set the first priority to measure the tree error because the research
usually seeks for the most accurate trees next to the number of terminal nodes to prevent over-fitting and overgrown trees.
The last measure WðTÞ keeps the models in the leaves as simple as possible and also penalizes for over-parameterization.

The lexicographic analysis of two individuals, T1 and T2, is illustrated in Algorithm 1. The algorithm returns the individual
with the higher fitness. The analysis starts with the comparison of the tree error for the individuals: RSSðT1Þ and RSSðT2Þ. If
the difference between the values is greater than defined by the user threshold denoted as RSStr , the lexicographic analysis is
finished and the individual with the smaller RSS is returned. Otherwise, the secondary measure QðTÞ with the threshold
denoted as Q tr is analyzed and so on. If after the tertiary measure WðTÞwith threshold Wtr the individual with higher fitness
is not found, the lexicographic analysis starts from the beginning but with decreased values for the thresholds. The analysis
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is finished when one of the measures shows a difference between two individuals that is greater than the given threshold or
it turns out that both individuals have the same values for all three measures. In the algorithm, sometimes only the first mea-
sure is required to determine which individual has better fitness, while sometimes measures have to be decreased and ana-
lyzed more than once.
3.4. Selection and termination condition

Ranking linear selection is applied as a selection mechanism. In each iteration, the single individual with the highest value
of fitness function in the current population is copied to the next one (elitist strategy). Evolution terminates when the fitness
of the best individual in the population does not improve by at least 0.1% during the fixed number of generations (default:
1000). In case of a slow convergence, the maximum number of generations is also specified (default value: 10,000), as this
limits the computation time.
3.5. Genetic operators

To maintain genetic diversity, two specialized genetic meta-operators corresponding to classical mutation and crossover
have been proposed. Each evolutionary iteration starts with randomly choosing the operator type, and next, one of its vari-
ants. Both operators influence the tree structure, the tests in non-terminal nodes, and the models in the leaves. To the best of
the authors’ knowledge, all the previous evolutionary induced regression and model trees employ only the basic variants of
genetic operators. In this paper, several new and advanced variants of recombination and mutation are proposed that incor-
porate local search components (memetic algorithms) and knowledge about the global model tree induction problem into
the evolutionary search.

After each operation, it is usually necessary to relocate learning vectors between the parts of the tree rooted in the altered
node. This can cause prunning of certain parts of the tree that do not contain any learning vectors. In addition, after each
operation in the non-terminal node, the models in the corresponding leaves are not recalculated because the linear models
can be found by the mutations in the leaves.
3.5.1. Crossover
It begins with selecting positions in two affected individuals. We apply one basic variant of recombination (the first one)

and propose four additional ones:

� exchange subtrees – subtrees starting in randomly selected nodes are exchanged (this is the most commonly applied var-
iant of crossover).
� exchange tests – tests associated with randomly chosen nodes are exchanged (only when non-terminal nodes are chosen

and the number of outcomes are equal) – this crossover has lower impact than crossover (i) but greater chance of finding
better tests in both individuals.
� exchange branches – branches that start from nodes are exchanged in random order (only when non-terminal nodes are

chosen and the number of outcomes are equal) - it may be considered redundant, because the same effect can be achieved
by combining two (or more) exchanges of the first crossover (i). However, the experiments show that this variant was
very useful in escaping the local optima and that it improved the speed of convergence.
� asymmetric – the subtree of the first/s individual is replaced by a new one that was duplicated from the second/first indi-

vidual. The replaced subtree starts in the node denoted as receiver, and the duplicated subtree starts in the node denoted
as donor. This is illustrated in Fig. 5. It is preferred that the receiver node has a high error per instance because it is
replaced by the donor node, which should have a small value of Mean Absolute Error because it is duplicated. The appli-
cation of this variant is more likely to improve affected individuals because, with higher probability, the good nodes are
duplicated and replace the weak nodes.
� with best – subtree that starts in the donor node of the best individual is duplicated on the receiver node of the individual.

Only one individual is affected in this recombination. This variant may complement or even replace copying the best indi-
vidual found so far into the next population (elitist strategy).

In the last two variants, a mechanism analogous to the ranking linear selection was applied to decide which node would
be affected. Nodes or leaves are selected from the ranked list, which takes into account the absolute error divided by the
number of instances in the node.
3.5.2. Mutation
Mutation of the individual starts with randomly choosing the type of node (equal probability of selecting a leaf or internal

node). Next, the ranked list of nodes of the selected type for this individual is created. Depending on the type of node, the
ranking takes into account.



Fig. 5. Crossover between two individuals and the resulting offspring. Each individual has one donor node and one receiver node.
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� location (level) of the internal node in the tree – it is evident that modification of the test in the root node affects the
entire tree and has a great impact, whereas the mutation of an internal node in the lower parts of the tree has only a local
impact. Therefore, internal nodes in the lower parts of the tree are mutated with higher probability.
� Mean Absolute Error – nodes with a higher error per instance are more likely to be mutated.

Finally, a mechanism analogous to the ranking linear selection is applied to decide which node in the individual will be
affected.

Straightforward implementation of EA applies only a few basic variants of mutation:

� prune – changes an internal node into a leaf – acts like a pruning procedure.
� random expand – transforms a leaf into an internal node with a new random test – allows expansion of the tree and

searches for more specific regions.
� nominal dis junction – re-grouping nominal attribute values by adding/merging branches or moving values between them

– modifies tests on nominal attributes in the internal node.
� new random test – reinitializes a test in the node using a new random one finds a new test in the internal node.
� change model – extends/simplifies/changes the multiple linear model in the leaf by adding/removing/replacing a ran-

domly chosen attribute – allows an optimal set of attributes to be found that will be used to calculate linear regression.

The proposed solution extends this set with specialized variants of mutation:

� shift threshold – shifting the splitting threshold at the continuous-valued attribute - allows adjustment of the threshold on
the same attribute.
� new dipolar test – test in the node is reinitialized by a new dipolar one.
� dipolar expand – transforms the leaf into an internal node with a new dipolar test.
� parent with son ðbranchesÞ – replaces parent node with random son. It is difficult for the evolution to eliminate the top or

middle internal nodes that split only small parts of the data. They have little impact on the prediction and unnecessarily
increase the size of the tree. Therefore, this operator can be seen as pruning the middle of the tree.
� parent with son ðtestsÞ – tests between the father and a random son exchanged – gives a chance to affect internal nodes

that sub-nodes are not the leaves.
� recalculate models – recursively recalculates models in all corresponding leaves. After any mutation or crossover, the cor-

responding models in the leaves are not recalculated until this variant is selected.
� new optimal test – test in the node is reinitialized by the LS or LAD strategy proposed in Section 3.2.
� optimal expand – transforms the leaf into an internal node with a new test selected by one of the optimal strategies pro-

posed in Section 3.2.
� clear model – deletes from the linear model the least important attribute – helps to decrease the size of the regression

model in the leaves.
� optimal model – replaces the multiple linear model in the leaf with an optimal simple linear regression model or regres-

sion plane.
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The last four variants involve local search components that are built into the mutation-like operator. Due to the compu-
tational complexity constraints, the memetic extensions optimize tests for a single, randomly chosen attribute.

3.6. Smoothing

In the M5 algorithm [39], a smoothing process for improving the prediction accuracy of the tree-based models was pro-
posed. When smoothing is enabled, the value of each instance predicted by a model located in the appropriate leaf is mod-
ified to reflect the predicted values at the nodes along the path from that leaf to the root. It requires the generation of
additional linear models for every internal node of the tree.

In the GMT, a form of smoothing that is similar to the one in M5 algorithm is proposed. Smoothing is applied to the best
individual at the end of the evolution process. In the first step of smoothing, a value for a test instance according to the model
in the appropriate leaf is predicted. Then, this value is smoothed and updated along the path back to the root by the linear
models calculated in each of the nodes. Let PredðTiÞ denote the predicted value at the Ti subtree of tree T:
PredðTÞ ¼ ni � PredðTiÞ þ k �MðTÞ
ni þ k

; ð6Þ
where ni is the number of training instances at Ti;MðTÞ is the predicted value recalculated from the linear model at T, and k is
a smoothing constant (default: 10).

Fig. 6 illustrates the smoothing process for a new test instance. After reaching the appropriate leaf, the predicted value
PredðTÞ for the tested instance would be equal to the value calculated from the model LM4. Next, with the smoothing process
enabled, all models on the path from the leaf containing LM4 to the root node (LM5 and LM6) influence the final predicted
value PredðTÞ.

According to [39], smoothing has the greatest effect when models were constructed for a few training instances or when
the models along the path predicted instances very differently. However, it should be noted that trees that apply smoothing
differ from the classical univariate model trees. Each test instance is predicted not only by a single model at a proper leaf but
also by the different linear models generated for each of the internal nodes up to the root node. Smoothing affects the sim-
plicity of the solution, making it more difficult to understand and interpret.

4. Experimental validation

In this section, three sets of experiments are presented. First, we would like to share some details of the GMT evaluation.
Next, we validate the overall performance of the GMT solution with respect to predictive accuracy, build time, and tree and
model size. The results are confronted with popular greedy counterparts on a number of large datasets. Finally, we compare
the GMT, with its baseline denoted as bGMT (straightforward application of EA), and the solution called E-Motion [2], which
also applies evolutionary algorithms to model tree induction. Table 1 provides an overview of the performed experiments,
the number of datasets, the algorithms, and the tested elements.

4.1. GMT parameters

In all the experiments reported in this paper and in all datasets, we used one default set of attributes in the GMT. The only
exception is in the first set of experiments, where the evaluation of the GMT was performed. In that case, all parameters
except the one being tested remained at default.

In all the experiments reported in this paper, the population size was 50. The probability of the mutation of a single node
in an individual equals 0.8, and the probability of crossover between two individuals equals 0.2. The probability of the
Fig. 6. The smoothing process for the test instances at the leaf with the linear model denoted as LM4.



Table 1
An overview of the GMT experimental validation.

Settings Performed experiments

Type Evaluation of GMT GMT vs Greedy GMT vs EA
No. of datasets 2 26 8
No. of algorithms – 9 6
Tested elements Initialization RMAE RMSE

Fitness function Time MAE
Representation Tree size Tree size
Smoothing Model size
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crossover is small because it has highly destructive power when applied and completely changes the context of modified
parts of the trees. On the other hand, it strongly differentiates populations and is crucial for EA to successfully escape from
local optima. Mutation has a much smaller impact on the individuals, as it modifies only one node in the individual at a time.
Therefore, the probability of mutation is set much higher, as it should be applied more often. The verification of these set-
tings was performed on a number of varied datasets, and the results suggest that mutation was in the range of 0.7–0.9 and
crossover in the range of 0.1–0.2.

Fig. 7 illustrates the GMT results for the Housing dataset, which is used to evaluate the GMT solution in the first part of the
experiments. The illustration on the left shows the performance of the best individual found so far in the GMT evolution
under different probabilities of mutation and crossover. To keep the image clear and readable, only a few tested settings
were enclosed. The illustration on the right of Fig. 7 shows the results on the testing set. We can observe the impact of muta-
tion and crossover and see that the suggested settings strongly improve the speed of the GMT convergence.

The GMT system applies the mix initialization strategy (with pruning), in which the probability of choosing the test search
strategies LS, LAD, and dipolar are equal to 0.25, 0.25, and 0.5, respectively. Genetic operators in the GMT use all three sets of
mutation and crossover variants. Smoothing for the GMT is enabled by default, and the smoothing constant k is equal to 10.

The default fitness function for the GMT is BIC, and the number of model parameters kðTÞ for tree T equals
2 � ðQðTÞ þWðTÞ, where QðTÞ is the number of terminal nodes and WðTÞ is the sum of the number of attributes in the linear
models in the leaves. The threshold values in Lex were defined for each measure separately. There is a tolerance of

� 10% of an average value of RSSðT1Þ and RSSðT2Þ for the RSStr threshold.
� 40% of the average value of QðT1Þ and QðT2Þ for the Qtr threshold.
� 50% of the average value of WðT1Þ and WðT2Þ for the Wtr threshold.

The proportion between RSStr and Q tr is similar to the one proposed in the E�Motion solution [2]. Let us investigate a simple
example in Table 2 that illustrates the logic behind the choice of such threshold values. We can observe that for the first iter-
ation of Alg. 1, all measures for T1 and T2 fall one by one within the tolerance threshold, and there is a need to decrease all
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Fig. 7. Results for the GMT with different probabilities of mutation and crossover on the Housing dataset. The image on the left illustrates the results for the
best individual on the training set during the evolution. The image on the right illustrates the results on the testing set.

Table 2
An example of lexicographic analysis with the justification of the measure threshold values illustrated for two individuals: T1 and T2.

Measure T1 T2 T1 � T2 AVGðT1 þ T2Þ Threshold (iter. 1) Threshold (iter. 2)

RSS 3.7 4.0 0.3 3.85 RSStr = 0.38 (10%) RSStr = 0.19 (5%)
Node Count (Q) 10 7 3 8.5 Qtr = 3.40 (40%) –
Attribute Count (W) 12 8 4 10 Wtr = 5.00 (50%) –
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threshold values. In the second iteration, RSS between T1 and T2 does not fall within the tolerance threshold; therefore, the
algorithm returns individual T1 as having a smaller tree error. In addition, we performed non-exhaustive tests searching for
different values of thresholds. The experiments showed that these settings provide a good selection of the best trees.

Setting how often the genetic operator should affect a single individual (or two individuals in the case of crossover) is a
very difficult task. Operators are not independent, as they influence each other. Often, the effect of one genetic operator on a
particular individual can be achieved by the application of several different variants of mutation and/or crossover. Even if we
disable one variant of the genetic operator, it is possible that other operators will take over part of its role. In addition, each
dataset may have different optimal settings. The Free Lunch Theorem [43] states that higher performance of EA over one,
particular problem cause an equally reduced performance over some other problems. Therefore, in the case of EA, the key
to good results is to provide the EA with various tools (specialized operators) and let it find the optimal solution. In the
GMT, we propose a set of probabilities for selecting one genetic operator that can be applied in single crossover or mutation.
Extensive experiments (not included) showed that the application of different probabilities did not significantly change GMT
performance. The genetic operator settings for bGMT and the GMT, which were applied in all the experiments in this paper,
are illustrated in Table 3.

4.2. Evaluation of the GMT

In the previous section, a set of solutions and techniques that incorporate knowledge about the model tree induction and
EAs was proposed. Now, each technique will be verified separately to confirm the approach.

4.2.1. Datasets and settings
The impact of proposed improvements on the GMT’s evolution process is presented in two sample datasets: Abalone (4177

instances, 7 numeric, and 1 nominal attributes) and Housing (506 instances and 13 numeric attributes) from the UCI Machine
Learning Repository [4]. Each dataset was divided into a training set (66.6% of observations) and a testing set (33.4%). The
datasets greatly differ in the context of finding an optimal or near-optimal solution. The GMT algorithm can find good solu-
tions for the Abalone dataset with only a few dozen iterations, while for the Housing dataset, a few thousand iterations are
usually not enough.

In the case of evolutionary algorithms, it is difficult to show the impact of one specific factor on the entire evolutionary
process. Each aspect of EA may not be independent and can influence other parameters. To minimize the effect of some sub-
optimal choices, since factors may interact in a complex way, an average of 20 runs is shown. For each experiment, we used
the default GMT settings, except for the parameters that were being tested. For example, when the initialization strategies or
smoothing were tested, the representation and fitness function remained the same. To improve visualization in Fig. 9, dif-
ferent algorithm names (GMT BIC and Smoothed GMT) refer to the same GMT solution.

4.2.2. Initialization strategies
In Section 3.2, we propose some techniques for initializing the population. Fig. 8 compares the performance of the best

individuals in each generation for different strategies. We show the results of the best individual found so far during the evo-
lutionary induction on the training set. The left axis shows the actual tree size of the individual, and the right axis illustrates
Table 3
Probability of selecting a single operator in the bGMT and GMT.

Genetic operator Type Probability in:

bGMT GMT

exchange subtrees Basic crossover 100 20
exchange tests Specialized crossover 0 20
exchange branches Specialized crossover 0 20
asymmetric Specialized crossover 0 20
with best Specialized crossover 0 20

prune Basic mutation 15 10
random expand Basic mutation 20 5
nominal disjunction Basic mutation 15 15
new random test Basic mutation 20 5
change model Basic mutation 30 15
shift threshold Specialized mutation 0 5
new dipolar test Specialized mutation 0 5
dipolar expand Specialized mutation 0 5
parent with son ðbranchesÞ Specialized mutation 0 2.5
parent with son ðtestsÞ Specialized mutation 0 2.5
recalculate models Specialized mutation 0 2.5
new optimal test Specialized mutation 0 2.5
optimal expand Specialized mutation 0 5
clear model Specialized mutation 0 10
optimal model Specialized mutation 0 10
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Fig. 8. Influence of the test strategies and initial pruning on the convergence of the best individual to the global optimal for the training sets of the Abalone
(left) and Housing (right) datasets.
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its Root Mean Squared Error (RMSE). We validate three strategies: dipolar, where locally optimized tests use only dipoles;
greedy, composed of LS and LAD tests; and mix, which applies both strategies (dipolar and greedy). In addition, we show
the results for the mix strategy with pruning enabled.

We can observe that the mix strategy with pruning doubled the speed of the EA’s convergence on the global optima in
both datasets. When the greedy strategy is used, the GMT needs many more iterations to achieve the same results as the pro-
posed strategy.

4.2.3. Variants of the fitness function
In this set of experiments, we compared three fitness functions: improved Akaike information criterion (AICc) [23]; Bayes-

ian information criterion (BIC) [37]; and lexicographic analysis, which is denoted as Lex, as proposed in Section 3.3. In the
case of AICC , the number of model parameters kðTÞ for tree T equals 2 � ðQðTÞ þWðTÞ (the same as for BIC).

Fig. 9 presents the GMT results for different fitness on the testing sets. We compare the GMT prediction error (RMSE) and
the tree size of each variant: BIC;AICc , and Lex. There are no significant differences between BIC and Lex in terms of the RMSE
and the tree size, and both functions outperform AICc . Additional investigation of the AICc results showed that the AICc error
in the training set was the lowest (compared to BIC and Lex), and this, together with the large size of the induced trees, may
suggest over-fitting the GMT AICc to the data.

4.2.4. Goodness of representation
Model trees can have various representations. To show the impact of the different GMT leaf representations, the GMT was

tested with:

� multiple linear models in the leaves (denoted as regular GMT).
� simple linear models in the leaves (denoted as GMT SLR).
� mean value (regression variant) in each leaf (denoted as GMT REG).
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Fig. 9. Results of prediction error and tree size on testing sets Abalone (left) and Housing (right) for the different variants of the GMT. The error bars
represent 95% confidence intervals.
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We can observe that there exists significant differences between the different types of tree representations. The corrected
paired t-test [30], with a significance level of 0.05, showed differences in terms of the tree size between all solutions and in
terms of RMSE between the proposed GMT and GMT REG in the Abalone dataset. In general, for the same datasets, the
GMT REG and GMT SLR needed much larger trees. We can also observe that for larger trees and more difficult regression
problems, the differences between the variants of the GMT usually increase.

4.2.5. Smoothing
Application of smoothing was beneficial in both analyzed datasets. Fig. 9 compares the GMT with smoothing enabled and

disabled. The tree size of both algorithms is always equal, as the smoothing operation is applied after the EA algorithm is
finished and the best individual has been found. The only difference is the calculation of the prediction value and, as a con-
sequence, the error of the model tree. In future works, running the smoothing inside the EA should be considered, as this
would indirectly allow the GMT to use linear models in the non-terminal node.

4.2.6. Discussion
In this set of experiments, we verified the proposed techniques and analyzed the impact of each factor separately. We

should not expect statistically significant differences between algorithms that differ with regard to only one element. The
only exception was the differences between GMT representations. The strength of the proposed techniques can be truly ver-
ified when all factors work together. Therefore, in the next two sets of experiments, we compare the proposed GMT solution
with the greedy approaches and with evolutionary competitors that apply straightforward EA for decision tree induction.

4.3. GMT vs greedy approaches

In order to accurately validate the performance of the GMT solution, it has been compared with algorithms from the paper
[31] and with a few other greedy GMT counterparts. Thanks to Prof. Pfahringer, who provided us with the preprocessed data-
sets he used in [31], we were able to confront the prediction accuracy, efficiency, and complexity of the output models from
the algorithms he tested.

4.3.1. Datasets and setup
The datasets were originally provided by Louis Torgo [40] and the UCI repository, and they were later preprocessed [31]

(e.g., the categorical values were replaced with multiple binary indicator attributes and the missing values were inputted
using the respective attributes mean value) to ensure that different internal algorithm procedures did not impact the com-
parison. Each dataset was split into three sets: training, validation (for internal parameter optimization), and testing sets.
Table 4 presents the details of each dataset.

All test results reported in the next section correspond to averages of ten runs and were obtained using independent test
sets. Relative Mean Absolute Error (RMAE) is used as a measure of prediction accuracy to maintain compliance with [31].
When RMAE equals 0%, the prediction error also equals zero. When the prediction always returns a global mean, the RMSE
value equals 100%. This way, RMAE can be compared in a meaningful way across different datasets. In the performed exper-
iments, we also report the total run-times and the complexity measure (characterized by the size of the tree and the average
model size in the leaves).

4.3.2. Comparison algorithms
The performance of the GMT is confronted with several popular systems:

� Random Model Trees (RMT) – combination of model trees with random forests [31].
� Optimised Gaussian Process Regression (GP) [34] with radial basis function kernels and a conjugate gradient descent

solver.
Table 4
Dataset characteristics: name, numeric attributes number (Num), nominal attributes number (Nom), and the number of instances.

Name Num Nom Instances Name Num Nom Instances

stock 9 0 950 pol 48 0 15,000
quake 3 0 2178 elevators 18 0 16,599
abalone 7 1 4177 cal housing 8 0 20,640
delta ailerons 5 0 7129 house 16H 16 0 22,784
bank32nh 32 0 8192 house 8L 8 0 22,784
bank8FM 8 0 8192 2dplanes 10 0 40,768
cpu act 21 0 8192 fried 10 0 40,768
cpu small 12 0 8192 mv 7 3 40,768
kin8nm 8 0 8192 layout 31 0 66,615
puma32H 32 0 8192 colorhistogram 31 0 68,040
puma8NH 8 0 8192 colormoments 8 0 68,040
delta elevators 6 0 9517 cooctexture 15 0 68,040
ailerons 40 0 13,750 elnino 9 0 178,080
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� Bagged Additive Groves of Trees (AG) [38].
� Linear (Ridge) Regression (LR).
� REPTree (REP) – popular top-down inducer that builds a regression tree using variance and prunes it using reduced-error

pruning (with backfitting).
� M5 – state of the art model tree [39], the most adequate greedy counterpart of the GMT.
� Boosting M5 (BO) – Stochastic Gradient Boosting [19].
� Bagging M5 (BG) – ensembles of the M5 model tree.

The results of the first three systems were obtained from [31]. Each algorithm had several tuning parameters that were
optimized on validation sets. The next five systems were tested using the Weka system [21]. For each algorithm, we collected
the RMAE, the runtime, the size of the tree (in the case of LR, it is equal to 1), and the model size in the leaves (in the case of
REP, it is equal to 1). Parameter tuning on the validation set was not performed for Weka algorithms, and each algorithm was
run with its default Weka settings.

Appropriate parameter settings are important for evolutionary algorithms [14] and have a significant impact on GMT
induction. However, in this paper, we wanted to show that the GMT can obtain good results with the default values of param-
eters through all datasets. Therefore, we did not improve the GMT results by tuning the parameters on the validation sets for
each data separately. As with the Weka tested algorithms, we used only the training and the testing sets and skipped the
validation set.

4.3.3. Performance results
Fig. 10 illustrates the average RMAE for all tested algorithms on all datasets, sorted by the GMT results. The lower value of

RMAE indicates a better output model. We can observe that the GMT outperforms all single-tree counterparts. The average
RMAE value in the datasets is smaller in comparison with REP and M5 by 24% and 9%, respectively. Linear regression was no
match for any of the tested algorithms, as it does not work well for non-arbitrary regression problems, particularly when the
sample size is large.

When we compare the GMT to the methods that built much more complex models, such as Gaussian Process Regression
or ensembles of trees (Boosting, Bagging, Random Model Trees, and Additive Groves), it is difficult to point out the best algo-
rithms. However, more detailed comparison reveals that the ‘‘small winner’’ is the GMT, as its average RMAE was 2% smaller
than BO;7% smaller than RMT and BG;8% smaller than AG;11% smaller than GP, and 42% smaller than LR. It should be noted
that the proposed solution was also the most stable one, with no occasional catastrophic failures, such as RMT and GP on
puma32H or AG; BO, and BG on colorhistogram and layout. This is surprising because meta-learning methods are usually more
stable and easily outperform single-tree solutions in the context of prediction accuracy.

We have also investigated the poor GMT result for the kin8nm dataset. Although the result was satisfying in comparison
with BG, M5;REP, and naturally LR, it was behind the algorithms tested in [31], in particular GP. However, by changing only
one parameter in the GMT, which is the terminal condition (we increased the maximum number of EA iterations), we man-
aged to achieve scores similar to RMT and BO. In this particular case, the GMT has too slow a convergence, and therefore the
EA was stopped too early.

4.3.4. Efficiency results
It is known that the evolutionary approach is not the fastest, and the EA applied in the GMT is not an exception. The results

illustrated in Fig. 11 show that the GMT is usually one order of magnitude slower than Additive Groves and, for some data-
sets, as much as two orders of magnitude slower than Gaussian Process Regression, Bagging, or Boosting. However, we must
remember that the evolutionary induction process is progressive; therefore, intermediate answers can be harvested at any
time, and pre-maturely aborted runs may also yield high-quality results.

The fastest algorithms are the greedy ones: REPTree and linear regression. Surprisingly, RMT, which is a combination of
model trees with random forests, achieved comparable times to the single-tree greedy M5 method. However, we do not
know the specifications of the machine for that RMT or the rest of the algorithms from [31] were executed; therefore, effi-
ciency comparison results may be biased.

4.3.5. Complexity results
It is expected that a more global approach to decision tree induction may reduce the complexity of the tree, as with the

examples from Section 2. Fig. 12 illustrates the size of the REP;M5, LR, and GMT trees, and Fig. 13 shows the average model
size in the leaves. We do not have any information about the complexity of the models for the algorithms from [31] – that is,
RMT;GP and AG – so we cannot show their complexity. However, we can assume that these algorithms are incomparably
more complex than single-tree solutions. We also skip results for Bagging and Boosting, as they are meta-learning methods
that use multiple M5-type trees.

Fig. 12 shows, on the logarithmic y-scale, the number of leaves in the tested algorithms (for linear regression, the size is
equal to 1 through all datasets). We can observe enormous differences between locally and globally induced tree sizes. In
most of the cases, the GMT is significantly smaller than the greedy counterparts, sometimes more than two orders of mag-
nitude smaller. For all datasets, the average tree size for the M5 system, which is the most adequate greedy counterpart of
the GMT, was over five times larger than the GMT.



Fig. 10. Relative Mean Absolute Error of the algorithms sorted by the Global Model Tree (GMT) results. Top image: Random Model Trees (RMT), Gaussian
Process (GP), Additive Groves (AG), Boosting M5 (BO), and the GMT; bottom image: REPTree (REP), M5, linear regression (LR), Bagging M5 (BG), and the GMT.
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To have a full picture of the complexity results, we need to analyze Fig. 13, which illustrates an average linear model size
that is equal to the number of attributes +1 (REPTree is a regression tree, so the model size is equal to 1 through all datasets).
The simplicity of the linear regression models in the leaves is crucial for the model’s understanding and interpretation, as it
reveals the relationships between the attributes. We can see that in most of the cases, the M5 system has equal or slightly
higher complexity than linear regression. The GMT managed to significantly decrease the number of attributes in the leaves
and built on average models that were more than two times smaller for all datasets.

In this set of experiments, we proved that the GMT managed to find more compact prediction models. If we consider tree
size and the size of the models in the leaves, then the GMT is, on average, over one order of magnitude less complex than the
greedy counterparts. Even if for some datasets, such as mv or cooctexture, it generates larger trees, the average model in the
leaves is much less complex. An opposing example occurred with the colorhistogram dataset, where the GMT used two more
attributes to build a linear model than M5. However, the GMT induces a tree that has only one leaf (one model), whereas M5
needed 395 models, each with around 30 attributes. For the largest analyzed dataset elnino, the GMT was almost ten times
smaller than M5 and had two times fewer attributes. Even the REPTree algorithm, which built regression trees with only a
simple mean value in the leaves, can be considered more complex than the GMT. On the largest tested dataset, the REPTree
had 2396 leaves, and the overall average tree size was 280 (almost 16 times greater than the GMT).

4.3.6. Discussion
In this set of experiments, we confronted globally induced model tree GMT with popular methods that apply greedy tech-

niques. The purpose of this experiment was to show whether evolutionary induction performs better than greedy induction
in terms of prediction accuracy and model complexity. We also wanted to know if a single-tree solution is capable of com-
peting with more complex techniques. We have performed a statistical analysis of the obtained results using the Friedman
test and the corresponding Dunn’s multiple comparison test (significance level equals 0.05), as recommended by Demsar
[12]. The results are illustrated in Table 5 and are denoted as follows: ‘‘+’’ means that the proposed solution is significantly



Fig. 11. Average training time in seconds sorted by the number of instances in each dataset. Top image: Random Model Trees (RMT), Gaussian Process (GP),
Additive Groves (AG), Boosting M5 (BO), and Global Model Tree (GMT); bottom image: REPTree (REP), M5, linear regression (LR), Bagging M5 (BG), and GMT.

Fig. 12. Average number of leaves in the tree of REPTree (REP), M5, linear regression (LR), and Global Model Tree (GMT).
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better, ‘‘�’’ that it is significantly worse, ‘‘�’’ that there are no statistical differences between the compared results, and ‘‘�’’
that there might be a statistical difference. We do not know the complexity of the algorithms analyzed in [31], but we think
that they build significantly more complex models than the GMT.

The GMT solution managed to be significantly better in terms of errors and model complexity than all single-tree models:
bGMT, M5;REP and LR. Tests were performed on a number of different databases (26 datasets with an average of 16 attributes



Fig. 13. Average model size in the leaves of the tree of REPTree (REP), M5, linear regression (LR), and Global Model Tree (GMT).

Table 5
Statistical differences between RMAE, time, and tree and model size between the GMT and the tested competitors. GMT is significantly better if the sign is þ;
significantly worse if the sign is �, shows no difference if the sign is �. The differences are hypothetical if the sign is �.

Algorithm RMAE Time Tree Size Model Size

GMT vs RMT � � �þ �þ
GP + � �þ �þ
AG � � �þ �þ
BG + � + +
BO � � �þ �þ
REP + � + �
M5 + � + +
LR + � � +
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and almost 30,000 instances each). Surprisingly, the GMT solution successfully competes with more advanced, state-of-the-
art methods, such as Additive Groves (AG), Boosting M5 (BO), Bagging M5 (BG), Random Model Trees (RMT) or Gaussian Pro-
cesses Regression (GP). Usually, these ‘‘black box’’ algorithms, with their much more complex models, easily outperform less
advanced solutions. However, the GMT managed to significantly outperform BG and GP methods and to decrease the average
errors calculated on all 26 datasets by 7% when compared to RMT and AG.

The price that GMT must pay for such performance is a much longer time for decision tree induction. This problem can be
mitigated by parallelization of EA, and it is one of our priorities in future work. However, if an analyst does not need very fast
real-time algorithms and can wait a bit longer, our algorithm can provide significantly better results that can offer new
insights into underlying processes. To clarify, the execution time of the GMT solution on a test instance is very fast.

4.4. GMT vs evolutionary approaches

In the last set of experiments, we compare GMT with other evolutionary approaches for model tree induction. To comple-
ment our comparison results, we have confronted the GMT with the E-Motion solution [2] and the GMT baseline. A variant of
the GMT, denoted as bGMT, is a straightforward implementation of EA to a model tree with a multiple linear regression model
in the leaves and with random initialization of the population, basic variants of recombination, and no smoothing.
Table 6
Dataset characteristics: name, numeric attributes number, nominal attributes number, and the number of instances.

Dataset (DT) name Abbreviation Numeric Nominal Instances

Auto-Mpg A 4 3 386
Breast tumor B 1 8 286
Fish catch F 5 2 158
Machine CPU M 6 0 209
Quake Q 3 0 2178
Stock So 9 0 950
Strike Sr 5 1 625
Veteran V 3 4 137
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Fig. 14. RMSE;MAE, and tree size results for the GMT and its basic variant bGMT;GMT Lex and its basic variant bGMT Lex, and E-Motion with weight (E-WF)
and lexicographic (E-LA) fitness functions. The error bars represent 95% confidence intervals.
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Table 7
Statistical differences in prediction errors RMSE and MAE between algorithms with weight fitness functions (GMT, bGMT, and E-WF) and with lexicographic
fitness functions (GMT Lex; bGMT Lex, and E-LA).

Weight fitness Metric bGMT E-WF

GMT RMSE � � � Mþ �Soþ Srþ � � � � � �Soþ � �
MAE � � Fþ � � Soþ � � � � Fþ � � Soþ � �

Lexicographic fitness Metric bGMT Lex E-LA

GMT Lex RMSE Aþ � � Mþ � � � � � � � � � Soþ � �
MAE Aþ Bþ �Mþ � � Srþ � � � Fþ � � Soþ � �

M. Czajkowski, M. Kretowski / Information Sciences 288 (2014) 153–173 171
4.4.1. Datasets and setup
To compare the GMT with E-Motion, the methodology in [2] was used, as the source code for the E-Motion algorithm was

not available. The datasets from [2], which are presented in Table 6, were also tested in this experiment. Ten-fold cross-val-
idation was used, and the results and the average of the ten folds for the 30 executions of each fold are shown. We have
calculated the results for the GMT and its basic variant bGMT to show the benefits of the techniques proposed in this paper.
As the E-Motion system shows the results for fitness based on lexicographic analysis (E-LA) and the weight formula (E-WF), to
complete the comparison we show our results for the GMT, with the lexicographic fitness denoted as GMT Lex.

Unfortunately, we cannot compare the execution times of the E-Motion algorithm (results are not available) and the size
of the linear models in the trees. This is not crucial in the comparison of EA solutions, as we can assume that both algorithms
are relatively slow and induce comparable and much smaller trees than their greedy counterparts. However, the E-Motion
algorithm does not evolve models in the leaves but simply builds linear regression models from the available attributes,
as with the M5 algorithm. In this case, the average model size in the leaves of the tree for E-Motion should be similar to
the M5 solution and therefore, considering the results in Fig. 13 and Table 5, significantly more complex than the ones
generated by the GMT.
4.4.2. Results and discussion
In the performed experiment, we compared both prediction errors RMSE and MAE with 95% confidence intervals as well as

tree sizes. The results for all tested algorithms are presented for each dataset separately in Fig. 14. To illustrate the statistical
differences between the algorithms for each dataset, a corrected paired t-test [30] with a significance level of 0.05 and 9
degrees of freedom (n� 1 degrees of freedom where n ¼ 10 folds) was applied. These settings are identical to the ones pre-
sented in the article that proposed E-Motion [2]. We have found a few statistically significant differences between the tested
solutions. Table 7 illustrates the results in each dataset for the EA algorithms with weight and lexicographic fitness functions.
The ‘‘�’’ sign denotes that there is no statistical significance between the algorithms, whereas the abbreviation of the dataset
with the ‘‘+’’ sign denotes that the GMT or GMT Lex results were significantly better (there were no datasets in which the
proposed algorithms obtained significantly worse results).

Incorporating the knowledge about model tree induction into the GMT and GMT Lex strongly improved the baselines algo-
rithms bGTM and bGMT Lex. Depending on the metric, we managed to significantly reduce the prediction error in 25–50% of
the analyzed datasets. Error reduction was also noticeable in the rest of the datasets.

In all tested datasets, the GMT and GMT Lex successfully competed with the E�Motion solution, and in two out of the
eight tested datasets (Fish catch and Stock) the GMT algorithm managed to obtain significantly better results. The performed
experiments show that the GMT is at least as good if not better than the E-Motion algorithm, and thus also indirectly better
than GPMCC [32] and TARGET [16], which were outperformed by E-Motion.

In this experiment, we did not focus much on the size differences between the output models, as there is a mix of sta-
tistically better and statistically worse results between algorithms, depending on the dataset. The differences were not as
large as with the greedy algorithms, where the GMT managed to achieve smaller trees by one order of magnitude. However,
it is interesting that the bGMT results differ from E-Motion, despite the fact that both solutions apply a straightforward EA
approach. The differences in generating the initial population, fitness function, and perhaps most important, the ability of
the GMT to evolve a linear model in each leaf (E-Motion used all available attributes to generate a multivariate linear model)
may be the key to understanding these differences.

Comparison between the GMT and its baseline bGMT showed that there are significant differences in prediction accuracy
in favor of the GMT. There are no significant differences in tree size; however, it should be noted that the average execution
time over all tested datasets was almost 3 times smaller for the bGMT compared to the GMT, which equals around one min-
ute. This is caused by the proposed specialized operators, particularly ones with additional local searches, which take longer
than the basic cross-overs and mutations.
5. Conclusion

Greedy regression and model tree inducers are fast, white box solutions that usually have a slightly lower prediction
accuracy when compared to the complex or ensemble-learning techniques. However, when applied to large datasets, they
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often lose their important advantage – simplicity – and generate trees with hundreds or even thousands of leaves with
regressions models that include dozens of explanatory attributes each. Such large trees are almost impossible to understand
and interpret, and therefore ensembles of trees are preferred, but these intentionally sacrifice simplicity to improve predic-
tive accuracy.

In this paper, a solution called the Global Model Tree (GMT) is proposed. It is a global approach for regression and model
tree induction achieved through the application of EAs and the knowledge of the tree induction problem. We have designed a
set of techniques that improve the straightforward applications of EAs. Although the GMT is not as fast as greedy inducers, it
manages to remain simple even in large datasets. We have performed extensive experimental evaluations of the GMT and
show the full potential of a specialized EA for model tree induction. An empirical investigation showed that the GMT can also
successfully compete with ensembles of model trees, EA counterparts, and other complex solutions. Therefore, the GMT can
be applied to a wide variety of problems where there is no space for trade-off between model complexity and prediction
accuracy.

We see many promising directions for future research. In particular, we should consider parallelization of the evolution-
ary algorithm to speed-up its execution time and self-adaptive parameters in EA to improve the evolutionary convergence.
We also plan to introduce oblique tests in the non-terminal nodes and more advanced models in the leaves. Extending
multi-objective optimization to the Pareto-dominance approach is also being considered.
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