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Abstract. In this work we present capabilities of a new environment called
Medical Segmentation Arena (MESA) in developing new segmentation meth-
ods based on the deformable models. The MESA environment was created in
frame of the project “Information Platform TEWI” to facilitate researches
in the medical image processing domain. The operator can formulate new
segmentation algorithms based on the deformable models theory (active con-
tours - snakes) by composing them from ready-to-use blocks. He can also de-
velop new blocks with a simple Java-based programming mechanism. Then
he can easily evaluate these algorithms with many offered tools (image man-
agement and visualization, batch experiment planning and running, para-
metric studies, virtual phantom generation, segmentation quality assessment,
distributing of computations). We give also some examples of the snake en-
ergies and models implemented in the MESA environment presenting its ca-
pabilities in practice.
Keywords: image segmentation, deformable models, segmentation methods
development, image processing environment, Java.

1. Motivations

The image processing domain is very challenging for researchers in terms of
quantity of the initial work needed to start the experiments. The main difficulty
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consists in setting up an environment allowing to manage (acquire, store, dis-
play) the input images and to visualize the effects of the processing. Two main
approaches exist here, each one with its strong and weak sides.

• The first one is to write a stand-alone application using a general purpose
programming language (C/C++, Java, C#, Python, ...). This approach gives
the maximum of control for the developer, allowing him to perform all nec-
essary operations on the image. But the main drawback, besides the need
of the programming skills, is the amount of work to create such a program.
Even if there exist libraries (e.g. OpenCV, VTK, ITK) to automate the most
common image processing operations, it is still tedious and time-consuming.

• The second one it to use existing image processing tools (GIMP) perform-
ing all the standard image operations - the researcher can start working much
faster focusing on his main goal. But unfortunately, possibilities of the image
treatment given by such tools are in general much more limited in compari-
son to the first option.

There exist also solutions trying to combine the advantages of the both groups -
one can see among them specialized languages with dedicated image processing
toolboxes (Matlab, Scilab), but they still demand a lot of work from the researcher.

What would be necessary here is a complete framework dealing with all these
image management operations and giving the (almost) complete control on the
image processing. Moreover, in the case of a platform devoted to a certain class of
problems, it could organize the whole work (workflow) allowing to customize only
the steps under research. Simpler image operations should be easy to implement,
even on the fly and without specialized programming skills. In the same time,
assuming deeper IT knowledge, the system should be open to almost unlimited
modifications, but with a moderate effort.

2. Deformable models

The image segmentation is one of the most common tasks performed while
dealing with the visual information. The medical images stand out here as very
challenging and of the great significance. Many techniques have been proposed so
far, and those based on the deformable models (active contours, levels sets, with
very numerous modifications and ameliorations) gained a lot of popularity thanks
to their flexibility and quality of results [1].
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The active contour is a shape that evolves under influence of applied forces to
minimize its energy [2]:

E∗snake =

1∫
0

Esnake(v(s))ds =

1∫
0

Eint(v(s)) + Eimage(v(s)) + Econ(v(s))ds, (1)

where Eint is the internal energy (controlling the shape form), Eimage is the im-
age energy (based most often on the image intensity or gradient and moving the
snake toward the segmented object boundaries) and Econ represents other possible
constraints (a priori knowledge).

We limit our work to the discrete version of the active contours family, where
the shape is represented as a collection of N points - snaxels si interconnected with
primitives (lines in 2D, triangles in 3D). With the discrete formulation the integrals
change to the sums calculated only in the snaxel positions (however the energy can
be also calculated on the connecting primitives):

E∗snake =

N−1∑
i=0

Esnake(si). (2)

During the evolution the snake looks for a position and shape minimizing its en-
ergy. Considering the numerical realization two approaches can be applied:

• based directly on the energies - to examine the neighbourhood of each snaxel
and to choose its new location that minimizes the local sum energy;

• based on the forces acting on each snaxel (computed directly or from the
energy spatial distribution) - to calculate a local vector being sum of all
forces and to deplace the snaxel by some distance along this vector.

This process is repeated iteratively until some stop condition is reached (e.g. thresh-
old on the global energy drop).

The original snake model has significant limitations that have led (and are still
leading) to different modifications. It should be initialized close to the segmented
object boundaries and has natural tendency to shrink. An extra inflation (balloon)
force [3], a local gradient expansion [4] allowing the snake to “see” more distant
borders or a dual contour snake [5] help to overcome these drawbacks. The contour
dynamic reformulation methods [6] or alternative shape representations (level sets
[7], electric snake [8]) were also introduced to overcome the inflexibility of the
standard snake fixed topology.
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Figure 1. MESA environment Graphical User Interface (GUI)

3. MESA - Medical Segmentation Arena

The MESA - MEdical Segmentation Arena (Fig. 1) is a web platform for de-
sign and evaluation of segmentation methods based on the active contour the-
ory [9]. Its main focus is on the medical images, 2D and 3D, however it can be
also applied to images from other domains. The system is built in the client-server
architecture, where a rich client (Java applet executed within the operator web
browser) is a front-end to the powerful server machines serving computations in
form of the web services. Thanks to this feature the operator can use this tool even
when equiped with a moderate client machine (however in the 3D mode some
hardware acceleration is needed to visualize 3D scenes efficiently). Moreover, the
computations can be easily distributed and/or parallelized [10]. Our system offers
also a centralized profile mechanism (based on the LDAP server and the central
physical storage) protected with passwords where all personal data (input and re-
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Figure 2. MESA research workflow

sult images, new methods and their parameters, experiments) can be safely stored
and later accessed.

The system provides the complete environment to develop and evaluate new
segmentation methods. As an element of the evaluation process a virtual phan-
tom of the human body can be constructed. Then it becomes the input to an MRI
aquisition simulation, producing artificial images to be segmented. In the same
time, thanks to its known geometry, it is used (as a “ground-truth”) to assess the
precision of an examined segmentation method. The proposed research scenario
(workflow - Fig. 2) consists of four steps executed in four modules:

• Problemator - for designing a virtual 2D/3D scene from basic geometri-
cal shapes, this scene is then used as a body phantom with a given tissue
parametrization (proton density, T1 and T2 times);

• MRI Simulator - simulating aquisition of MRI images from the phantom;

• Segmentator - core tool for development of the segmentation methods and
for making single segmentations (e.g. on the simulated images);

• Ring - running series of experiments with the developed methods and given
prameter sets (parametric studies), then comparing the results against the
“ground-truth” (the phantom with known geometry) and calculating some
quality metrics.
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4. Segmentation methods creation

One of the main goals ot the MESA project was to facilitate the development
and running (and finally - evaluation) of the segmentation methods based on the
deformable models theory (and more specifically on the active contour - snake).
Following the Equations 1 and 2 our computation framework (implemented in the
module Segmentator) was designed to reflect the snake formulation and behaviour.
Three main component classes/types are available there to create new segmenta-
tion metods on different levels of abstraction:

• energies calculate the energy in each contour element;

• extensions manipulate directly the snake position and form (the most often
independently of the energies);

• models implement the segmentation algoritms, the most often using all the
snake energies.

Each segmentation method is composed of one model and of any number of en-
ergies and extensions. Each extension is applied automatically to the contour in
every iteration. The energy using is completely dependent on the model. However,
in the most common scenario in each iteration the model:

• examines some local neigbourhood (which can vary from model to model)
of every snaxel in the contour,

• calculates the local energy (sum of all energies) for each point in this neigh-
bourhood,

• deplaces this snaxel to a new position minimizing the energy.

In every iteration all registred extensions are also run (once for the iteration, they
can for instance regularize the contour shape) and some stop condition is verified.

4.1. Graphical construction of new segmentation methods using exist-
ing components

While working in the MESA environment, the operator can graphically com-
pose a segmentation method from existing components (offered by the system or
created by the user - see below). Each such method (the user can have several ones
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Figure 3. Segmentation method composed from components

stored in and loaded from his profile) is graphically represented in form of a tree
(Fig. 3), where its single root specifies the used model. This tree has two main
branches: in the first one the snake energies are grouped, in the second one - its
extensions. The operator can easily (with the mouse) modify the tree by adding,
removing and replacing the components. Each component can have its predefined
parameters, which can be also adjusted in the system interface (Fig. 4). In the case
of the energies one of these parameters is the weight applied to the energy while
calculating the total sum energy.

This mode of working can be used to get familiarized with the environment
or to teach/learn the active contour techniques. Its utility strongly depends on the
pool of available components.

4.2. Creation of new energies within the environment

The snake energies are the most often the crucial element in a good segmen-
tation. Experimenting with new energies can result in new snake techniques (e.g.
balloon snake [3], electric snake [8]). Having our MESA environment the user
can create new energies entirely in the system. Instead of adding an existing en-
ergy to the method tree, he can create a new one (Fig. 3). After clicking this
added energy a new window opens where the energy definition can be written
(Fig. 5). We used JSyntaxPane (code.google.com/p/jsyntaxpane) and BeanShell
(www.beanshell.org) components to get the Java language code run-time editing



36 New Deformable Models Development Using the MESA Environment

Figure 4. Energy component parameters

Figure 5. Gradient energy source code

and running functionalities. This definition needs to be the Java source code, where
the calculated energy value should be assigned to the variable energy. Inside the
code the following predefined variables can be accessed (see the class definitions
in the next subsection):
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• p of the class Snaxel – the snake snaxel under examination; two locations
are embeded in this object: position – the original snaxel coordinates, desti-
nation – a potential new snake position; the method
getDestinationOrPosition():Point returns the point coordinates where
the energy actually is to be calculated;

• snake of the class Snake – object representing the active contour itself;
among the most useful methods one can cite: getRasterValue reading the
image intensity in the given point/snaxel, log(String) printing an arbitrary
text into the console during the segmentation, methods accessing the snaxels
(getNextSnaxel(Snaxel), addPoint(Snaxel),
iterator():Iterator<Snaxel>) and calculating some useful values
(getNormalVector(Snaxel), averageDist());

• parameter names – when the energy has defined some parameters, their cur-
rently set values can be accessed from the source code by their given names
(radius in the gradient energy example – Figures 4 and 5).

The standard Java library classes can be also used (java.lang.Math for instance).
The most often this mode of working is sufficient to design and evaluate new

segmetnation methods. It requires some skills in the Java language programming,
but on a really basic level (arithmetic operations, variables declaring, methods call-
ing).

4.3. External creation of new components

When the two described above modes are not sufficient to implement more
sophisticated segmentation scenarios, one can develop new extensions and even
models. Especially the latter ones allow to define custom segmentation algorithms
going beyond the standard searching in the snaxel neighbourhood for a new loca-
tion with a lower energy. To achieve this goal it is necessary to write new complete
Java classes implementing interfaces or inheriting classes from the MESA Appli-
cation Programming Inteface (API) and to pack them in a special way. This should
be done outside the MESA system – for instance in a programming environment
(like Eclipse or NetBeans) or using the bare Java SDK (Software Development
Toolkit). In this mode all three component classes (energies, extensions and mod-
els) can be developed (however new energies can also be written in the embeded
mode).
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Figure 6. MESA API class diagram

4.3.1. MESA Application Programming Interface

In our computation framework five main classes have the following respons-
abilities (Fig. 6):

• Snaxel – represents a point building the snake;

• ImgDataProvider – abstract base type implemented by concrete image class-
es, it represents an image - environment where the snake evolves, each con-
crete class should override the getValue methods returning the image in-
tensity in a given point;

• Snake – represents the active contour as a collection of snaxels, it has a
reference to an image (ImgDataProvider) where it is situated;

• Energy – abstract base class for all classes representing implemented en-
ergies; each energy should override the method energy(Snaxel):double
calculating the given snaxel energy; each energy has a reference to its snake,
so it can read for example the neigbour snaxels positions;

• SnakeWorker – abstract base class for both contour models and extensions;
for the models its apply method realizes the single iteration (so the main
skeleton of the segmentation), for the extensions this method is called once
in each iteration (for instance for the shape modification); this class stores
the reference to the snake object and to all energies attributed to it.



C. Bołdak, D. Reska, M. Krętowski 39

The above list is only a general description. In reality some classes are subclassed
to represent separately the 2D and 3D cases.

4.3.2. New components packaging

After writing new classes realizing new components it is necessary to properly
pack them to use in the MESA environment. Finally, they will be put in a plugin -
a JAR (Java ARchive) file with a special structure.

First of all, each new component class needs to be annotated (with the Java an-
notation framework). In this annotation the component class/type and name (dis-
played in the MESA environment) should be given (Listing 1). The component
class/type specification is important since different types can have a common base
class (e.g. extensions and models inherit SnakeWorker). If the component has pa-
rameters (see below), their names and default values also have to be specified here.

Listing 1. Example of component classes annotation
1 @ D e f i n i t i o n (
2 l a b e l =" S k e l e t a l model " ,
3 s t a r t e r =true ,
4 t y p e=D e f i n i t i o n T y p e .MODEL
5 )
6 p u b l i c c l a s s Ske le tonMode l ex tends SnakeWorker { . . . }

Then all components defined in the plugin need to be referenced by methods
of a meta class (implementing ComponentService – Listing 7).

Finally, the meta class full package name (in the described
example tewi.segmed.snake.plugins.SkeletonService) has to be listed
in the file called tewi.segmed.snake.defs.ComponentService
placed in the META-INF/services folder of the plugin JAR file.

After building a JAR file (e.g. with the Eclipse “Export as a JAR file” option)
with the compiled classes and described above information, the plugin
JAR file, once placed in the MESA CLASSPATH, will be
automatically recognized and all its components made available
in the main environment. This mechanism is based on the API ServiceLoader
(http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html).
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4.3.3. Components parameters

All the component types can have parameters used in their methods. To de-
fine them in the source code and to use them in the MESA GUI during the snake
evolution, they should be specified in two places (Listing 2):

• in the component class annotation (parameter names and default values);

• in the component constructor – their current values (fixed in the GUI –
Fig. 3) are passed to the component object every time it is created (before
each launching of the snake evolution iteration).

Listing 2. Example of component parameters
1 @ D e f i n i t i o n (
2 l a b e l =" S k e l e t a l b a l l o n " ,
3 paramNames={" D i s t a n c e " , " S top %" } ,
4 paramValues ={" 15 " , " 0 . 3 5 " } ,
5 t y p e=D e f i n i t i o n T y p e .MODEL )
6 p u b l i c c l a s s Ske le tonWorke r ex tends SnakeWorker {
7 p r i v a t e double maxDis tance ;
8 p r i v a t e double c h a n g e R a t i o ;
9

10 p u b l i c Ske le tonWorke r ( Snake2D snake , double maxD , double chgR ) {
11 super ( snake ) ;
12 t h i s . maxDis tance = maxD ;
13 t h i s . c h a n g e R a t i o = chgR ;
14 }
15 p u b l i c vo id a p p l y ( ) {
16 . . .
17 snake . checkI sChanged ( c h a n g e R a t i o ) ;
18 }
19 . . .
20 }

For the energies, the first parameter (the second constructor parameter, after the
snake object) is always the energy weight, used internally by the MESA frame-
work to multiply the obtained energy value. The component constuctor should save
the parameters for a future use by the component methods (apply for the models
and extensions, energy for the energies).
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5. Existing model implementation

In the section 4 we gave the example of the gradient energy (Fig. 5) imple-
mented in the embeded mode using the Java language scripting. Here we present
a complete active contour model implemented in the external mode, with all the
component classes (models, energies and extensions). This model is impossible to
construct in the former one, because it uses a non standard contour representation
and hence the optimization scheme.

5.1. Dual active contour

Introducing external forces to overcome the local minima (like the balloon
force [3]) can cause the snake to not stop on the right border. The energy drop
here can be smaller than the benefit of following this too strong external force. The
well adjusted balance between all the forces/energies (their weights) is the key to
a good segmentation and in the active contour applications this task usually needs
a lot of work. Moreover, once fixed it can fail in even a similar class of images and
objects to segment.

The dual active contour [5] is a trial to at least alleviate this problem. Instead of
using a single contour, two contours are initialized and they evolve at the begining
independently. The first one is placed inside the segmented object while the second
one operates outside it. When both of them stop in (local) minima, an additional
spring force (translated into energy) is applied to the snake with higher energy
(so worse placed) attracing it to the better placed one (with lower energy). This
force/energy is increased gradually until the affected snake moves. After exiting
the local minimum and decreasing the energy the spring force/energy is removed
and the configuration evolves again independently. The segmentation is finished
when two contours converge in the global minimum (hopefully on the segmented
object).

5.2. Two contours snake implementation in MESA

The model consisting of two contours can not be treated by the standard MESA
models assuming only one closed sequence of snaxels. But we demonstrate here
that it can be achieved by externally creating new components. Three component
groups are needed: model built of two contours, energies adapted to this specific
model and extension removing a potential reciprocal rotation of two contours.
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5.2.1. Energies

The standard MESA energies could have been used here (applied separately to
each contour) with one exception. The balloon energy should work differently for
the inner and outer contours. For the former this energy should push it outward, for
the latter – inward. To allow the model to identify this component (in order to apply
it differently to two contours), a separate class was created with the code presented
in Listing 3. To put all the components in a single JAR library, we implemented in
this manner also other energies – gradient (source code like in Fig. 5) and rigidity
(Listing 4) ones – however they are not specific to the dual active contour.

Listing 3. Balloon energy class
1 @ D e f i n i t i o n ( l a b e l = " B a l l o o n en e r g y " ,
2 t y p e = D e f i n i t i o n T y p e .ENERGY)
3 p u b l i c c l a s s Bal loonEne rgy ex tends Energy {
4 p u b l i c Bal loonEne rgy ( Snake2D snake , double we ig h t ) {
5 super ( snake , we ig h t ) ; }
6 p u b l i c double e ne rg y ( Sn ax e l p ) {
7 P o i n t p n t=p . g e t D e s t i n a t i o n ( ) ;
8 i f ( p==n u l l ) re turn 0 ;
9 i n t xc , yc , x0=p . getX ( ) , y0=p . getY ( ) ,

10 x=( i n t ) ( p n t . getX ( ) ) , y=( i n t ) ( p n t . getY ( ) ) ;
11 i n t [ ] pp=snake . g e t P o i n t s A r r a y ( ) ;
12 f o r ( i n t i =0; i <pp . l e n g t h ; i +=2) xc+=pp [ i ] ; yc+=pp [ i +1 ] ;
13 xc /= pp . l e n g t h / 2 ; yc /= pp . l e n g t h / 2 ;
14 i n t vradx=x0−xc , v rady=y0−yc ;
15 i n t vnewx=x−x0 , vnewy=y−y0 ;
16 re turn −we ig h t * ( v radx *vnewx+vrady *vnewy ) /

17 Math . s q r t ( v radx * vradx+vrady * vrady ) ; } }

Listing 4. Rigidity energy class
1 @ D e f i n i t i o n ( l a b e l = " R i g i d i t y en e r gy " ,
2 t y p e = D e f i n i t i o n T y p e .ENERGY)
3 p u b l i c c l a s s R i g i d i t y E n e r g y ex tends Energy {
4 p u b l i c R i g i d i t y E n e r g y ( Snake2D snake , double we ig h t ) {
5 super ( snake , we ig h t ) ; }
6 p u b l i c double e ne rg y ( Sn ax e l p ) {
7 Sna xe l p=snake . g e t P r e v i o u s S n a x e l ( p ) ,
8 n=snake . g e t N e x t S n a x e l ( p ) ;
9 P o i n t p n t=p . g e t D e s t i n a t i o n ( ) ;
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10 i f ( p n t==n u l l ) p n t=p . g e t P o s i t i o n ( ) ;
11 double px=p . getX ( )−p n t . getX ( ) , py=p . getY ( )−p n t . getY ( ) ,
12 nx=n . getX ( )−p n t . getX ( ) , ny=n . getY ( )−p n t . getY ( ) ,
13 l e n=Math . s q r t ( px*px+py*py ) * Math . s q r t ( nx*nx+ny*ny ) ;
14 i f ( Math . abs ( l e n ) <0.001) re turn 0 ;
15 re turn we ig h t * ( px*nx+py*ny ) / l e n ; } }

5.2.2. Two contours snake model

The model class (Listing 5) starts from only one contour drawn graphically
by the operator. On the first run (a simple geometrical test – line 10) the snaxels
number is doubled – the second half of the snake holds the outer snake (the grown
inner one). Every next iteration starts with temporarily splitting the snake into the
inner and outer ones (line 14). Then each contour is minimized independently (the
moved snaxels number is returned as well as the total energy for each one) – lines
15-16. Finally the single contour representation is restored by joining two these
collections (line 17). If no snaxels moved (line 18), the additional spring energy
is applied to the snake with higher energy (line 23-24). If this energy has been
already applied, its effect is increased (lines 21-22). The snake is then re-run with
this additional energy (line 25). In the opposite case (any snaxel moved) and if
the spring energy has been already applied, it is kept until the affected contour
decreases its energy (lines 26-28).

The single contour minimization (private method run) consists in searching
the local neighbourhood of every its snaxel for a position minimizing its sum of
energies. While cumulating the energies (line 37), the balloon energy is identified
and its sign is negated for the outer snake (what causes it to shrink instead of
growing – line 39). The spring energy is also added to the total energy – only for
the affected contour (lines 41-44).

Listing 5. Simplified class representing the dual active contour model
1 @ D e f i n i t i o n ( l a b e l = " Double snake " ,
2 t y p e = D e f i n i t i o n T y p e .MODEL)
3 p u b l i c c l a s s DoubleSnakeModel ex tends SnakeWorker {
4 . . .
5 p r i v a t e boolean f i r s t = t rue ;
6 p r i v a t e i n t s p r i n g I n =0 , s p r i n g O u t =0;
7 p r i v a t e double w o r s e I n i t E n e r g y ;
8 @Override
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9 p u b l i c vo id a p p l y ( ) {
10 i f ( ! i s D o u b l e C o n t o u r ( snake ) ) {
11 / / produce t h e o u t e r c o n t o u r and
12 / / j o i n t h e i r p o i n t s t o t h e ' snake ' v a r i a b l e
13 re turn ; }
14 Snake2D in , o u t ; / / f i r s t and second h a l f o f ' snake '
15 iMove=run ( in , true , o u t ) ; i E n e r g y=sEnergy ( in , t rue ) ;
16 oMove=run ( out , f a l s e , i n ) ; oEnergy=sEnergy ( out , f a l s e ) ;
17 snake= i n+o u t ;
18 i f ( iMove+oMove==0) {
19 i f ( f i r s t ) { f i r s t = f a l s e ;
20 w o r s e I n i t E n e r g y=Math . max ( iEnergy , oEnergy ) ; }
21 i f ( s p r i n g I n >0) ++ s p r i n g I n ;
22 e l s e i f ( s p r i n g O u t >0) ++s p r i n g O u t ;
23 e l s e i f ( iEnergy >oEnergy ) ++ s p r i n g I n ;
24 e l s e ++s p r i n g O u t ;
25 i f ( s p r i n g I n +s p r i n g O u t <100) a p p l y ( ) ; }
26 e l s e i f ( s p r i n g I n +s p r i n g O u t >0) {
27 cu rEne rgy =( s p r i n g I n >0) ? i E n e r g y : oEnergy ;
28 i f ( curEnergy >=w o r s e I n i t E n e r g y ) a p p l y ( ) ; } }
29 p r i v a t e i n t run ( Snake2D snake , boolean i n n e r ) {
30 moveCounter =0;
31 f o r ( Sn ax e l s : snake ) {
32 moved= f a l s e ;
33 f o r ( i n t x=− s e a r c h R a d i u s ; x<= s e a r c h R a d i u s ;++x )
34 f o r ( i n t y=− s e a r c h R a d i u s ; y<= s e a r c h R a d i u s ;++y ) {
35 s . s e t D e s t i n a t i o n ( s . getX ( ) +x , s . getY ( ) +y ) ;
36 en e r g y =0;
37 f o r ( Energy e : e n e r g i e s ) {
38 i f ( e i n s t a n c e o f Bal loonEne rgy && ! i n n e r )
39 energy −=e . en e r gy ( s ) ;
40 e l s e e ne rg y+=e . en e r g y ( s ) ; }
41 i f ( i n n e r && s p r i n g I n >0)
42 en e r g y+= s p r i n g I n * s p r i n g E n e r g y ( s ) ;
43 i f ( ! i n n e r && s p r i n g O u t >0)
44 en e r g y+=s p r i n g O u t * s p r i n g E n e r g y ( s ) ;
45 i f ( energy <minEnergy ) {
46 moved= t rue ; minEnergy=e ne rg y ;
47 m i n P o s i t i o n=s . g e t D e s t i n a t i o n ( ) ; } }
48 i f ( moved ) { ++moveCounter ;
49 s . s e t P o s i t i o n ( m i n P o s i t i o n ) ; } }
50 re turn moveCounter ; } }
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5.2.3. Extension for removing rotation

When the additional spring force is applied, it attracts the worse contour points
toward the corresponding points in the second contour. During the evolution these
two contours can rotate reciprocally. The extension termed a rotation remover
(Listing 6) removes this rotation by minimizing the sum of distances between cor-
responding points in two contours.

Listing 6. Extension class for removing reciprocal rotation of two contours
1 @ D e f i n i t i o n ( l a b e l = " R o t a t i o n Remover " ,
2 t y p e = D e f i n i t i o n T y p e . EXTENSION)
3 p u b l i c c l a s s RemoveRota t ion ex tends SnakeWorker {
4 p u b l i c RemoveRota t ion ( Snake2D snake ) {
5 super ( snake ) ; }
6 p r i v a t e double r o t D i s t ( L i s t <Snaxel > s1 , L i s t <Snaxel > s2 , i n t o ) {
7 i n t N=s1 . s i z e ( ) ; double d i s t a n c e =0;
8 f o r ( i n t i =0; i <N;++ i ) S
9 d i s t a n c e += s1 . g e t ( i ) . d i s t E u c ( s2 . g e t ( ( i +o )%N) ) ;

10 re turn d i s t a n c e ; }
11 @Override
12 p u b l i c vo id a p p l y ( ) {
13 L i s t <Snaxel > s n a x e l s = snake . g e t P o i n t s ( ) ;
14 i n t N= s n a x e l s . s i z e ( ) / 2 , minOff =0;
15 L i s t <Snaxel > i n=new A r r a y L i s t <Snaxel > ( ) ,
16 o u t=new A r r a y L i s t <Snaxel > ( ) ;
17 f o r ( i n t i =0; i <N;++ i ) {
18 i n . add ( s n a x e l s . g e t ( i ) ) ; o u t . add ( s n a x e l s . g e t ( i +N) ) ; }
19 double minDis t= r o t D i s t a n c e ( in , out , 0 ) , d i s t ;
20 f o r ( i n t o f f =1; o f f <N;++ o f f ) {
21 d i s t = r o t D i s t a n c e ( in , out , o f f ) ;
22 i f ( d i s t <minDis t ) { d i s t =minDis t ; minOff= o f f ; } }
23 f o r ( i n t i =0; i <N;++ i ) i n . add ( o u t . g e t ( ( i +minOff )%N) ) ;
24 snake . s e t P o i n t s ( i n ) ; } }

Finally, all these classes were packaged in the meta class describing the plugin
(Listing 7).

Listing 7. Meta class referencing all the components of the dual contour plugin
1 p u b l i c c l a s s D o u b l e S n a k e P l u g i n S e r v i c e
2 implements ComponentServ ice {
3 @Override
4 p u b l i c S t r i n g g e t 2 D E n e r g i e s ( ) {
5 re turn DefsMaker . g e t D e f i n i t i o n s ( Ba l l oonEne rgy . c l a s s ,
6 G r a d i e n t E n e r g y . c l a s s , R i g i d i t y E n e r g y . c l a s s ) ; }
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Figure 7. An example of dual active contour segmenting the human cell image

7 @Override
8 p u b l i c S t r i n g g e t 2 D E x t e n s i o n s ( ) {
9 re turn DefsMaker . g e t D e f i n i t i o n s ( RemoveRota t ion . c l a s s ) ; }

10 @Override
11 p u b l i c S t r i n g get2DModels ( ) {
12 re turn DefsMaker . g e t D e f i n i t i o n s ( DoubleSnakeModel . c l a s s ) ; }
13 }

5.3. Dual active contour in action

The implemented dual active contour plugin was tested on the human cell im-
ages. In general it performed well, passing a local noise, even when its intensity
was comparable to the segmented object.

One example (Fig. 7) shows a case more difficult to segment. On the image a)
two contours are initialized. After independent evolution they reach their local
minima – b). Then the inner contour, as worse placed, is given the additional spring
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energy and grows considerably – c). After decreasing its energy the additional
energy is removed and they evolve again independently until a next equilibrium
– d). In this configuration the outer contour has higher energy and it is given the
spring energy. With it it comes very closely to the inner one – e). Finally, both
contours converge giving the correct segmentation – f).

6. Conclusions and future work

In this paper we demonstrated the MESA environment capabilities to con-
struct new segmention methods based on the deformable models (active contour –
snake). Apart from assembling them from existing components, the operator can
develop new ones. If modification of the method is moderate (in respect to the
standard segmentation schema) it is sufficient to write few lines of the Java code in
the embeded mode defining a new energy. It should be achievable even for people
without high programming skills. When the modification goes beyond this stan-
dard schema, it is still possible to implement it with our system but it requires
more programming and packaging work. It was shown that thanks to the system
API flexibility even very deep modifications (e.g. two contours instead of one) are
possible to achieve.

The MESA environment can be still developped to enhance possibilities of
constructing new segmentations methods. One of the directions can be introduc-
ing new component classes/types, for example a one implementing the stop condi-
tion (now it has to be hardcoded in the model component). Another useful feature
could be a cache memory storing values between the consecutive iterations. In
the current state all the objects are discarded after each iteration and they are re-
created for the next one – all the calculated information is lost. For example in the
dual active contour model the first iteration is identified by analyzing the contour
shape. One simple boolean variable persisting between the iterations could solve
this problem easier. Some group of active contour techniques can be accelerated
by precomputing necessary values. The gradient vector field [4] or the electric po-
tential field [8] are good examples. These values could be stored in such a cache
memory to be accessed from every iteration without recomputing.
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