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ABSTRACT

We present a method allowing to reduce the number of examples and the
number of attmbutes involved in the process of learning from examples.
This method 1s based on a generalization of the rough set approach. We
introduce a tolerance binary relation at the level of values of any single
attribute. Next at the level of the set of all (conditional) attnbutes, we define
an operator aggregating the tolerance relations defined by single attributes.
The tolerance relations and aggregating operators create parameters for our
method which should be tuned to obtain a high quality of object
classification. We discuss a method of searching for relevant tolerance
relations on attribute values.

INTRODUCTION

In standard rough sets [5] introduced by Pawlak an equivalence relation on the universe of
objects is defined based on their attributes values. In particular, this equivalence relation is
constructed based on the equality relation on attribute values. Many attempts were made
to resolve limitations of this approach and many authors proposed 1nteresting exiension of
the tnitial model (2, 6, 9, 13, 11]). Generalization of rough sets which 1s discussed in this
paper concerns tolerance relation between both attribute values and objects. Very
important feature of each knowledge discovery system is how it treats different types of
attnibute, especially cardinal ones [10, 14]. Many of such systems use preliminary
discretizanon (quantization). Our approach based on tolerance relation allows examine
data without such pre-processing.

In real world databases amount of information s raising rapidly. Many algorithms
of knowledge discovery have high complexity, so today’s very fast computers are not able
to process all possible data. Not only from this point of view development of efficient
methods for data reduction 1s crucial for progress in knowledge discovery from large
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experimental data sets. We propose a data reduction technique whose aim is to reduce the
number of examples and the number of attributes involved in the process of leaming from
examples.

Let A = (U Afd}) be a decision table [5), where U'is a set of objects (examples),
A 1s a set of condition attributes and 4 is a decision. The reduction process of A consists
of finding a new decision table A’ = (U’ A "{d}) that satisfies the conditions U’ < U, A’
c A and the decision rules constructed from A’ have (almost) the same quality of
classification as the decision rules constructed from 4. The elements which belong to the
new decision table are chosen using an evaluation cnterion based on rough set theory [5]
and Boolean reasoning. More precisely we use the notions of a tolerance attribute reduct
(8] and an absorbent set of object set (12, 2].

This paper 1s organized as follows. In Section 1 basic notions concerning rough set
concept based on tolerance relations are presented. Construction of tolerance relation is
descnbed in Section 2. In Section 3 we discuss the problem of searching for optimal
tolerance relation and its efficient solution using genetic algorithm. In Section 4 we
investigate some attnibute reduction problems for tolerance decision tables. We also
consider problem of the number of objects' reduction and we propose a procedure based
on the notion of a relative absorbent set.

1. TOLERANCE ROUGH SETS

In this section we present basic notions of the rough set concept based on tolerance
relations [8, 3]. The standard rough set model can be generalized by considening any type
of binary relations on attribute values, instead of the tmwal equality refation (8, 11, 13].
We propose a tolerance relation on attributes values 1n information system [2, 9] and
similar approach to indiscerrubility of objects in information system based oo tolerance
relation between them as more general extension of model described in [13].

Let A=(U AUfd}) be a decision table, let V, be a set of values of attributes of a €4 and let
r(d) be a number of decision values.

Let #4={Ry Ry VXV, and acA} be a set of tolerance relations. Each such relation is:

° reflexive (for all veV, vR,v) )

° symmetnc (for all v,v’'eV, f vRv’, then V'R,).

We say that two values a(x) and a(y) are | simiar’” <> a(x)R.a(y).

Let ¥, be a famyly of subsets of 4 such that for all C,C’'eW¥ if Cx(C’, then Cz(C’ and
C'aC.
Global relations on the set of objects can be defined as follows ([8, 13]):
xt(Hyy ff Vaed(a(x)R.aly))
and more general

170

|
!—



x7(Ry ¥y ff IC e ¥y vaeCla(x)R.a(y)).

Let us observe that 7%, and (%, ¥4 are tolerance tab,cl
relations. Sometimes we will denote ©(#y ¥y) by 7.,

n short. {a} ag  (bo)
Example 1.1

Let for every attribute a€A a cost of measurement of

value of a is defined. Let cost - A — N, where N is {a} {b} {c}

the set of natural numbers. Let cos?(C) be the sum of

all costs of attnbutes belonging to C. Let / be a given natural number. We define ¥ as
follows C e Wy iff (cost(C)<l and for all C’#C and CcC’, cost(C’)>1).

Let for example cost(a)=1, cost(b)=2, cost(c)=3, then for /=4 we obtain ¥;={{a,b)},
{a,c}} and for I=3 ¥,={{a,b}, {c}} . O

A tolerance decision table i1s defined by (A4, 7R, ¥), where 7(Hy ¥y is a tolerance
relation on the set of objects. We define tolerance set determined by an object x as
follows:
7S(x)= {x'e U:xt(R, ,‘YA)x'}.
7S(x) contains all objects similar to x. Tolerance generalized decision is defined as follows:
. (x)= {i:Elx'e Uxt(R,,Y, )x'cmdd(x')=i}.

Relative absorbent sef

A subset R, cU 15 a relative absorbent set for (1( %y, ¥y),d) Iff

1) for each xelU there exists y € Ry such that x (%, ¥y and d(x)=d()),

2) for every proper subset R 'C Raps condition 1) is pot true.

In the paper we are interested in minimal (with respect to cardinality) relative absorbent
sets.

The sei approximations ([8])
The lower approximation of YU by 7( 914, ¥, 1s defined as follows:

(R, ¥, ) = U{TS(x) 75(x) < ¥},

rell

The upper approximation of YU by o, ¥y):
oR, X7 = U{TS() 7S (x) Y = 2}

xel

The set ©(R,, ¥, XY )is the set of all elements of U which can be with certainty

classified as elements of ¥, with respect to T(R ,,\¥,).The set T(R,, ¥, }¥)is the set of
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elements of U which can be possibly classified as elements of ¥, employing knowledge
included in T(R,,%¥,,).

Let ¥;= {xeU: d(x)=i}. The set
POS(x(®,,¥, ) {aD)=UJ {TS (x)3TS(x)c ¥, }= U TR, ¥ )%)

18 called 7( %y, ¥y - positive regwn of partition {¥:i=1,..., r(d)}.The coefficient
card(POS(1(R,,¥, )44 })
AR AREHE
card (U)
is called the quality of approximation of classification {¥;: i=/,...,r(d)}. It expresses the
ratio of all 7#(H,, W) - correctly classified objects to all objects in the table.

Relative tolerance reduct

A subset R €4 15 a relative tolerance reduct for (7(#y, ¥y), d) iff
) POS(e(%y, ¥4, {d})= POS(x( %, ¥), {d})

2) for every proper subset R’cR condition 1) is not true.

Proposition 1.2 For every tolerance relation z(??A, 5’/,4) the following conditions are true

a) POS(t(R,,'¥,){d})= U{TS(x) card(9.(x))=1}.
b) If forall xe U card( 1(x)): 1 then y(’c(ﬁﬁp‘{‘A),{d})=1

¢) Y(t(‘.RA,‘{’A)) SY(t({A},{{(v,v)v e Vo}:a € A}))

d) [t is possible that x7(#,, ¥) y and 9 _(x)#3_ (y).

2. CONSTRUCTIONS OF TOLERANCE RELATION

Construction of tolerance relation one can start from setting relations between attribute
values for each attmbute. We propose to use as a base similarity measures, which one can
adopt to different types of given attributes. The similarity measures which are presented
below are only examples. One can create new sumilarity measures depending on additional
information about an attribute. Relationship between tolerance relation and similarity
measures could be described as follows:
a(x)R,aly) < s.(alx),aly)) = (a)

where aed, x,yelU, R, - relation between attribute values of attribute a, f(a) €/0,1] -
sinularity threshold for values of attribute a.

Let A=(U,A{d}) be a decision table and let r(d) be a number of decision values.
We define similanty measures between two values of a given attribute aeA.
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For attnbute ae4 with numeric values one can define a similarity measure

|VJ —v}.l

sa(v,.,vj.)=1—|

where api, anz denotes the minimum and maximum values of attribute a, respectively.
Assuming that the values of attribute a are ordered as follows v, <v, <...< Y eara(y,) We

?
A max _aminl

let
=]
V) El .
o (v) gt ) card(V, )1
For attnibute @ with nominal (categorical) values we consider the following similarity
measures
ra\Pd=ka=v)-Pld=ka=v
(o)1 S )7 )
poee r(d)- P(d = k)
where P(d=k.a=v;) is a probability that value of attnibute « is equal to v; and
card({x eUd(x)=knra(x)=v, })

decision is &, i.e. P(d =k,a=v,)=

card(U)
K(dla=v,)-K{dla=v,
sa(vi,v).)=1—| (lKa )—KEI | j (see [1]),
r19) Pld =kla=
where K(d[a=vi)=:z=lp(d: k|a:v,.)log2 (P(d |:ak)v‘)

and Ka,,.,
of the attnbute a.
We assume that two values v; v; of atimibute a are similar when s, (v, Y ) > l(a)

Ka_, are the maximum and mimimum X values as defined in  formula

To construct global tolerance relation (it means between objects) one should at
first find out ¥4. Our idea is to concern such ¥, that the following condition is true:

Ce Wy iff (M <tand card(C) for every C" such that C'=>C and C'#C),
card( A) card(4)

where 1£/0,7] is a similanty threshold for objects. Then all subsets of ¥ have the same
number of attributes depends on the value of 1.

The Hamming distance between two objects H4(%,y) is the number of attributes from A
where two objects have no sunilar values, 1.e.

H ,(x,y)=card ({a €A nol(a(x)Raa(y))}) = card ({a e A:s,(a(x), a(y)) < l(a)}).

We define



_ H, (x,y) .
card(4) .

0 otherwise

, 1 if 3CeV¥,VaeCla(x)R,a(y)) |1 i 1
SA (X,)’) = . =
0 otherwise
We say that x and y are not simular when not x7(%,, )y or equivalently s',(x, y) =0.

Choosing an appropnate simianty measure can be done by performing experiments with a
given decision table.

3. SEARCHING FOR OPTIMAL TOLERANCE RELATION

In this section we present problem of finding the optimal tolerance relation and its
effective solution based on geneuc algonthms. The problem is formulated as follows:
Input:

1) decision table A=, A Ad})

2) simulanty measures s,:V, XV, = [O,I] forall aed.

Output: A set {1} At(a):aeA} of optumal thresholds. By opumal one can understand
solution which satisfies different conditions. Actually we would like to obtain
maximization of the folowing function:

card(t , A {(x,):d(x)=d(y)}) o le
card({ x,y):d(x) =a’(y)}) Y ( 4> {d})

First part of the objective function work for increasing the number of connections. But we
are interested omnly In connections between
objects with the same decision ~ good ones.
Hence the second part of the function 1s
introduced to prevent the positive region of

d=)
3F() \
preventing POS(TA{d}) 3 as(1ad)

partition. So the function tries to find out some

kind of balance between enlarging 7; and

Before presenting solution of above problems
we introduce some notions.

Connections. We use the notion of connections
to express the indiscernibility of objects. We
inhent it from very simple observation, that if
xelS(y) then yeTS(x) and then we can say that
there i1s a connection between x and y. We
propose to discern two kinds of connection between objects: , good” and ,,bad”.
° x and y have good connection <> x&78(y) and d(x)=d(y)

=3

= Réxd comrections

bad conrzetion
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° x and y have bad connection < x75(y) and d(x)=d(y)

Thresbolds matrices. The thresholds matrix TM(a) for aeA is card(U) xcard(U) matrix,
where TM,(a)= s,(a(xy), a(x)) - the highest value of threshold, which cause that x, x, are
indiscernible. Such matrix is symmetric ( 7My(a)=TM(a) ) and what is more important
number of different values in 7A4(a) is less or equal (-k)/2+ 1, where k=card(V,,).

Tolerance sets matrices. Lets count tolerance sets (75,) separately for each aed4. If we
want to know 7S8,x) we look for the i-th row in TM(a) and if TMj(a)>i(a) then
x;€T8,(x). We can build nx» matrix for saving 73, in such way:

lif x, €78, (x,)
TSM (a) = {Oif v eTS,(x)

Lets assume that we have chosen /(a) for all a4 and using this thresholds we have built
all 78, Then we can find general tolerance sets by building 7SM(4):

TSM,,(4) = 1if [Z TSM, (a)J > 1 card(A).

0 otherwise
TSM(A)=1 means that there is connection between x; and x;. This observation gives us a
powerful tool to quick finding tolerance sets for given set of thresholds {1} Cft(a):acA}.

3.1. REDUCTION OF POSSIBLE THRESHOLD VALUES

If we increase the value of /(@) then the 7§, will not change or become larger. So starting
from f(@)=].0 and decreasing the value of threshold we can using above property find all
values when 7§, changes. We can create lists of such thresholds for each a. It 1s easy to
obtain all possible threshold value for attribute a from 7M(a). We think that we can throw
out some values of threshold and do not take them under consideration. Now we present
a technique which help us to gain this aim.

Input: Descending lists of all values from 7M(a) for all acA (1.0 is first value 1n each
list).
Output: New bsts of values with some values from initial one for all a4

Method: For each aeA:

Step 1. For each value from lList we' examine what type of connections it introduce.We
check what new connections appear when we decrease the threshold value from previous
value in the list It could be all ,good” connections, all ,,bad” or ,mixed” ones. So we can
join with each value from bst type of connections which thus value introduce.
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Step 2. Start from beginning of the list. Depending on connections type of value whichis
actually examined and 1ts successor we decide if insert the value to new list or skip it. We
use the following rule:

if actually examined value introduces only bad connections

or  successor introduces only good ones

then  skip the actual value

else  1nsert the actual value into new list.
Step 3. To last value in the list which does not have successor we use rule as follows:

if type of connections # bad

then  insert the actual value into new list

else  skip the actval value.

Afier executing above algorithm and if we set the mamn threshold 7 we can check
all possible combinations of thresholds to find out the best for our purpose. Of course it
will be long process, because 1n the worst case for only one 7, the number of combinations
is equal:

%H (card(Va )2 —card(V, )) +1.

oEA
So it shows that we need some heunstics to find, maybe not the best of all, but very good
solution in reasonable time. We think that genetic algorithm will be suitable for this

purpose.

3.2. GENETIC ALGORITHM FOR FINDING OPTIMAL TOLERANCE
RELATION

We use standard schema of genetic algonthm (see [4]).

Representation. The individuals are represented by number stings of length card(4).
Each position in chromosome corresponds indirectly with value of threshold for attribute
(in the i-th position there is a number from threshold list for i-th attribute). For example:

attribute  Llist of values number of values in the list
2, -10 09 087 0.6 04 5
2> -095 05 2
a3 -1.0 098 095 093 .. 0.32 35
chromosome - 2 2 4

thresholds - 0.9 0.5 0.93
t(a) t(ay) t(as)
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Initialization. For first population we used controlled random generator. It means that we
accept only these individuals which have fitness greater or equal given threshold (for
example > 0.9).

Fitness function. The fitness function depends on two parameters:

¢ the number of good connections between objects,

o the quality of approximation of classification

card(e, nfxy):d()=d0))
card({(x,y); d(x) — d(y)}) Y ( A){d}).

Selection. We use modified tournament selection algonthm. It means that to select one
chromosome we randomly choose 4 individuals from population (with equal probabilities)
and then with probability P, one with the best fitness wins or with probability /-P, we
select any from £.

Mutation. Standard mutation affect with probability P,, of mutation on a single positon
of chromosome. Mutation of one position means replacement existing number by
randomly chosen .

Crossing-over. We used classical, two-point crossover for chromosomes selected with the
probability of P,. For example:

Fimess(t ;) =

35/02331)4 35113 714
n U =
51113 74 51102334

To find out the optimal thresholds we repeat genetic algorithm for a few possible values of
{. Al essential values of / we can find out from the set

1
l—i-—————:7=0,...,card(A)-1; .
{ card{A)—1 (4) }

One can choose the most suitable solution from them depending on the value of fitness
functon.
For example for
S S

card(A) -1
two objects x and y are similar iff there is at most one atiribute a €4 such that values a(x)
and a(y) are not similar. Let us also observe that very Jow values of 1 are not interesting.

4. DATA REDUCTION

In this section we present methods of object set and attribute set reduction. First we
present problem of data reduction.
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Input:
/) decision table A = (U A Ad})
2) similarity measures s5,:¥, x ¥, —[0,1] for all a4

3) a set {1}At(a):acA} of tolerance thresholds
Output: reduced decision table A’ = (U’ 4 ' Ad}) such that, U’ c U is a relatlve
absorbent set of (U, 4 L{d}) and A’ < A 1s a relative reduct of (U, 4L4d}).

The ways how to find out relative absorbent sets and relative reducts are similar. In
both cases first we build specific matrix (table). Next we make reducton of superfluous
entmes n such matnces. We set an entry to be empty if it is a superset of another non-
empty entry. At the end of this process we obtain the set COMP of the so called
components. From the set of components the described type of reducts or absorbent sets

can be generated by applying Boolean reasoning [8]. We present heuristics for computing

one reduct (absorbent set) of the considered type with the mimimal number of attributes
[2]. These heurstics can produce sets which are supersets of considered reducts but the
beuristics are much more efficient than the general procedure. We describe shortly
mentioned heuristics using reduct as an example.

First we introduce a notion of a2 mirumal dishinction. By minimal distinction (md,
in short) we understand minimal set of attributes sufficient to discern between two objects.
Let us observe that minimal component comp consists of minimal dishnctions and
card(comp) is equal or greater than card(md){2). We say that md is indispensable if there
1s a component composed out of only one md. We include all attributes from indispensable
md to R. Then from COMP we eliminate all these components which have at least one md
equal to md in R, It is important that the process of selecting attmbutes to R will be
finished when the set COMP will be empty. We calculate for any md from COMP:

c(md)=w; c)(md) + w; cofmd), where

[ card (md N R) ?
“ (ma’) _[ card (md) J

card (comp € COMP : 3 i comp
C, (md =
2 card (COMP)

for some natural numbers p and g, for example we can assume p = g = /.

md'c (RUmd))\

The first function 1s a “measure of extending” R. Because we want to minimize
cardinality of R we are interested in finding md with the largest intersection with actual R.
In this way we always add to R almost muinimal number of new attributes. The second
measure is used to examine our profit after adding attributes from md to R. We want to
include to R the most frequent md in COMP and minimize COMP as much as it 1s
possible. When c,(rmd)=1 then after "adding this md” to R we will obtain ,,pseudo-reduct”
i.e. 1t can be a superset of a reduct.
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4.1. SELECTION OF OBJECTS

The main difference between finding out one relative absorbent set and one relative reduct
is in the way in which we calculate and interpret components. In case of the relative
absorbent set we do not build the discermubility matrix, but we replace it by a similar table
containing for any object x; all objects stmilar to x; and with the same decision:
STlc)={x,: s'4(x; x;)=1 and d(x)=d(x})}

After reduction we obtain components as essential entries in S7. For COMP we can apply
the algonithm used to compute a reduct assuming card(md)=1. We add to the constructed
relative absorbent set any object which is the most frequent in COMP and then eliminate
from COMP all components having this object. This process terminates when COMP is

empty.

4.2. SELECTION OF ATTRIBUTES

We consider a special case of relative reducts which can be constructed from discermbility
matrix DM by adding some constraints on the reduction of attmbutes from the entnes of
DM in such a way that in any entry after reduction there is enough attmibutes to discern
between corresponding objects [2]. In practice the process of reduction of attmibutes set is
organized as follows. First we modify the discermubility matrix. We set an entry to be
empty in DM for any entry corresponding to two non discernible objects.

{a ed:s, (a(x,),a(xj-)> < t(a)} if sh(x,x)=0nd(x;)= a'(xj->
S if sylxi,x))=1vd(x)= a'(xj)
Next we apply heuristics presented at the beginning of the Section 4.

DM“J =

CONCLUSIONS

This paper has focused attention on data selection methods. We proposed a new
technique which exploits tolerance rough set theory. The object reduction eliminates
objects which are very close (with respect to the tolerance distance) to the remaining
objects in the absorbent set. Attribute reduction 1s done without changing the classification
quality. The decision rules can be generated from the reduced data table by applying
Boolean reasoning methods developed in [7]). One can expect that the classification
quality (of the unseen so far objects) obtained by tolerance decision rules [9] generated
from the reduced decision table 1s very close to the quality of classification of the rules
generated from the onginal decision table.
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