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In this work, a computational model of magnetic resonance (MR) flow imaging is proposed. The first model
component provides fluid dynamics maps by applying the lattice Boltzmann method. The second one uses the
flow maps and couples MR imaging (MRI) modeling with a new magnetization transport algorithm based on
the Eulerian coordinate approach. MRI modeling is based on the discrete time solution of the Bloch equation
by analytical local magnetization transformations (exponential scaling and rotations).

Model is validated by comparison of experimental and simulated MR images in two three-dimensional
geometries (straight and U-bend tubes) with steady flow under comparable conditions. Two-dimensional
geometries, presented in literature, were also tested. In both cases, a good agreement is observed. Quantitative
analysis shows in detail the model accuracy. Computational time is noticeably lower to prior works.

These results demonstrate that the discrete time solution of Bloch equation coupled with the new
magnetization transport algorithm naturally incorporates flow influence in MRI modeling. As a result, in the
proposed model, no additional mechanism (unlike in prior works) is needed to consider flow artifacts, which
implies its easy extensibility. In combination with its low computational complexity and efficient
implementation, the model could have a potential application in study of flow disturbances (in MRI) in

various conditions and in different geometries.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic resonance (MR) images of vascular structures play a
very important role in clinical angiography [1]. Many diseases are
directly related to changes in vessel structures, and a lot of these
modifications can appear in medical images. Signal intensity
enhancements may indicate hypervascularized areas of tumoral
lesions (e.g., hepatocellular carcinoma) [2]. In contrast, flow-related
signal voids can appear in the place of serious vessel shape
perturbations (e.g., aneurysm, stenosis) [3,4]. Hence, the ability to
understand MR flow images and to predict consequences of changes
in vascular geometries is crucial.

Although MR imaging (MRI) is known as a highly detailed three-
dimensional (3D) imaging modality, there are still a lot of difficulties
in vascular image interpretation. This is mainly due to flow-induced
disturbances appearing in such areas, caused by intravoxel phase
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dispersion (IVPD) [5], misregistration [6,7] or inflow/outflow effects
[8]. Moreover, imperfections and limitations of hardware continue to
reduce the effectiveness and accuracy of fluid motion characteriza-
tion and visualization. This motivates the creation of computational
models of MR flow imaging as a tool to enhance understanding of
involved processes. For instance, they can help to study the
relationship between vascular geometry changes and hemodynamic
factors in silico [9]. The connection between fluid flow and image
appearance can also be investigated [4]. Turning on/off particular
physical phenomena and evaluation of various combinations of MRI
equipment parameters are often time consuming or even impossible.
On the other hand, in computational models, it is far easier to switch
on/off their components and to study contribution of each factor
alone or together. Therefore, such modeling can certainly contribute
to increase our understanding of pathological processes and to
improve MRI sequence design. Finally, controlled simulation
experiments are also a valuable way of education [10].

There were many studies on flow influence on MRI, both
experimental and by simulations, e.g., [4-9,11-20]. Most of them
are focused on a chosen imaging sequence/technique and chosen
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geometry and flow pattern, e.g., on balanced steady-state free
precession (b-SSFP) in simple geometry [8], spiral imaging [7], phase
contrast imaging in a carotid bifurcation [19] or slice selection
process [11,17]. In contrast to them, in this paper, we propose a more
general approach in computational modeling of MR flow imaging
with a computer program allowing fast simulations of the effect of
complex flow geometries in arbitrary imaging procedure. Our goal is
not to concentrate on one particular geometry but to provide
extensible solution that integrates geometry, flow and MRI manag-
ing modules to increase understanding and unravel their interac-
tions by efficient tests of many scenarios (parameters).

The proposed computational model consists of two connected
components: a fluid dynamics component and an MRI one. The first
one is responsible for flow modeling by the lattice Boltzmann method
(LBM) [21] in given geometries. It provides flow maps which are then
used in the second component of the model. This second component
reproduces the MRI process. During the imaging simulation, a newly
proposed magnetization transport algorithm is used to model the flow
influence. The algorithm is based on the Eulerian coordinates approach
(i.e., stationary frame [22]). MRI processes are modeled with the use of
the discrete time solution of the Bloch equation [23] by means of local
magnetization rotations and exponential scaling [24]. These analytical
magnetization transformations closely follow the physical process of
MRI and in combination with the magnetization transport algorithm
naturally incorporate flow-related artifacts. As a result, no additional
mechanism is needed to consider the flow influence during most MRI
processes (including excitation, relaxation, precession as well as space
encoding and signal sampling in 3D objects), in contrast to the one of
the most advanced prior works [4,19]. This also implies that the whole
imaging procedure for various sequences (e.g., spoiled gradient echo
or b-SSFP) with different view ordering (e.g., linear, centric or cyclic) or
with different k-space trajectory (e.g., radial or spiral) is straightfor-
ward to model, unlike in previous studies [7,8]. Another advantage of
the proposed solution is its implementation (computer program) that
allows to easily control modeling parameters starting from geometry
specification, through flow and MRI, and ending on image processing.
These features render the solution as a tool that is user friendly and
manageable at different levels, which facilitates running series of
simulations with different physiological and imaging parameters. In
this study, as a first step, we focus on magnitude images acquired in the
spoiled gradient echo sequence. Our initial efforts to create the
presented solution are described in the conference paper [25].

In the second section of the paper, the proposed computational
model and its implementation (integrated simulation environment)
are described. Simulation and experimental setups, used in model
validation, are also presented. In the Results section, the validation of
the model is performed by comparison between experimental and
simulated images as well as by quantitative analysis. The computa-
tional performance is also investigated. Finally, in the Discussion
section, the model is confronted with prior works, its limitations and
advantages are described, and also future works are sketched.

2. Methods

At the beginning, the two parts of the model are described. Then,
the way of flow influence incorporation in MRI modeling is
presented. Next, the integrated simulation environment (computer
program implementing the model with additional supporting
modules) is briefly described. Finally, the simulation and experiment
setups, used to validate the model, are presented.

2.1. Fluid flow modeling

In the proposed solution, LBM [21] is applied to model fluid flow.
This method has been intensely developed over the last two decades,

becoming a powerful alternative to the numerical solving of Navier—
Stokes equations known as the conventional computational fluid
dynamics mechanism [26]. Many theoretical analysis [27] and
numerical investigations [28,29] have shown that LBM is commonly
recognized as a method able to simulate realistic fluid flows obeying
the Navier-Stokes equations with high accuracy.

LBM is a mesoscopic method placed in between microscopic
molecular dynamics and continuous macroscopic approaches [30]. It
does not consider each elementary particle alone but treats the behavior
of a collection of particles as a unit whose properties are represented by
a particles distribution function. Therefore, LBM preserves most of the
advantages of both micro- and macroscopic approaches. Its clear
physical insight into molecular processes provides easy treatment of
boundary conditions and, consequently, high applicability for complex
geometries [31]. At the same time, the relevant quantities (e.g., mass,
energy, etc.) are conserved at the macrocontinuous regime, like in the
Navier-Stokes equations. Moreover, it shows numerous computational
advantages, e.g., good stability properties or simple arithmetic
calculations. Finally, owing to the intrinsic space-time locality of LBM
(ie., in each time step, only data from neighboring lattice nodes are
needed), it is ideal for parallel computing [32].

In LBM, fluids consist of a set of discrete nodes creating regular
lattices. At each lattice node, the virtual particles (represented by their
distribution function) reside. At discrete time moments, these particles
can move along specified directions to the neighboring nodes
(propagation step). When the particles meet, they collide (collision
step), butthey always stay on the lattice nodes. The collision rules are set
according to the conservation laws of mass (i.e., number of particles),
momentum and energy. The exact conservation laws are fulfilled, not
only their numerical approximations. These two steps are expressed
by a mathematical formula known as the lattice Boltzmann equation:

Fi(r+ AL t+ AL —f,(x, 1) = Q(r, 1), (1)

where f(r, t) is the particle distribution function in the grid node
located at position r at the time t and streaming in the next time step
At in the direction i with the velocity e;. ) is the collision operator
standing for collision rules of the simulated physical phenomenon.

Using the Bhatnager-Gross—-Krook (BGK) model [33], the collision
operator (complex integro-differential expression) is simplified by the
widely used, single-time relaxation approximation [31]:

Q,(r, 1) = 1/7(F(x, )= f,(x, 1)), 2)

where 7 is the dimensionless relaxation time related to fluid viscosity.
The local equilibrium distribution function f;*? is given by [34]:
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the dimensidn(l]ess lattice density, ®; is the weighting factz)ro of a
lattice topology and c is the lattice constant related to a propagation
factor on the lattice and is set to unity in most cases [34]. Lattice velocity
is a fraction of distance between neighboring nodes traveled by fluid
per time step (e.g., lattice velocity of 0.5 means that the fluid moves 0.5
lattice cell in time step At). To obtain the physical macroscopic velocity,
the lattice velocity is multiplied by Ad/At, where Ad is the lattice cell
size (distance between neighboring lattice nodes).

In two-dimensional (2D) fluid flows, we use the model withn=9
discrete velocities (D2Q9) (Fig. 1A) where

60:[070]C (D0:4/9
e12,e34 = [£1,0]c, [0, £1]c 7 4=1/9 |
es. g = [£1,£1]c 05 g =1/36
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while in 3D ones, the model with n=19 discrete velocities (D3Q19)
(Fig. 1B) is selected:

eg = [0,0,0]c
e12: €34, 656 = [£1,0,0]¢,[0,£1,0]c, [0,0, £1]c

w,=1/3
0 5=1/18

€7...100 €11,...14» €15 18 = [£1,£1,0]¢, [£1,0, £1]¢, [0, £1, £1]c ©7 15 = 1/36.

In the presented solution, fluid is considered as a Newtonian
incompressible liquid [35]. At entrances and exits of the geometry, it
is possible to enforce the constant velocity or pressure boundary
conditions. The unknown values of the distribution function are
calculated by the extrapolation method proposed by Guo et al. [36].
With respect to the walls, the procedure called the bounce-back
scheme (i.e.,, no-slip) is applied [31]. It rotates the distribution
function values on walls so that they return to the fluid in the next
time step. We also adopted the modification of f;* function (splitting
the density into constant contribution and small deviations)
proposed by He et al. [27] to increase the accuracy in modeling of
incompressible fluids.

2.2. Modeling of MRI

The 3D imaged area (object) is divided into small cubic elements
to which basic magnetic resonance parameters (i.e., proton density,
relaxation times) are assigned. Every such element can be inter-
preted as a collection of magnetic spins.

The behavior of spins in the cubic elements in time t during MRI is
modeled by the Bloch equation [23]:

D y(r, 1) B, 1) 4
ML (e R+ M (0 M (r, )= Mo(r)4
Ty(r) T4(r) '

where M = M_,.f + M ﬁ + M Zﬁ is the spin's magnetization vector, B
represents the applied magnetic field, My is the equilibrium magne-
tization determined by the proton density, T; and T, are the relaxation
times, <y is the gyromagnetic ratio (42.6 MHz/T for hydrogen nuclei),
A A . . N .

r = i + 4j + 2k is the spatial coordinate vector of a cubic element (set
of spins) and 1, j, k are the unit vectors in the x, y, z directions,
respectively. The applied magnetic field B is specified as follows:

B(r, t) = B (r, /8 + BM(r, 8} + [By + AB(r) + rG (1)K, (5)

where B; = BX 4 BMJ is the complex radiofrequency (RF) pulse in
the rotating frame, By is the main static magnetic field, AB represents
the local magnetic field inhomogeneities and G is the applied
magnetic field gradients at position r.

Fig. 1. Lattice topology for (A) D2Q9 model and (B) D3Q19 one. The neighboring
nodes are labeled according to numbers of discrete velocities e;. Particles move in all
these directions during the propagation step based on the values of the particle
distribution function. The circle in D2Q9 model and the sphere in D3Q19 one denote
that the velocity vector equals zero, i.e., for nonmoving particles.

In the presented model, the discrete time solution of the Bloch
equation proposed by Bittoun et al. [24] was applied. It uses the
rotation matrices and exponential scaling to represent magnetic
events in MRI sequences. Such an approach (used in many advanced
MRI simulators, e.g., SIMRI [37], ODIN [38]) allows us to follow the
variations of spins' magnetization during the whole MRI sequence
without any integration. In each cubic element, the following
mathematical formulas are used to calculate the spins' magnetiza-
tion after successive time steps At:

M(r, t + At) = Ayg (v, AM(r, 1), (6)
AMRI = ERELAXRz(eG)Rz(e]H)RRF’ (7)

where Ay, represents the MR influence modeled as follows:
Ererax is responsible for the relaxation phenomena:

Egeiax(r; At)=diaglexp(—At/ T5(r)), exp(—At/ T(r)), 1—exp(—At/ Ty (r))],

(8)

R, is the rotation matrix about the z-axis used to model the effect
of the spatial encoding gradients G (rotation through 6; angle) and
magnetic field inhomogeneities AB (rotation through 6 angle):

cos® sin® O
R,(0)= | —sin® cos6 O |, 9)
0 0 1
04 (r, At) = GeryAt, (10)
O (r, At) = YAB(r)At, (11)

while Rgg is the rotation matrix describing the influence of RF pulse
and a slice selection gradient (more details in Bittoun et al. [24]).

Based on Faraday's law of an electromagnetic induction [39] and
on the assumption that two orthogonal perfect detecting coils lie
along the x- and y-axes, the MR complex signal coming from the
imaged object at time t is modeled as:

S(t)= X M,(ro, i+ X M, (ro,0)], (12)

ro€C roSC

where C is the collection of all cubic elements in the virtual object.
Signal values calculated (sampled) during the acquisition period are
arranged in the readout k-space matrix. Within a single repetition
period, the detected signal fills one k-space matrix row. Each
subsequent excitation is performed with a different phase encoding
step, and the acquired signals fill the successive matrix rows.

The MR image is created by applying the fast Fourier transform
(FFT) [40] to the stored signal. The size of the image voxel is
determined by the magnetic field gradient settings. In other words,
the number of frequency/phase encoding steps determines the
number of voxels in the gradient direction and, consequently, the
number of cubic elements assigned to each voxel.

2.3. Combined modeling of MRI and fluid flow

In the center of each cubic element, one LBM grid node is placed.
This kind of discretization associates each cubic element (part of
tissue) with the MR characteristics (proton density and relaxation
times) as well as with the hydrodynamic properties, i.e., mean
velocity and direction of the fluid filling it (represented by the
dimensionless lattice velocity u = uz/i\+ uﬁ + u.k coming from the
flow model). The flow velocity for stationary tissue structures (e.g.,
vessel walls, bones, parenchyma) equals zero.

The process of MR flow imaging is divided into sufficiently small
time steps. The longest time step ought to be shorter than the shortest
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time needed by the fluid to go from one grid node to another one, which
is equivalent to the Courant-Friedrichs-Lewy condition [41] with the
Courant number equals 1. After each time step At, the local
magnetizations of all cubic elements are evaluated, taking into account
boththe flow influence and the MR phenomena (excitation, relaxation,
etc.). This iterative process is modeled by the following equation:

M(r, t + At) = Ay (r, At)[M(r, t) + AMp gy (r, At)], (13)

where AMgow and Ayg; represent the flow and the magnetic
resonance influences, respectively, during the time period At on the
magnetization M(r, t) of the cubic element placed at position r.

Fig. 2 presents the general scheme of the coupled algorithms. First,
the flow influence is computed by transport of magnetization fractions
between neighboring grid nodes. By the use of velocity values and the
flow direction, the fractions of magnetization leaving cubic elements
(black rectangles labeled by "A," "B" and "C") are propagated to the
neighboring nodes. It means that values of magnetization fractions
leaving as well as entering for each cubic element have to be evaluated.
These operations allow us to model the influence of flowing magnetic
spins on the magnetization volume distribution. Next, the MR
influence is calculated according to Eq. (6) (Fig. 2, MRI processes).
Afterwards, the algorithm returns to the first (flow) step.

The mean magnetization changes caused by flow in a cubic
element at position r during a time step At are expressed as follows:

AMg oW (r, At) = AMy(r, At) =AMy (1, At), (14)

where AMjy denotes the inflow magnetization, while AMgyr is the
outflow magnetization. For description clarity, the equations of AMy
and AMgyr are presented in the full form only for the 2D case. The
AMgyr value is calculated based on the flow properties and the local
magnetization of the considered cubic element:

Aoy (v, At) = M(x, )[|u, ()] (1w, (v)]) (15)
o (0)] 1, ()] + (1=, (), ()] )

The graphical interpretation of this equation is presented in
Fig. 2. The black rectangles ("A," "B" and "C") represent the
magnetization fractions (successive components of the sum in
Eq. (15)) leaving the considered cubic element. Meanwhile, the
inflow magnetization value AMyy is calculated with the use of the
magnetizations of neighboring elements and flow properties of
the considered cubic element as follows:

_ AL) & (1) A u, ()|, (r
M<r e Aduy(r)lj’t) <l ]+
M<r—AdZ?ngit)(l—w,(r)>|ug(r>)

(16)

For 3D objects, the Eqs. (15) and (16) have six cases, i.e., with
|u,(r)| and (1 — |u, (r)|) additional components for each 2D case.

2.4. Integrated simulation environment

The proposed combined algorithms are extended to a complete
modeling environment composed of several modules (Fig. 3) and next
implemented as a computer program. The object generation module
enables us to specify the regions occupied by different kinds of tissue
(Fig. 3, point 1). Special attention is paid to fluids. It is possible to
define the geometry of vascular trees composed of cylindrical or cone-

shaped vessels. Moreover, distortions to vascularized geometries can
be introduced by adding or removing spaces bounded by geometrical
figures (e.g., cylinders, spheres) (Fig. 3, point 2).

M(t)/

/]

node

~—

node
.\ v o
o o o—.

flow influence - magnetization transport
between neighboring nodes
+ AMFLOW(At)

l

M'(t)=M(t)+AMrLOW(At)

l

Rrecession . Mi(t)

*-—-»———-—"7 *relaxation

/

node

MRI processes
e.g. precession, relaxation

* AMRI(At)

!

M(t+At)=AMRI(At)*(M(t)+AMFLOW(At))

Fig. 2. Coupling of magnetization transport and MRI algorithms. The magnetization at
time ¢ is represented by M(t). In order to calculate the magnetization after a At time
step, firstly, the flow modifications are taken into account. As a result of
magnetization exchange between neighboring nodes (AMgow (r, At)), the
magnetization changes to M'(t). Secondly, the MRI processes are considered, and
the sought magnetization M(t+ At) is found. The black filled rectangles labeled by
"A," "B" and "C" represent the magnetization fractions that flow out from the node.
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Fig. 3. The modeling environment of MR flow imaging. It consists of several modules which make it possible to control a broad range of parameters. The first module is used to
define the basic specifications for virtual objects (e.g., structure of vascular trees). Shape distortions can be introduced in the second module. In order to adapt object data to the
LBM and MRI algorithms, the third module performs the data discretization, while the fourth one performs flow simulations. As a result, flow maps are produced which are then

used in the simulations of MR flow imaging. Finally, series of MR images are obtained.

In the next step, the object is divided into cubic elements with fixed
volume (Fig. 3, point 3). Each cubic element inherits characteristics
of the tissue which fills it most. A Gaussian noise can be added to
imitate the natural variability of tissue properties. In the case of
liquids, borders (e.g., walls and input/output) are found and marked.
The flow simulation module produces the velocity maps by
performing alternatively the collision and propagation steps
(Fig. 3, point 4) until the desired convergence criterion is satisfied,
which is until the global absolute difference of the velocity fields
(with L2 norm) between successive iterations is smaller than 10e-6.

The final stageis the MRImodeling (Fig. 3, point 5). Currently, thereis
apossibility to simulate spoiled gradient echo and spin echo sequences.
They can be extended by adding flow compensation mechanisms, such
as gradient moment nulling of the desired order for slice selection and
readout gradients. Various RF pulses can be chosen, instantaneous
(ideal and without any fluid motion influence) or finite duration ones of
different shapes (sinc-shaped, rect-shaped or Gauss-shaped) [42]. A
Gaussian noise can be also added to the k-space matrix values to imitate
thermal noise that usually corrupts the MRI signal [43].

The fluid motion influence can be easily turned off to provide the
possibility to study the flow influence on the different MRI steps
selectively. Moreover, in order to speed up calculations, the
simulation time step may be different during the various stages of
imaging, e.g., shorter during a slice selection and longer after a signal
acquisition until a next excitation.

The simulation environment is implemented in C++ programming
language and hence can be compiled to be run under Windows, Linux
and Mac operating systems. Parameters of all modules can be specified
by input files. Moreover, basic graphical user interface, which is still
under development, allows to control MRI simulations and to visualize
the virtual object and the simulated images. A flow visualization
package enables one to observe how flow maps evolve starting from the
LBM algorithm initialization until the stability condition is reached.

2.5. Simulation and experiment setups

All MRI experiments were conducted on a Bruker Biospec 4.7-T
scanner (Bruker Biospin, Wissembourg, France) by the spoiled

gradient echo sequence (FLASH), with and without flow compen-
sation along the slice-selective and frequency-encoding directions.
Two physical glass phantoms were used. The first phantom was a
rigid, straight tube with radius of 3 mm (Fig. 4A), while the second
one was a rigid, U-bend shape tube with radius of 4 mm (Fig. 4B).
Flow of (cold tap) water was considered. Flow rates were measured
with a graduated cylinder and a stopwatch. The water source was
placed several meters from the MRI scanner. In order to obtain fully
developed steady flows, long straight entrances before MRI
measurement location were provided (about 2 m).

In all simulations, the spoiled gradient echo sequence was used.
Fluid behavior was modeled as a steady flow of a Newtonian liquid
with literature-based properties for 10 °C pure water: kinematic
viscosity of 1.3x 10~ % m?s~!, T1 of 2500 ms, T2 of 2500 ms [13,44].
Constant pressure boundary conditions at inlets/outlets were
applied. Five cubic elements per direction were arranged to each
voxel based on previous studies [14,18,38] and our own investiga-
tion to search good-compromised values in the context of image
quality, simulation time and LBM resolution. A personal computer
equipped with Intel Core i7 CPU (1.73 GHz) and 8 GB of RAM was
used. We verified the solution under Linux with GCC version 4.3.2
compiler and also under MS Windows 7 in MS Visual Studio 2005.

In the case of the straight tube geometry, the mean velocity was
set to 0.4 ms~ ! (Reynolds number = 900). The imaging parameters
were as follows: repetition time (TR) =200 ms, echo time (TE) =
5 ms, flip angle (FA) =30°, in-plane resolution 0.47 mm x 0.47 mm
with slice thickness of 1 mm, field of view =60x60 mm, sinc-
shaped RF pulse. Images in axial and sagittal planes were acquired as
well as with and without flow compensation gradient of first order
along slice-selection and frequency-encoding directions.

In the case of the U-bend geometry, the mean velocity was set to
0.38 ms~! (Reynolds number=1150). The imaging parameters
were as follows: TR=50 ms, TE=5/10/20 ms, FA=40°, in-plane
resolution 0.5 mmx 0.5 mm with slice thickness of 3 mm, field of
view =64 mm x 64 mm, sinc-shaped RF pulse.

Flow and fluid parameters (i.e., mean velocity, viscosity, Reynolds
number, etc.) and detailed imaging settings were equal in both
experiments and the corresponding simulations. Based on the
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of the phantoms.

Reynolds number, long entrance length and series of test measure-
ments, we identified that flow in experiments had a parabolic profile.

In simulated images of the 2D flow geometries that are
commonly studied in other computational solutions of MR flow
imaging, the flow and MR measurement conditions were set in
accordance to previous papers [18,19]. For the straight tube lying
diagonally to the gradient axes, laminar flow with mean velocity
equals 0.35 ms™ ! was forced, while imaging parameters were TR =
400 ms, TE=25 ms, FA=30°, in-plane resolution 2 mmx2 mm,
field of view=200x200 mm. For the single stenosed carotid
bifurcation, steady flow with maximum velocity of 4.7 ms ™! in the
stenosis was considered. Imaging parameters were TR/TE=50/5,
200/5 and 50/15 ms, FA=30° in-plain resolution 0.25 mm X
0.25 mm, field of view =20 mmx 65 mm.

3. Results

In this section, the proposed solution is experimentally verified.
First, the computational model is validated by comparison between
experimented and simulated images as well as by quantitative
analysis. Finally, the computational performance is investigated.

3.1. Model validation
Fig. 5 presents the comparison of simulated and experimental MR

images in a straight tube phantom (Fig. 4A) with laminar flow. Under
the images, corresponding normalized signal intensity profiles through

their centers horizontally are also provided. The first-row images were
acquired in the sagittal plane. In the images obtained without any flow
compensation mechanism (Fig. 5A, B), the IVPD artifact is clearly
visible. It results in a partial signal cancelation away from the tube
center. A wide distribution of velocities (particularly large within
voxels close to walls) across the tube with laminar flow produces
significant phase variations within the voxels and can lead to a high
signal decrease. When the flow compensation mechanism was
incorporated (first-order gradient moment nulling), the IVPD artifact
was greatly reduced (Fig. 5C, D). This mechanism ensured phase
coherence at the center of the echo, regardless of flow velocity.

The second-row images in Fig. 5 were obtained in the axial plane.
The IVPD artifact is again clearly visible at regions close to the tube
walls where the high range of velocities within voxels causes a signal
diminution (Fig. 5A, B). Similarly, images acquired with the first-
order compensated sequence show a significant reduction in signal
loss. A good agreement between simulated and experimental images
(as well as between signal intensity profiles) is observed.

We investigated in detail the flow influence on the RF excitation
step. The MRI simulations of the straight tube phantom in an axial
plane (second row in Fig. 5) were considered. Fig. 6 presents curves
of transverse magnetization phase for cubic elements just after the
slice selection step, both along (Fig. 6A) and across the tube (Fig. 6B).
The curves in Fig. 6C and D show magnetization phase from
simulations with no flow. A coherence of cubic element phases
inside the chosen slice in both directions is easily observable. Phase
curves coming from simulations with flow (without any flow
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Fig. 5. MR images (simulated and experimental) and corresponding normalized signal intensity profiles through their centers horizontally (arrows) of a 3D straight tube
phantom. First row images were acquired in sagittal plane, while the second row images in axial plane. The images in columns (C) and (D) were acquired with the flow
compensation mechanism: velocity compensation gradient of first order along slice-selection and frequency-encoding directions. Frequency encoding in the vertical direction
and phase encoding in the horizontal one. Significant black background in images around tubes was dropped.

compensation mechanism) are presented in Fig. 6E and F. These
curves show that cubic elements along the main flow direction are
totally dephased, even in the excited slice. Also, across the tube,
phase values in neighboring cubic elements can differ significantly.
Moreover, the phase dispersion in regions close to walls is much
higher than that in the center of the tube (as a result of higher range
of velocities; Fig. 6F). This dephasing is at the origin of what can be
observed in the second-row images in Fig. 5A and B: IVPD artifact
takes place and signal loss appears just in the voxels close to walls,
where strong phase gradients exist.

When the flow compensation gradient is applied, the phase
dispersion along the tube inside the excited slice (Fig. 6G) is much
smaller than without compensation (Fig. 6E). Moreover, a high
coherence of phase is observed across the tube (Fig. 6H). In the
second-row images in Fig. 5C and D, we can easily observe that this
flow compensation mechanism is able to eliminate or at least
effectively minimize flow-related artifacts.

The MR images of the U-bend phantom (Fig. 4B) are presented
in Fig. 7. Here, our attention is focused on the displacement
(misregistration) artifact [6] since it dominates the results. This
artifact usually appears due to fluid motions obliquely to gradient
axes. Then, unavoidable time delays between subsequent spatial
encoding steps cause various coordinates to be encoded at different
times and consequently reconstructed at displaced positions. In our
case, the misregistration arises mainly from the time interval
between phase and frequency encodings. As a result, the horizontal
and vertical positions are encoded at different times. In both
experimental and simulated images (Fig. 7), a distortion of the tube
lumen in the phase-encoding direction is easily visible. It can be

also observed that the displacement increases with the TE
augmentation since the time interval between phase and frequency
encoding enlarges when TE grows.

The displacement also depends on the flow velocity. Thus, in the
case of the parabolic laminar fluid flow, the central part of the flow is
the most shifted. The combined influence of flow velocity and TE on
the displacement can cause the faster part of flow to be reconstructed
on top of adjacent slower parts. This overlapping can result in signal
enhancement which is observed along the outer wall of the left part
bend and inner wall of the right part bend when TE equals 5 and
10 ms. When TE reaches 20 ms, a band of signal even appears outside
the tube lumen. Moreover, the wide range of velocities of parabolic
flow causes a significant distribution of displacement, leading to an
important dispersion of the signal intensity and finally to the
disappearance of the tube lumen. To present the difference in
displacement artifact in other flow patterns, images of plug flow
(uniform velocity) were simulated (bottom-row images in Fig. 7).
The equal velocity across the tube provides a uniform displacement
giving no distortion of the tube lumen. The areas of low and high
image intensities seen in the simulated results qualitatively correlate
with the corresponding regions of experimental images.

Fig. 8 presents simulated MR images of the 2D geometries that
commonly appear in other works. In the case of the straight tube lying
diagonally to the gradient axes [6,18], the simulated MR image is
dominated by the displacement artifact. Because of the parabolic flow
pattern, different parts of the tube are displaced at different distances,
which leads to the signal enhancement along one wall and signal
diminution across the tube. As regards the carotid bifurcation
geometry [4,12,16,19], the simulated MR images reveal more
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complicated flow artifacts: signal enhancement along the divider wall
of the bifurcation because of misregistration and low intensity in the
stenosis where strong velocity gradients cause dephasing. Different
combinations of parameters show that shortening TR increases signal
loss due to the saturation effect, while the increase of TE causes strong
signal loss in voxels with a wide range of velocities. Results are in a
good agreement with the other computational models cited before.

3.2. Performance evaluation

Table 1 presents mean time measures of MRI simulations
performed to obtain the presented images. For 2D objects (no slice
selection, all cubic elements were excited), the computation time is
noticeably lower (e.g., in comparison to the Marshall model [18]),
even for bigger objects of size 640 x 1280 cubic elements. When 3D
objects were tested, the computation time naturally increases.
However, it is still relatively short for these kinds of simulations,
e.g., in comparison to the Marshall solution [19]. Besides the object
dimension and object/image size, other factors influence the
simulation time and can be adjusted to perform quick test imaging,
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e.g., time step during the various stages of imaging or repetition time.
Direct comparison with other solutions of MRI flow modeling is
difficult because, in most of the studies, exact time measurements
were not provided.

4. Discussion and conclusions

The presented comparison of simulated and experimental images
proves that the proposed approach is able to model MR flow imaging.
Although not all image features are in an excellent agreement, most of
them are reproduced successfully. In the case of the straight tube
phantom, subtle differences can be noted close to the tube walls.
Moreover, the simulated uncompensated sequence produces a slightly
more signal loss than in experiments where the ring of voxels with [VPD
artifact is thinner. These differences can be caused by the incompletely
modeled imaging process, e.g., ideal spoiling of transverse magnetiza-
tion compared to spatially nonuniform spoiling in reality or approx-
imated rectangular gradient waveforms in simulations.

It can be also observed that in simulated images (Fig. 5B, D;
sagittal plane), a prominent parabolic signal void appears at the
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Fig. 6. Curves of transverse magnetization phase of cubic elements just after RF excitation pulse of sinc shape with different conditions, along the tube (along flow direction) or
across the tube (perpendicular to flow direction). Dotted lines in sketches (A) and (B) show the direction and location of the cubic elements whose phase is presented. Conditions
for curves: (C) without flow, along tube; (D) without flow, across tube; (E) with flow, along tube; (F) with flow, across tube; (G) with flow, along tube + flow compensation

gradient; (H) with flow, across tube + flow compensation gradient.
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Fig. 7. Comparison of experimental and simulated MR images of the U-bend tube geometry. First- and second-row images (experimental and simulated) were acquired with
laminar flow with velocity of 0.38 ms~'. Moreover, to show difference in displacement effect for various flow patterns, the last row contains simulated images with plug flow
with velocity of 0.76 ms~'. Frequency encoding in the vertical direction; phase encoding in the horizontal direction.

entrance of the tube, contrarily to experiments. This can be ascribed
to the spatially uniform gradients and RF pulses in the computer-
simulated sequence. In contrast, in the case of the U-bend geometry,
both the simulated and experimental images (Fig. 7) show such an
inflow artifact. Here, the slice thickness was three times bigger, and
consequently, the spatial nonuniformities in the plane of image
could less influence on the image intensity.

tube oriented at about 45°

with flow

without flow

i

TR/TE=50/5ms
without flow

In experimental images of the U-bend geometry, at the beginning
of the left bend (just after the parabolic signal void), a signal loss
appears. In this place, two tubes are connected leading to irregular
geometry shapes that are not modeled in the virtual object. These
irregular geometries could cause complex flow patterns, like
turbulences, and consequently, phase dispersion and image signal
loss are induced. Second, higher noise in U-bend experimental

stenosed bifurcation

TR/TE=200/5ms
with flow

TR/TE=50/15ms

TR/TE=50/5ms

Fig. 8. MR simulated images of the 2D geometries that are commonly tested in other computational solutions of MR flow imaging: (a) straight tube lying diagonal to the gradient
axes, frequency encoding in the horizontal direction, phase encoding in the vertical direction; (b) single stenosed carotid bifurcation with stationary flow, frequency encoding in

the vertical direction, phase encoding in the horizontal direction.
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Table 1

Time measurements of the whole simulation process required to obtain the presented images: flow map generation time (flow simulation) and MRI simulation time.

Straight tube phantom
(sagittal plane)

U-bend phantom

Diagonal tube Stenosed bifurcation

Dimension 2D 3D 2D 3D 2D 2D

Flow grid size 231x498 231x498x55 577 %663 577 %663 x 34 437x437 353x1105
Object size® 320x 640 320x640x55 640x 1280 640x 1280 x 34 640 x 640 640x 1280
Image size” 64x128 64x128 128 %256 128 %256 128x128 128 %256
Flow simulation time 03 m28s 50 m43 s 29m45s 2h30m52s 1moO0ls 1h47m15s
MRI simulation time 12 m 06 s 5h58m05s 1h08m42s 6h14m34s 9m53s 1h20mo07s

The size of the simulated MR images (in Fig. 7 and 8) can slightly differ from the image size presented in the table due to additional background cubic elements added to objects in
order to obtain power of two image sizes. Consequently, the FFT algorithm [40] could be used. After a reconstruction phase, the additional background black areas were cropped

from the images.
2 Number of cubic elements.
b Number of image voxels.

images suggests that there are some additional factors not included
in the computational model, e.g., nonuniformities of a transmitter
coil and their correlation with flow.

There have been proposed several other approaches in the
modeling of MR flow imaging. Some of them can be classified as the
Lagrangian-based solutions (e.g., [12,15,19,20]) and the others (e.g.,
[4,13,16]) as the Eulerian-based ones. In Lagrangian-based solutions,
the flow pathlines are calculated first. Then, the temporal tracking of
spin magnetizations along these path lines is performed. Such an
approach seems to be physically intuitive, but it is known to be
computationally expensive and less successful in regions of high
flow velocity gradients (e.g., curved geometries) or of complex flow,
where artificial sparse filling or lack of spins may be present. In
contrast, the most advanced previous Eulerian-based models [4,16]
use the Bloch integration with an additional magnetization transport
term in 2D objects. The obtained phase and magnitude of
magnetization in the center of the echo are directly translated to
image intensities. In contrast, in MRI equipment, magnetic signal is
acquired during the sampling period and then translated by FFT to an
image. Such a computational approach is able to speed up
calculations, but it can also lead to difficulties in further model
development, e.g., in spiral or radial imaging. To take into account
the spatial displacement effect, additional computational mecha-
nisms had to be developed, e.g., mesh transformation [4]. Also, noisy
measurements or magnetic field inhomogeneities and susceptibility
effects are hard to incorporate.

The proposed approach differs from the existing solutions both at
the level of fluid dynamics and MRI simulations. LBM is used in the
preprocessing fluid dynamics phase of MR flow imaging for the first
time. In this method, the way of object shape definition and geometry
discretization as well as boundary condition setting is much more
straightforward than in numerical Navier-Stokes equation solvers
used in the most sophisticated alternative models [4,19]. Moreover, it
is characterized by relatively low computational load (Table 1) and
easy accommodation to complex geometries. In previous works on
MRI and flow, studies combining LBM with experimental MRI [45,46]
can be found. However, in these studies, the process of MRI is not
modeled at all, and LBM is used to simulate velocity fields that are then
compared with MR velocity measurements.

As far as MRI modeling is concerned, the novelty of our solution is
the method of magnetization transport modeling (2D/3D analytical
algorithms) and its coupling with the MRI algorithm. The Eulerian
coordinate approach is retained, and at the same time, MRI is
performed by the discrete-event Bloch equation resolution. Such an
approach closely follows the physical process of MRI and, in
combination with the magnetization transport algorithm, naturally
incorporates flow artifacts. No mechanism such as mesh transfor-
mation [4] or compensation of regions of low particle density [19] is
needed. This implies that any imaging sequence changes (e.g.,
additional gradients, RF pulses, different k-space trajectories or view

ordering) only require modifications of MRI modeling and no
changes in the connection between flow and imaging processes.
For instance, a new gradient arrangement in time can be done by
required (physically based) changes of G value in Eq. (10). As a
consequence, the model can be easily adapted, in future studies, in
spiral imaging or in b-SSFP sequences to extend existing solutions
[7,8] by allowing them to simulate the whole imaging sequence in
different geometries with various flows.

The fluid magnetization response to slice-selective RF pulse of
different shapes was also incorporated in our solution. A few models
(e.g., [8,11,17]) including the flow influence on spin magnetization
during slice selection were proposed so far. These models allowed
thorough investigation into flow influence on the slice selection step.
However, they considered flow modeling only in one direction in
simple geometries [11] and did not take into account the whole MRI
sequence [8,17] (e.g., without repetitive imaging cycles and space
encoding gradients).

There is also no restriction to incorporate other types of flow (e.g.,
turbulent or pulsatile) in our model since the whole history of
magnetization evaluation can be tracked and any changes or even
replacements of flow maps during imaging do not require any
algorithm changes. Then, comparison with alternative solutions with
pulsatile or turbulent flows will be available. However, it is the
subject of outgoing research.

On the other hand, our future plans include further development
of the model towards our long-term research on complex vascular
networks modeling [2,47,48]. In these studies during the last decade,
we developed a two-level physiological model of vascularization. It
consists of a macroscopic part able to simulate growth and
pathological modifications of vascular networks, and a microvascular
one responsible for blood flow and contrast agent transport through
capillary walls. The usual simulated vascular network consists of
thousands of vessel segments in which flow simulations were
previously performed using Poiseuille's equation (like in idealized
cylindrical tubes). Preliminary tests showed that the solution
proposed in this article will be able to simulate more accurate
(physically based) flow dynamics in hundreds of vessels and then
MRI in a few days at a desktop personal computer. Since we wanted
to deal with even more complex vascular structures, high-perfor-
mance parallel vascular growth algorithms were introduced [49].
Similarly, we have already started to apply parallel computing in
modeling of MR flow imaging.

In conclusion, a new approach in computational modeling of MR
flow imaging is proposed. The approach couples the flow
computation by LBM, MRI simulation by following discrete local
magnetizations in time and a new magnetization transport
algorithm together. As a result, a fully analytical, flexible and
easily extensible solution is created. The validation of our model
confirmed that simulated flow images compare well with exper-
imental ones. Moreover, the time of computation has been shown
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to be acceptable, even for 3D geometries. However, our future
plans to take into account complex vascular structures (dozens and
more successive vessels) demand the application of high-perfor-
mance parallel computing mechanisms.
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