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Abstract
In this paper, we present a fast multi-stage image segmentation method that incorporates
texture analysis into a level set-based active contour framework. This approach allows inte-
grating multiple feature extraction methods and is not tied to any specific texture descriptors.
Prior knowledge of the image patterns is also not required. The method starts with an ini-
tial feature extraction and selection, then performs a fast level set-based evolution process
and ends with a final refinement stage that integrates a region-based model. The presented
implementation employs a set of features based on Grey Level Co-occurrence Matrices,
Gabor filters and structure tensors. The high performance of feature extraction and contour
evolution stages is achieved with GPU acceleration. The method is validated on synthetic
and natural images and confronted with results of the most similar among the accessible
algorithms.

Keywords Image segmentation · Active contour model · Level set method ·
Texture analysis · GPU acceleration.

1 Introduction

Image segmentation is one of the most fundamental problems in computer vision.
Deformable models [34] are a successful class of segmentation algorithms based on the idea
of a deforming shape that adapts to the desired image region. The fundamental form of the
deformable model-based segmentation method was proposed by Kass et al. [25] as an active
contour model (ACM), also known as a “snake”. The snake model is a parametric curve
with an evolution process controlled by a set of external and internal energies. External ener-
gies attract the shape to the desired image area and move it towards the boundaries of the
segmented region, while the internal forces control the contour smoothness. This method
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overcomes many problems, like image noise and boundary irregularities, and makes it easy
to extend with new types of image features and constraints. These advantages made the clas-
sical ACM very influential and widely improved, e.g. with the introduction of expansion
forces [10], edge-based vector field energies [58], and region-based image energies [44].

The original ACM also had some drawbacks, like difficulties in topological adaptability
(requiring additional mechanisms [30]) and sensitivity to initialisation. A major improve-
ment came with the incorporation of the level set framework, proposed by Osher and
Sethian [37, 47]. Instead of the explicitly defined parametric contour, the level set approach
proposed an evolving surface, where the contour is implicitly represented as a set of surface
points that have their height equal to zero (the zero level set). During the surface evolution,
the zero level set can naturally split or merge and can disappear or appear in locations not
constrained by the contour initial form. Notable level-set based models include Geomet-
ric [6] or Geodesic Active Contours (GAC) [7] and region-based Active Contours Without
Edges (ACWE) [9].

Traditionally, the image energies of popular ACMs relied either on edge information [6,
7, 25, 58] or on intensity statistics of the segmented regions [9, 44], making the models best
suited for regions with distinctive borders and fairly uniform intensity. These approaches,
however, are often not sufficient for segmentation of non-uniform textured regions with high
contrast and/or directional patterns. Although the discrimination of texture patterns is easy
for the human eye, in computer vision it is still hard to find a universal texture descriptor.
Due to the lack of a unified texture model, the segmentation methods rely on various feature
extraction methods [40], like Grey Level Co-occurrence Matrices (GLCM) [20, 49], Gabor
filters [24], structure tensors [4, 5] or histogram analysis [28, 36].

Texture segmentation using active contour models has been a popular topic of research
in recent years [1, 14, 17, 51, 52]. Particularly, the variational ACWE-like models and their
modified multi-channel versions for vector-valued images [8] have been often employed
[1, 19, 32, 57]. Incorporation of the texture features into the ACM-based method usually
encounters significant difficulties. First of all, the method must settle on a set of many
possible feature extraction approaches and typically, only one approach (like for example
Gabor filters) is adapted. Obviously, it strongly restricts the robustness and generality of
such methods. Furthermore, even with this simplification (i.e. selection of a single texture
feature extraction approach), the algorithm should be able to deal with multiple feature
channels. As the level set-based methods can be computationally intensive, it can have a
significant impact on the performance. As a result, these multiple channels are often com-
bined/aggregated to avoid overcomplicating the model. It is why new solutions are required
that are ready to integrate various texture characteristics and smartly process many features.

In this paper, we present a novel level set-based method for image segmentation that
addresses the mentioned problems of the texture analysis integration into the active con-
tour model. The method is not tied to any particular texture descriptors and inherently is
able to consider multiple feature types. One can dare to say that the more approaches are
used, the better the results could be. Here, the proposed solution is demonstrated with just
three texture feature extraction approaches, namely GLCM, Gabor and structure tensor.
The segmentation algorithm is divided into three main stages. It starts with many features
calculation and selection of the most adequate descriptors for the considered (manually ini-
tialised) region of interest. It is followed by a fast level set stage that results in a rough
segmentation. Finally, an ACWE-based stage fine-tunes the contour and provides the final
result. Implementation of the first two stages makes heavy use of Graphics Process Unit
(GPU) acceleration and exhibits a reasonable performance even on mid-range graphics
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cards. Even if the building blocks of the proposed algorithm are known, their join use is
undoubtedly original and open to further extensions.

The main objective of this work is a new fast segmentation method that is able to
use a relatively large bank of different features and perform the costly level set evolution
while maintaining computation time suitable for interactive usage. The method combines
both classical and region-based level set schemes and is open to extension with additional
descriptors.

The concept of a multi-stage approach was initially outlined in [42] in the context of clas-
sical discrete parametric contour (snake). Apart from the similarities in the feature selection
stage, the snake-based model employed a vastly different evolution scheme that considered
only the closest neighbourhood of the contour points. In contrast, the proposed approach
uses both local and global level set-based ACMs that are more robust in handling of multiple
features and offer little topological restrictions.

The rest of the paper is organised as follows. Section 2 gives a brief review of the up-to-
date related work on texture segmentation. It also recalls the utilised feature extraction and
level set methods. Section 3 describes the proposed method and discusses implementation
concerns. Section 4 presents an experimental evaluation of the method on both synthetic
and natural images, as well as a comparison with other segmentation methods. Conclusions
and possible future works are given in the last section.

2 Background

2.1 Related work on texture segmentation

Active contour-based methods were widely adapted to the task of texture segmentation.
While the parametric contours are still used [33, 52], the level set-based models are gaining
more and more attention. Generally, texture-based methods can be divided into supervised
and unsupervised. The supervised methods often take advantage of information from the
initial texture analysis stage. Notably, Paragios and Deriche [38] proposed an extension of
the GAC model that performs an off-line feature analysis. The method requires a set of
texture patterns present in the image. The analysis results are then integrated in the region
and boundary image forces. Pujol and Radeva [39] employed the GLCM features in their
ACM. Linear Discriminant Analysis was used to reduce a feature space, which was then
applied to create a likelihood map that guided the contour deformation.

In the case of the unsupervised approaches, no prior analysis or classification is per-
formed. Shen et al. [48] proposed a method for creating a likelihood deformation map from
the intensity statistics and edge information of the initial region. This solution was inte-
grated with 2D and 3D models. Huang et al. [23] presented a similar approach, where the
intensity characteristics were used for the textures with small texons, and a bank of Gabor
filters was utilised in the case of textures with larger patterns. Awate et al. [3] proposed a fast
multi-phase level-set method based on threshold dynamics [15] that introduces a general
nonparametric statistical image neighbourhood model instead of specific texture features.
Rousson et al. [45] presented a method based on a variational framework, where the texture
features are extracted with a structure tensor and nonlinear diffusion scheme. Savig et al.
[46] created a texture edge detector from the Gabor feature space based on the Beltrami
framework [50] and integrated it with the GAC and ACWE models. Houhou et al. [22] also
used the Beltrami framework to propose a descriptor that captures both edge and textural
properties. In this case, the ACM was based on Kullback-Leibler distance.
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More recently, Wu et al. [57] presented a method based on ACWE, where GLCM and
Gabor features are fused together to create the final feature space. Min et al. [32] integrated
the image intensity and a novel adaptive texture descriptor into the ACWE-based model.
Mewada et al. [31] combined the ACWE approach with a modified version of the linear
structure tensor. The ACWE model was also applied for texture segmentation by Wang
et al. [55], where the contour was driven by a local histogram. Tatu and Bansal [53] pro-
posed a GAC-based model that uses intensity covariance matrices for the texture features.
Gao et al. introduced a factorisation-based ACM that utilises the local spectral histogram
as the texture feature [16], and, more recently, a model that performs a fusion of inten-
sity and Gabor-based features along with a factorisation scheme [17]. Dong et al. [14] also
employed a factorisation-based ACM, combined with neutrosophic sets, in the task of color
texture segmentation. Dahl and Dahl [11] created a method based on ACWE and proba-
bilistic image patch dictionaries. Ahmad et al. [1] proposed a fuzzy version of a variational
level set model that uses the coefficient of variation as a region statistics. The model was
proven to be effective on textured and inhomogeneous images [59]. Wang et al. [56] also
tackled this problem by introducing an inhomogeneity entropy descriptor that was driving
the energy of a level set-based ACM.

2.2 Texture feature extraction

Grey Level Co-occurrenceMatrix The GLCM is a square matrix of order equal to the num-
ber of pixel grey levels. For a spatial window w on an image I , the GLCM contains the
probabilities of pair-wise occurrence of pixels with two grey levels. Each of the (i, j) matrix
elements contains a number of occurrences, where a pixel with intensity i is adjacent to a
pixel with intensity j . The adjacency of the pixels is defined by the distance between them
in a given orientation. This matrix, after normalisation, is then used to calculate a set of tex-
ture feature descriptors, like Entropy, Correlation, Homogeneity, Contrast or Energy [20].
The feature generation process usually considers a selected set of features and generates a
feature space with a combination of parameters: window size, pixel distance and orientation.
To capture the properties of various patterns in different scales and orientations, the highly-
dimensional space can contain a large number of features, therefore a feature selection [39]
or fusion [57] is often performed.

Gabor features A two-dimensional Gabor filter can be defined as a Gaussian kernel func-
tion modulated by sinusoidal wave plane. In this form, the response of the filter can be
obtained by its convolution with the input image. Gabor filters were designed to model the
behaviour of mammalian visual cortex cells [12] and have the ability to localise the informa-
tion in both spatial and frequency domain. These properties make them useful in the image
feature extraction process, particularly in the texture analysis field [24, 40]. In practice, the
feature extraction is often performed by convolving the image with a set (bank) of Gabor
filters with different orientations, scales and wavelengths.

Structure tensor For a scalar two-dimensional image I with a pixel coordinate p = (x, y),
the structure tensor [4, 5] is defined as a matrix derived from the gradient of the image:

S(p) =
(

g(p) ∗ I (p)2x g(p) ∗ Ix(p)Iy(p)

g(p) ∗ Ix(p)Iy(p) g(p) ∗ I 2y (p)

)
(1)

where g(p) is a Gaussian kernel with a σ standard deviation and Ix and Iy are partial deriva-
tives of I in a window w centred at p. The size of the w window is crucial for capturing
the image features of a desired scale. As shown in (1), the tensor gives three features for
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one pixel. Moreover, the resulting S(p) matrix contains information about the direction and
strength of the edges in the neighbourhood of the p point. The two eigenvectors of the matrix
are aligned orthogonally and parallel to the local edge (intensity change) in the windows w,
while the corresponding eigenvalues indicate the strength of the edge in both directions.

2.3 Level sets and the ACWEmodel

An active contour, according to the level set idea [37], can be defined as a curve C in a form
of a set of zero-height points p = (x, y) on the surface φ(p, t). This formulation gives
C = {p : φ(p, t) = 0}, where φ(p, t) : �2 �→ � and t is the evolution time step. The curve
evolves in its normal direction according to the differential equation:

∂φ

∂t
= |∇φ|F, φ(p, 0) = φ0(p), (2)

where φ0 is the initial contour and F is a speed function F(p, t), which allows the contour
to expand or contract in order to encompass the segmented region. While the originally pro-
posed level-set based methods mostly relied on edge information to drive the contour [6, 7],
Chan and Vese proposed a global region based ACWE model [9] inspired by the Mumford–
Shah formulation of the segmentation problem [35]. Given an image I , defined in the �

domain, a piecewise constant segmentation of I into foreground and background can be
obtained with the curve C, evolved by minimising the ACWE energy functional defined as:

F(c+, c−, C) = μ · Length(C)

+ λ1

∫
inside(C)

|I (p) − c+|2dxdy

+ λ2

∫
outside(C)

|I (p) − c−|2dxdy,

(3)

where c+ and c− represent the average pixel intensities of I inside and outside of the curve
C, respectively, I (p) is the image intensity in the point p, Length(C) is the total length of
the curve, and μ ≥ 0 and λ1, λ2 > 0 are positive constant weights. This functional aims to
minimise the intensity variance inside and outside the contour.

This minimisation problem can then be redefined using the level set approach. The curve
represented as a zero level set function C = {p ∈ � | φ(p) = 0}, where φ(p) > 0 is
the inside of the curve and φ(p) < 0 is outside. With this curve formulation, the energy
functional takes the form:

F(c+, c−, φ) = μ ·
∫

�

δ(φ(p))|∇φ(p)|dxdy

+ λ1

∫
�

|I (p) − c+|2H(φ(p))dxdy

+ λ2

∫
�

|I (p) − c−|2(1 − H(φ(p))dxdy,

(4)

where H(z) and δ(z) are regularised versions of 1D Heaviside and Dirac delta functions,
defined as:

H(z) =
{
1 if z ≥ 0,

0 if z < 0,
δ(z) = d

dz
H(z). (5)
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To finally solve the problem, the Euler–Lagrange equation can be obtained by minimis-
ing the energy with respect to φ and parameterising the descent direction by the evolution
time t while keeping c+ and c− constant:

∂φ

∂t
= δ(φ)

[
μ div

( ∇φ

|∇φ|
)

− λ1(I − c+)2 + λ2(I − c−)2
]

, (6)

where div denotes the divergence operator. After each iteration, c+ and c− are updated
according to:

c+ =
∫
�

I (p)H(φ(p))dxdy∫
�

H(φ(p))dxdy
,

c− =
∫
�

I (p)(1 − H(φ(p)))dxdy∫
�
(1 − H(φ(p)))dxdy

.

(7)

The initial ACWE model formulation was extended to handle vector-valued images [8].
Instead of two average intensity values (inside and outside the curve), the method uses
vectors of the average intensities for each image channel. In this form, the image defined on
� consists of multiple channels Ii , where i = 1, .., N . The energy functional Fv(c+, c−, C)

is then defined as:

Fv(c+, c−, C) =μ · Length(C)

+
∫

in(C)

1

N

N∑
i=1

λ+
i |Ii(p) − c+

i |2dxdy

+
∫

out (C)

1

N

N∑
i=1

λ−
i |Ii(p) − c−

i |2dxdy,

(8)

where c+ = (c+
1 , ..., c+

N) and c− = (c−
1 , ..., c−

N) are two vectors with the average values

of the image channels inside (c+) and outside (c−) of the curve, and λ+
i and λ−

i are now
separate weights for each channel.

The advantage of this model lies in its ability to separate image regions even without
a sharp edge between them. This can be visible in the case of some texture features (see
Fig. 1) when the separation can be possible, but the edges are blurred. The vector-valued
version can also detect region dissimilarities that are present only in some of the channels.

Fig. 1 Example texture feature maps generated by different methods: a source image, b GLCM Homogene-
ity, c Gabor filter magnitude, d first structure tensor eigenvalue
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3 Method overview

The proposed segmentation method is based on a two-dimensional level set representation
of an active contour. After a manual initialisation of the contour, the algorithm performs
three main stages: initial texture feature extraction and selection, followed by two curve
evolution stages (see Fig. 2). The first stage generates a set of texture feature maps that will
be used to guide the further evolution of the contour. The next stage is based on a traditional
level set propagating front formulation. The propagation speed function uses a strict textural
stopping term that tracks sudden changes in the selected feature maps. Finally, the last stage
switches to a variational level set framework based on vector-valued ACWE method. The
second stage goal is to give a general outline of the segmented region, while the third stage
is designed to provide a refined final form of the contour. The method also makes heavy use
of GPU acceleration in most of the performance-critical computations.

3.1 Texture feature extraction and selection

The method starts with a texture feature extraction and selection stage, similar to the method
described in [42]. The stage results in a set of texture feature maps Mbest , where a single
feature map m is a scalar image that contains the feature values for each pixel of the original
image. Any feature extraction method that is able to generate such a map can potentially be
applied.

Fig. 2 Overview of the proposed method
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The extraction starts with a list of all possible feature maps that can be generated with
the available algorithms. Instead of calculating whole maps for the entire image, the process
generates the Minit set of maps only in the bounding box of the initial contour. For best
results, this initialisation should capture a representative sample of the pattern. The features
are then pre-selected to the Mbest set defined as:

Mbest = {m ∈ Minit : %RSD(m) < r}, (9)

where r is the user-provided threshold (equal to 65% by default) and %RSD(m) is the
Relative Standard Deviation of feature map m inside the initial contour. In this way, the
process step picks the maps with the most uniform feature values inside the contour, accord-
ing to a specified threshold. This criterion assumes that the feature uniformity identifies it
as a suitable descriptor of the initial pattern. Furthermore, its important change during the
contour evolution can signal a change in the texture. Next, the feature maps in Mbest are
re-calculated for the entire image and are ready for the following stages.

The current implementation uses GLCM, Gabor and structure tensor features. As for
GLCM, five features are calculated: Entropy, Correlation, Homogeneity, Contrast and
Energy. A feature space is generated using a combination of specific parameters: win-
dow size, displacement and orientation. The extraction process starts with a fixed set of
GLCM properties and, if necessary, performs additional computations. Automatic increase
of the window size (from 3×3, 5×5 and 7×7 upward) can be performed in the case of
larger patterns and redundant channels for different angles can be omitted or merged in
case of isotropic texture patterns. Please refer to [42] for more details on these opera-
tions. Moreover, a bank of 24 Gabor filters with four orientations (0◦, 45◦, 90◦ and 135◦),
three wavelengths and two Gaussian envelope scales is considered. The generation process
also employs an angle detection scheme, similar as in the case of GLCM features. Finally,
the method constructs a set of structure tensor features. This set consists of maps of both
eigenvalues of tensors generated from σ and w combinations for a total of 18 feature maps.

3.2 Fast level set evolution

In the second stage, the initialised contour is deformed using the level set method. This stage
is based on the traditional level set formulation presented in (2), where the speed function
F in the point p combines image and curvature terms [27] as:

F(p, t) = αD(p) + (1 − α)C(p), (10)

where D(p) is the image data term that drives the deformation, C(p) =
div(∇φ(p)/|∇φ(p)|) is the curvature and α ∈ [0, 1] is a user-defined balancing param-
eter. Instead of the original intensity-based image term, we apply a texture-based term
Dtex(p) [41] that takes into consideration the previously selected texture feature set. First,
for a given image point p, a set of features Sp is defined as:

Sp = {m ∈ Mbest : |m(p) − x̄(m)| > θ · σ(m)} , (11)

where m is a texture feature map in the selected set Mbest , x̄(m) and σ(m) are the feature
map mean and standard deviation inside the initial contour, m(p) is the value of the map m

in the point p and θ is a user-defined parameter that denotes the term sensitivity. In this way,
the Sp set will contain the features in point p that are sufficiently dissimilar to their mean
values inside the initial contour. Next, a function over(p) is defined to return a number of
features that overstep the condition in (11) for each point in the image I :

over(p) = |Sp|, p ∈ I . (12)
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Fig. 3 The second stage of the method illustrated. The over(p) function value in the given point, visualised
in greyscale, is equal to the number of features that do not satisfy the similarity criterion

Finally, the texture data term is defined as:

Dtex(p) =
{

v over(p) = 0

−v otherwise,
(13)

where v is a predefined constant. In this way, the curve is encouraged to expand into points
where the texture features have values similar to the interior of the initial contour, but even
one feature dissimilar enough will result in a strong penalty (see Fig. 3).

The second stage of the algorithm is expected to give a rough outline of the segmented
region. An exact segmentation can be hard to achieve due to characteristic of some fea-
ture extraction methods [5, 20] that can provide distinctive, but blurry region boundaries.
Figure 4c shows a result of this stage, where the contour covers most of the target region,
but still contains some internal irregularities. Its edges are close to, but still not exactly on
the desired boundaries of the region. This way of action is our deliberate choice: we assume

Fig. 4 Multiple stages of the segmentation process: a initialisation, b image with pixel intensity cor-
responding to the over(p) function value, c second stage result, d final result, e oversegmentation
example
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that it is better to stop before passing the boundary than to cause an oversegmentation (see
Fig. 4e). To encourage this behaviour, the default values of parameters were experimentally
set to v = 20, α = 0.05 and θ = 4, where θ is the main user-adjustable method sensitivity.

The level set equation is solved with a GPU-accelerated implementation of the tradi-
tional numerical scheme [37]. The simulation is performed until the convergence of φ or a
specified maximum number of iterations is reached.

3.3 Final contour refinement

The third stage is designed to provide a final form of the contour. At this point, the method
switches from a classical level set algorithm to a region-based vector-valued ACWE model
that will work on previously selected texture feature maps. Furthermore, the information
about the texture dissimilarities from (11) influences the length term of the energy functional
(8). Originally, the μ parameter, along with the length contour μ · Length(C), is used for
scaling/regularising of the contour shape. Smaller values of μ permit the contour to detect
smaller objects in the image, at the cost of the contour smoothness.

Conventionally, the μ length weight is set constant for the entire evolution process [9].
In the proposed approach the μ is scaled according to the previously obtained information.
After the second phase, the over(p) function can give some information about the features
that caused the contour stoppage in each point. In the proposed approach, the contour length
term is redefined to include a normalised sum of the texture features that did not meet the
similarity condition (11) in a given point. The new term μstop(p) is defined as:

μstop(p) = over(p)

maxq∈I over(q)
· 100 (14)

This term gives a different response in each of the image points. Its main idea is to
generally discourage the contour from expanding to the areas with a large number of suffi-
ciently different features. This penalty is also scaled according to the strength of the feature
response function over(p). Larger values of over(p) will result in a greater penalty, while
lower values will encourage the contour to grow slowly, but still in a noticeable way. An
example of the benefit of this length control term is shown in Fig. 5. The μstop(p) term
is visualised in a form of a “stop map” (Fig. 5a) for each of the image points and shows a
strong discrimination between the central texture patch and the target region. Without the
influence of this term the method clearly fails (Fig. 5b). The provided φ heat maps and the
plot along the marked line show that the improved length term helps to give a clear boundary
between the regions.

3.4 Implementation concerns

The most computationally intensive parts of the method, like GLCM or Gabor feature
generation and the second stage level set algorithm, were implemented using the GPU
acceleration. In the optimal case, a GPU-running function (kernel) should be designed to
work independently on its own part of the data and have the relatively small local mem-
ory requirements. In the case of the GLCM features, a local co-occurrence matrix has to be
calculated in a window around each of the image pixels. To mitigate a potential memory
problem, a quantisation is applied to reduce the matrix size. As for the Gabor features, the
implementation uses a simple convolution of the original image with a given filter, which
easily scales on a GPU. The second stage level set method is also well suited for the GPU,
as each separate position on the level set function can be recalculated independently. The
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Fig. 5 Influence of the length term control: a visualisation of μstop(p) function, b result with no length term
control, c φ heath map for the oversegmented result, d acceptable segmentation result with the corresponding
φ heath map e and f plot with the φ value of both cases along the marked arrow

third ACWE-based stage is still CPU-based, but it usually requires only 5 to 15 iterations
before the stopping criterion is reached.

The whole algorithm is implemented using the MESA system [43] – a platform for
designing and evaluation of the deformable model-based segmentation methods. While the
platform uses the Java language, the GPU-accelerated algorithms were written in C using
OpenCL.

4 Experimental evaluation

The proposed method was tested on synthetic images created using the Brodatz texture
dataset, as well as on a set of natural images. The initial contours were manually placed
inside the desired regions and scaled to the preferred size. Unless specified otherwise, only
the sensitivity parameter θ was manually adjusted (between 4 and 12), while the other
parameters were left on their default values. The first stage of the algorithm selected usually
from 20 to 30 feature maps from 60 to 90 available.

The experiments were performed on a workstation with Intel Xeon E5-1620v2 CPU,
16 GB RAM, and Nvidia Titan Xp GPU. The total segmentation time was between 3 to 6
seconds for the analysed synthetic and natural image examples. As the implementation is
heavily GPU-bound, other graphics cards were also tested.

The segmentation quality was assessed with five error measures: overlap error (OE),
area difference (AD), average symmetric surface distance (ASSD), Hausdorff dis-
tance (HD), and Dice Coefficient (DC) [21]. Given two sets of image pixels S and G, where
S is the tested result and G is the ground truth segmentation, the measures are defined as:

OE = 100 (1 − |G ∩ S|/|G ∪ S|),
AD = 100 ((|S| − |G|)/|G|),
DC = 2 |G ∩ S|/(|G| + |S|).

(15)
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DC and OE are popular overlap error measures. In contrast to these two, the AD mea-
sure does not factor the actual overlap of the sets but quantifies just their area difference.
Together with OE and DC, however, it can indicate over- or undersegmentation of the
results.

The ASSD takes into consideration the distances between the surfaces/borders of the
sets (i.e. the voxels/pixel that have at least one background or edge point in their vicinity).
For each point sG in the border set S(G) the function d(sG, S(R)) denotes the Euclidean
distance from sG to the closest pixel in S(R). These distances are also symmetrically calcu-
lated from the border pixels of R to G. All distance values are then averaged, which defines
the ASSD as:

ASSD(G,R) = 1

|S(G)| + |S(R)|

⎛
⎝ ∑

sG∈S(G)

d(sG, S(R)) +
∑

sR∈S(R)

d(sR, S(G))

⎞
⎠ (16)

In a similar fashion, the HD is the longest distance between any two points from the borders
of the segmentation and ground truth regions (i.e. the greatest of all the distances from a
point on one border the closest point in the other). With the border sets S(G) and S(R), and
d(g, r) as the distance between pixels g and r , the HD can be defined as:

HD(G, R) = max

{
sup

g∈S(G)

inf
r∈S(R)

d(g, r), sup
r∈S(R)

inf
g∈S(G)

d(g, r)

}
. (17)

4.1 Synthetic images

The first example (see Fig. 6) presents segmentation the results of synthetically composed
images. The method was able to successfully segment textures of different scales and ori-
entations, even when multiple patterns were present. It should be noted that a more careful
placement and scaling of the initial contour was necessary only in the last example. The
experiments were also performed with the feature pre-selection criterion from (9) disabled.
Normally, about 50 to 70% of the initial feature maps were pre-selected. The omission of
this operation did not have a real influence on the segmentation results but caused an about
30% increase in the segmentation time.

The second example in Fig. 7 illustrates the influence of the θ sensitivity parameter. The
first case (Fig. 7a) shows the second stage result with θ set to the default value of 4, where

Fig. 6 Segmentation of synthetic texture mosaics
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Fig. 7 Influence of the θ sensitivity parameter on the intermediate and final segmentation result: a result of
second phase with θ = 4, b result of third phase with θ = 4, c second phase result for θ = 7 and d third
phase result for θ = 7

the contour exhibits some significant gaps, but the third stage provides an acceptable final
result (Fig. 7b). The result of the second stage with θ = 7 is closer to the desired form,
but in both of the cases, the final result is comparable. Generally, the θ parameter permits a
wide range of values that can give an acceptable segmentation.

The third example contains a particularly difficult case (Fig. 8), where different types
of features were necessary to segment the target region. On their own, the GLCM, Gabor
and tensor features were not able to provide a strong boundary between all of four adjacent
regions, but together they were able to perform a successful segmentation.

The next example compares the proposed method with a deep learning-based approach
that uses fully convolutional networks for the task of image segmentation (FCNT), pro-
posed by Andrearczyk andWhelan [2]. The experiments were performed onmosaics created
from the Kylberg texture dataset [26], and the segmentation was compared with the results
presented in [2]. Figure 9 contains selected outcomes of both algorithms, while complete
quantitative quality comparison is presented in Table 1. The tested mosaics contain quite
challenging patterns, but both methods are mostly able to provide reasonable segmenta-
tion, indicated by low VOE and RVD, as well as DC greater than 0.95 in many cases. The

Fig. 8 Segmentation results with a-c only the specific features enabled and d with all features used (result
regions in the top row and over(p) function value map in the bottom)
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Fig. 9 Segmentation results on mosaics from the Kylberg dataset: results of the FCNT method (top row) and
the proposed algorithm (bottom row)

border-based metrics (ASSD and HD) show the biggest differences in favour of the pro-
posed method. Some of the FCNT segmentations contain many disjointed patches outside
of the target region, which are not present in the results of the proposed method. This is
indicated by lower ASSD and significantly reduced HD (especially in Fig. 9d and Fig. 9e).

The last example (see Fig. 10) presents the influence of image noise on the performance
of the proposed method. The ability to deal with noisy images is a desirable feature of
robust segmentation methods, especially in medical applications [13], where input noise is
common. The test image in the example was modified by the addition of Gaussian noise
with increasing value of its standard deviation (σ from 45 to 85). Although the original

Table 1 Accuracy of the Kylberg dataset mosaics segmentation performed with the FCNT and the proposed
method

FCNT Proposed method

Image Pattern VOE RVD ASSD HD DC VOE RVD ASSD HD DC

image1 left 4.29 -4.21 3.52 71 0.98 2.71 -2.18 2.33 70 0.99

right 3.07 1.56 3.66 99 0.98 2.65 2.21 1.39 71 0.99

image2 top left 17.72 -14.13 9.23 118 0.9 11.73 4.48 3.72 33 0.94

bottom left 6.13 -4.45 2.92 41 0.97 7.48 6.45 3.44 45 0.96

image3 top left 4.92 -3.7 3.46 70 0.97 8.8 0.73 3.3 20 0.95

top right 6.4 0.68 7.18 172 0.97 15.66 -1.74 5.83 22 0.92

bottom left 5.96 1.22 2.41 26 0.97 9.98 2.39 4.28 46 0.95

bottom right 8.41 -8.29 2.97 12 0.96 5.71 -3.11 1.99 9 0.97

image4 top left 10.58 -5.46 4.57 102 0.94 10.18 2.16 2.32 16 0.95

top right 14.24 7.56 8.15 100 0.92 14.74 10.13 3.33 18 0.92

bottom left 13.34 -3.18 3.95 53 0.93 8.85 2.69 1.83 14 0.95

bottom right 22.16 -10.14 10.96 99 0.88 21.95 -16.49 5.67 36 0.88

center 27.53 8.6 16.72 94 0.84 17.01 10.76 3.32 15 0.91
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Fig. 10 Influence of image noise on the segmentation results: a segmentation of two regions performed on
unmodified images and b-e results on images with added Gaussian noise (σ values from 25 to 85)

patterns significantly deteriorated on the most noisy images, the proposed method managed
to perform adequately. Each increase in the σ value required only a slight decrease (by 0.5
to 1.0) in the θ sensitivity parameter (starting from θ = 6.5 for the central pattern and θ = 4
for the top left region).

4.2 Natural images

Figure 11 contains the segmentation results on various natural images. The results of the
proposed algorithm were compared with two state-of-the-art texture segmentation meth-
ods: Dictionary-based Active Contour (DAC) [11] and Factorisation-based Active Contour
(FAC) [16]. Both methods employ a region-based level set framework but take different
approaches to texture feature extraction. DAC constructs a dictionary of texture patches
present in the segmented image. Each image patch is then assigned to an element of the dic-
tionary. Using the initial form of the contour, the pixels in the dictionary patches are labelled
as being inside or outside of the contour. This labelling is then used to calculate the proba-
bility of being inside the target region for each image pixel. The level set evolution process
expands the curve into regions where the probability is high and retracts it from low proba-
bility areas. The FAC method uses a local spectral histogram [28] as the texture descriptor.
After the feature extraction, the image is modelled as a product of a matrix with the features
values and a matrix of the features weights for the segmented regions. FAC assumes two
regions: foreground and background. During the contour evolution, the level set framework
uses a factorisation algorithm to minimise the differences between the model (features and
weights matrices) and the original image (real values of the extracted features).

The DAC and FAC results were obtained with MATLAB implementations shared by
the authors. For the FAC, the parameters were set to 12 histogram bins and the integration
scale of 20. The default circular initialisation was also used. As for the DAC method, the
initialisation corresponded with the initial contours used by the presented method, with the
suggested patch sizes from 9 to 15. The quantitative analysis of the segmentation quality is
presented in Table 2.

The first three natural images (Leopard, Zebra1, and Zebra2) are more bi-modal in
nature. For the Leopard image, the proposed method performance is on par with the other
two algorithms. All methods achieved the DC around 0.93 and the OE values were between
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Fig. 11 Natural image segmentation with different methods: a FAC, b DAC and c the proposed method

11 and 12.5, with the lowest AD of -1.58 for the proposed method. The algorithms had
the most problems in the bottom parts of the regions, where the leopard’s limbs blend into
the grass. The images with Zebras contain high-contrast patterns of variable scale. Here,
the results of the proposed method are also comparable to DAC and FAC, although a slight
oversegmentation can be noticed (AD = 13.65 for Zebra1 and AD = 14.75 for Zebra2).

In the next image (Eel) the scene is composed of multiple objects with different patterns.
All methods were able to encompass most of the target region, with FAC also including a
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Table 2 Segmentation accuracy of the tested methods for natural images

Image Method OE AD ASSD HD DC

Leopard FAC 12.43 -5.28 4.38 65 0.93

DAC 13.52 -8.86 3.68 38 0.93

Proposed 11.50 -1.58 3.22 29 0.94

Zebra1 FAC 19.99 22.06 11.13 153 0.89

DAC 7.50 2.93 1.63 13 0.96

Proposed 13.81 13.65 3.33 20 0.93

Zebra2 FAC 13.65 3.50 4.00 58 0.93

DAC 9.67 1.13 2.93 52 0.95

Proposed 17.68 14.75 3.76 16 0.90

Eel FAC 18.46 16.83 13.8 141 0.90

DAC 3.44 -0.80 1.90 11 0.98

Proposed 5.30 -3.18 2.93 24 0.97

Cheetah1 FAC 44.63 75.24 16.38 102 0.71

DAC 29.01 37.83 12.43 102 0.83

Proposed 8.53 -0.58 1.74 20 0.96

Cheetah2 FAC 75.60 299.43 44.42 153 0.39

DAC 66.99 182.88 23.15 100 0.50

Proposed 9.05 4.96 1.66 14 0.95

part of a different object. The other two methods achieved a high DC (0.97 and 0.98) with
low values of OE, AD, and ASSD.

The last two images (Cheetah1 and Cheetah2) contain multiple texture patterns. Apart
from the target object, there are at least two other background regions. The proposed method
performed significantly better than FAC and DAC, especially in the case of the second
image (Cheetah2). Since DAC and FAC target bi-modal images, the proposed method gave
better results thanks to the employment of multiple features. As the previous examples show,
the method can differentiate between distinct regions even without an explicit multi-phase
formulation. It should be noted that there is also a multi-phase version of the DAC algorithm
that could perform better in these conditions. However, due to the nature of the proposed
method, comparison with other two-phase methods seemed more appropriate.

4.3 Time performance

Finally, the performance results of the method on GPUs of different classes are presented in
Fig. 12. Four Nvidia cards were tested: low-end GT 1030, mid-range GT 1050 Ti, high-end
Titan Xp, and server-grade Tesla P100 (please see Table 3 for specifications). The execution
time is shown as a stacked chart of three stages of the algorithm. The tests were performed
on three versions of the first synthetic image from Fig. 6. The image, originally of resolution
256×256, was also scaled to 128×128 and 512×512 pixels. The first stage of the algorithm
was fixed to use GLCM features, since their extraction it the most computationally intensive.
In the case of high-end cards, the provided example did not pose a significant challenge
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Fig. 12 Performance of the proposed method on different GPUs

(less than 1, 2, and 6 s for the three test images). The CPU-based third stage took the most
time for the larger image sizes. Two lower-end cards were the more realistic targets for a
2D segmentation task. In their case, the achieved times were still reasonable. Even on the
low-end GT 1030, the execution took less than 10 s for the largest image and was below 1 s
and 3 s for 128 × 128 and 256 × 256 images, respectively.

The proposed method benefits significantly from the GPU acceleration. For example, the
level set evolution in the second stage executes in less than 0.5 s in most of the performed
tests. In contrast, a CPU-based version can take from 4 to 8 s to finish on a 256×256 image
and up to 25 s in the 512×512 case. The GPU-based GLCM algorithm also exhibits similar
improvements in execution time.

4.4 Discussion

The proposed method was compared against other active contour-based methods, as well
as against a deep learning-based approach. Despite the fact that the presented algorithm
essentially works in a two-phase mode, it can clearly perform well on multi-modal images
with multiple textures. The relevant multiple texture features can complement each other in
those situations, while the unused descriptors are not getting in the way of the final results.

Table 3 Specifications of the graphics cards used for performance tests

Model CUDA Cores RAM [GB] Clock [MHz]

GT 1030 384 2 1468

GT 1050 Ti 768 4 1392

Titan Xp 3840 12 1582

Tesla P100 3584 16 1303
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The GPU-based implementation provides a clear improvement in the runtime perfor-
mance. Historically, algorithms like level sets and GLCMwere notoriously computationally
intensive, which limited their practical applicability. The experiments show that modern
GPUs can compute relatively large banks of texture features and perform the “fast” level
set evolution in sub-second time, which invalidates some previous restrictions. The GPU-
based level set method in the second stage is driven by a speed function with a relatively
small influence of the curvature, and the parameters of the evolution are tuned for possibly
fast convergence. Furthermore, the computations are performed on the entire image domain.
Typical optimisations aim to reduce the range of the level set function updates with sparse
schemes [27], where only a part of the image domain is considered (e.g. only a narrow band
around the level set zero-crossing is modified in each iteration). These modifications can
fundamentally change the final results, while our approach is clearly efficient enough, at
least in the 2D case.

The comparison with the FCNT, which uses fully convolutional networks, indicates that
the proposed method can be competitive against current state-of-the-art approaches. Deep
learning algorithms provides some advantages over active contours and level sets, like the
lack of necessity for manual initialisation and interactive parameter tuning. On the other
hand, the (often supervised) training stage is unavoidable and depends on the availability of
prepared and annotated datasets.

The presented method employs a multi-stage approach that was firstly outlined in [42].
The original work used a snake-based ACM that employed a vastly different evolution
scheme that considered only the closest neighbourhood of the curve discrete points. The
proposed approach uses both local and global level set-based ACMs that are more robust in
handling of multiple features. The topological restrictions of the parametric snake are also
eliminated (see Fig. 7). Furthermore, the final refinement stage is not only different from
the heavily heuristic approach of the snake version, but also uses a distinct, region-based
level set model than the previous stage. This cooperation of those two models is one of the
main features of the proposed method. The computational advantage of the discrete snake
was also nullified with the GPU utilisation.

5 Conclusions and future works

In this paper, a multi-stage texture-based active contour has been presented. The proposed
method combined both a classical and region-based level set contour formulations and
smartly integrated multiple and varied texture features. The algorithm was carefully val-
idated on synthetic and natural images and compared with the most similar among the
available and accessible state-of-the-art approaches. The method was able to successfully
segment various patterns in case of bi- and multi-modal images. It should be noticed that the
presented approach is not tied to any particular texture descriptor and can be easily extended
to integrate additional features. Moreover, it efficiently employs a large number of different
kinds of descriptors thanks to the GPU acceleration.

We are aware that the current form of the method can be improved in many ways.
Although the algorithm does not require any prior information about the texture classes
in the image, it relies on manual contour initialisation. A more advanced feature selection
scheme could also be employed in the first stage. As for the performance, the third ACWE-
based stage would benefit greatly from GPU acceleration. Moreover, the general level set
form of the algorithm could be extended into a multi-phase version that could segment
multiple regions [3].
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Now, we are working on an adaptation of the proposed segmentation method into 3D [18,
27]. We are also considering assessing the method on biomedical images and more experi-
mental comparisons with very popular, fully convolutional approaches [29, 54]. Finally, we
plan to tackle a more complex task of semantic segmentation.
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