
Discovery of Decision Rules from Databases:
An Evolutionary Approach

Wojciech Kwedlo and Marek Kr~towski

Institute of Computer Science
Technical University of Biatystok

Wiejska 45a, 15-351 Biatystok, Poland
e-mail: {wkwedlo,mkret } @ii.pb.bialystok.pl

Abst rac t . Decision rules are a natural form of representing knowl-
edge. Their extraction from databases requires the capability for effective
search large solution spaces. This paper shows, how we can deal with this
problem using evolutionary algorithms (EAs). We propose an EA-based
system called EDRL, which for each class label sequentially generates
a disjunctive set of decision rules in propositional form. EDRL uses an
EA to search for one rule at a time; then, all the positive examples
covered by the rule are removed from the learning set and the search is
repeated on the remaining examples. Our version of EA differs from stan-
dard genetic algorithm. In addition to the well-known uniform crossover
it employs two non-standard genetic operators, which we call changing
condition and insertion. Currently EDRL requires prior discretization of
all continuous-valued attributes. A discretization technique based on the
minimization of class entropy is used. The performance of EDRL is eval-
uated by comparing its classification accuracy with that of C4.5 learning
algorithm on six datasets from UCI repository.

1 I n t r o d u c t i o n

Knowledge Discovery in Databases (KDD) is the process of identifying valid,
potentially useful and understandable regularities in data [5]. The two main goals
of KDD are prediction i.e. the use of available data to predict unknown values of
some variables and description i.e. the search for some interesting patterns and
their presentation in easy to understand way.

One of the most well-known data mining techniques used in KDD process
is extraction of decision rules. During the last two decades many methods e.g.
AQ-family [12], CN2 [2] or C4.5 [15] were proposed. The advantages of the rule-
based approach include natural representation and ease of integration of learned
rules with background knowledge.

In the paper we present a new system called EDRL (EDRL, for Evolutionary
Decision Rule Learner), which searches for decision rules using an evolutionary
algorithm (EA). EAs [11] are stochastic search techniques, which have been
inspired by the process of biological evolution. They have been applied to many
optimization problems. The success of EAs is attributed to their ability to avoid
local optima, which is their main advantage over greedy search methods. Several

371

EA-based systems, which learn decision rules in either propositional (e.g. GABIL
[3], GIL [10], GA-MINER [7]) or first order (e.g. REGAL [8, 14], SIAO1 [1]) form
have been proposed.

There are two key issues in our approach. The first one is the use of two non-
standard genetic operators, which we call changing condition operator and inser-
tion operator. The second issue is the application of entropy-based discretization
[6, 4], which allows us to effectively deal with continuous-valued features.

The reminder of the paper is organized as follows. In the next section we
present basic definitions and outline the rule induction scheme used by EDRL.
Section 3 describes a heuristic based on entropy minimization, which is used to
discretize the continuous-valued attributes. Section 4 presents the details of our
EA including representation of rules, the fitness function and genetic operators.
Preliminary experimental results are given in Section 5. The last section contains
our conclusions and possible directions of future research.

2 L e a r n i n g d e c i s i o n r u l e s

Let us assume that we have a learning set E = {e l , e2 , . . . ,eM} consisting of
M examples. Each example e E E is described by N attributes (features)
{A1 ,A2 , . . . ,AN} and labelled by a class c(e) E C. The domain of a nomi-
nal (discrete-valued) at tr ibute Ai is a finite set V(Ai) while the domain of a
continuous-valued attribute Ay is an interval V(A j) = [lj,uj]. For each class
Ck E C by E+(ck) = {e E E : c(e) = Ck} we denote the set of positive examples
and by E-(Ck) = E - E+ (ck) the set of negative examples. A classification rule
R takes the form tl A t2 A . . . A tr -+ ck, where Ck C C and the left-hand side is a
conjunction of r(r < N) conditions tl, t 2 , . . . , tr. Each condition tj concerns one
at tr ibute Akj. It is assumed that kj r ki for j r i. If Ak~ is a continuous-valued
at tr ibute than tj takes one of three forms: Akj > a, Akj <_ b or a < Ak~ < b,
where a, b E V(Akj) . Otherwise (Akj is nominal) the condition takes the form
Akj = v, where v E V(Ak~).

EDRL builds separately for each class Ck C C the set of disjunctive decision
rules RS(ck) covering all (or near all) positive examples from E+(ck). This
aim is achieved by repeating for each ck the following procedure (also called
sequential covering): First "the best" or "almost best" classification rule is found
using some global search method (an EA in our case). Next all the positive
examples covered by the rule are removed and the search process is i terated on
the remaining learning examples. The criterion expressing the performance of a
rule (in terminology of EAs called the fitness function) prefers rules consisting
of few conditions, which cover many positive examples and very few negative
ones. The sequential covering is stopped when either all the positive examples
are covered or the EA is unable (after three consecutive trials) to find a decision
rule covering more then ~- percent of all the positive examples from E+(Ck),
where ~- is a user-supplied parameter called rule sensitivity threshold.

I t is important to notice that, when learning decision rules for a class Ck
it is not necessary to distinguish between all the classes cl, c2-,..., cK. Instead

372

we merge all the classes different from Ck creating a class c k . Then we run
discretization algorithm and finally we generate decision rules.

3 D i s c r e t i z a t i o n o f c o n t i n u o u s - v a l u e d a t t r i b u t e s

As it was mentioned before, each continuous-valued attribute Aj requires prior
discretization. In this section we briefly explain the method we use (for a more
detailed description the reader is referred to [6]) The aim of discretization is
to find a partition of the domain V (A j) = [l j, u j] into dj subintervals [aj,~ ajl),

r d j - - 1 dj [a 1, a2) , . . . , [aj , aj]. Any original value of the attribute Aj is then replaced
by the number of the interval to which it belongs.

EDRL employs a supervised top-down greedy heuristic based on entropy
reduction. Given a subset of examples S C_ E its class information entropy H(S)
is defined by:

H(S) = - E p(S, ek)logp(S, ck), (1)
ckEC

where 0 < p(S, Ck) < 1 is the proportion of examples with class Ck in S. The
partitioning of the domain of Aj is performed as follows : First the initial interval
I = [lj, uj) is divided into two subintervals It = [lj, a) a n d / 2 = [a, uj) in such
way that this partition maximizes the information gain [15]:

= m s) - (2) Gain(Aj , I ,a)

where S, S1, $2 C_ E denote sets of examples for which the value of Aj belongs
to the intervals I, I1 and /2 respectively. This procedure is then recursively
applied to both subintervals I1 and /2 . The recursive partitioning is performed
only when the condition proposed by Fayyad and Irani [6] based on the Minimal
Description Length Principle is met:

a a i n (A j , I , a) > l~ 1) A(A j , I , a)
_ IS I + IS] , (3)

where A(Aj , I, a) = log2(3 n - 1) - [n i l (S) - nlH(S1) - n2H(S2)], and n, nl , n2
denote the number of class labels presented in S, $1, $2 respectively.

Dougherty et al. in a large experimental s tudy [4], compared the above
method with three others. The results indicated that an entropy-based dis-
cretization outperformed its competitors, namely equal interval binning, equal
frequency binning, and 1R discretizer.

4 S e a r c h i n g f o r d e c i s i o n r u l e s w i t h E A

Our version of evolutionary algorithm follows the general description presented
in [11]. In this section we present the following application-specific issues: repre-
sentation, the evolutionary operators, the termination condition and the fitness
function. We assume that all continuous-valued features have already been dis-
cretized.

373

4.1 Representat ion

Given the class label ck any decision rule can be represented as a fixed-length
string S = (f l , f 2 , . . , fN , COl, cOS,..., CON) where fi is a binary flag and coi C V(Ai)
is the value of at tr ibute Ai encoded as an integer number. The flag fi is set if
and only if the condition Ai = wi is present in conjunction on the left-hand side
of rule. The rule represented by string S can be expressed as follows:

(Ajl = wjl) A (Aj2 = wj2) A . . . A (AjL = coiL) --+ Ck (4)

where L is the length of the rule and j l , j 2 , . . . , jL E {j : f j = 1} . One can see
that if the flag fi is not set the value of coi is irrelevant.

4.2 The Fitness function and the infeasibility criterion

Consider a string S encoding a decision rule, which covers P O S positive examples
and N E G negative ones. Its fitness is defined by the equation:

POSa PE(x),
f (S) - L + 1 (5)

where
N E G

X z --/3~
P O S + N E G)

L is the number of conditions constituting the left-hand side of the rule, ~ and
/3 (0 < /3 < 1) are two users-supplied parameters, PE(x) is the function which
significantly degrades the fitness of the rule when the proportion of the number
of covered negative examples to the total number of covered examples is greater
than/3. In all the experiments PE(x) was given by

1
PE(x) = 1 + exp(yl(x - %)) ' (6)

where "}/1 = 30 and 7~ = 0.05 (see Fig. 1), although other forms (e.g. threshold
function) might also be used.

The value of/3 should be chosen carefully./3 excessively close to 0 allows the
generated rules to cover very few negative examples. Such rules are likely be too
specialized and overfit the data. They will classify perfectly the examples from
the learning set but their accuracy will by very poor when tested on previously
unseen examples. On the other hand, excessively high value of fl will increase
the classification error by making the rules cover many negative examples.

When PE(x) is too small (we have chosen PE(x) < 0.05) the rule is regarded
as the in]easible one. It is rejected and the string S is re-initialized, as described
in the next subsection.

374

1

0.8

0.6

0.4

0.2

0
-0.3 -0.2 0.3

i , ,

-0.1 0 0.1 0.2
X

Fig. 1. The plot of PE(x) (~/1 = 30 and 72 = 0.05).

4.3 Ini t ia l izat ion, t erminat ion condi t ion and se lect ion

Each string in the population is initialized using a randomly chosen positive
example e from E+(ek). Let us assume that i l , i2, ...,i~. denote the numbers of
non-missing features describing e and ~il , wi2, ..., wit denote the values of these
attr ibutes. A new string S is created in such way that it represents the decision
rule (A l l = w i l) A (Ai2 ~- a)i2) A . . . A (Ai~ = wir) --+ Ck. This method a s s u r e s

tha t the rule represented by S covers at least one positive example and if the
learning set is consistent it does not cover any negative ones.

The algorithm terminates if the fitness of the best string in the population
does not improve during NTERM generations where N T E R M iS the user-supplied
parameter .

As a selection operator we use proportional elitist selection with linear scaling
[9].

4.4 Genet ic operators

The search in EAs is performed by genetic operators. They alter the popula-
tion changing some individuals. Early implementations of EAs used the same
operators and representation for every problem they were applied to. For in-
stance a Standard Genetic Algorithm (SGA) [9, 11] represents individuals as
binary strings and uses two genetic operators: crossover and mutation. The
SGA was successfully applied to many problems, however many researchers
e.g. Michalewicz in [11] report tha t it can be outperformed by the algorithm
with carefully designed problem-dependent genetic operators and representa-
tion. Michalewicz and others argue that the use of problem-aware operators
allows the EA to exploit the knowledge about the problem, which improves the
performance. The weakness of domain-specific EA is that it can be applied only

375

to the task it was designed for, while SGA can be used to solve any optimization
problem.

C h a n g i n g c o n d i t i o n o p e r a t o r . This unary operator takes as an argument
a single string S = (f l , f 2 , . . , fN,col,co2,.. . ,CON}. I t works as follows: First we
choose a random number i where 1 < i < N. Then the flag fi is tested. If it is
set i.e. the condition concerning at tr ibute Ai is present in the rule represented
by S we reset fi and drop this condition from the rule. If fi is not set we set fi
and replace cz/with randomly chosen w~ C_ V(Ai) thus introducing the condition
A/ = co~ to the rule. This operator is similar to s tandard muta t ion operator of
genetic algorithms [9].

I n s e r t i o n o p e r a t o r . The aim of this unary operator is to modify a classification
rule R in such manner that it will cover a randomly chosen positive example e
currently uncovered by R. This can be achieved by removing from R all logical
conditions Ai =coi which return false when the rule is tested on the example
e. The removal is done by resetting the corresponding flag fi- As a result the
string S = (f l , f2, . . . fN, col, co2,..., a)N) representing the classification rule R is
replaced by S' = (f~, f~ , . . , f~v, COl, we , . . . , coN} where

f~ = { riO i f otherwisefi = 1 and the condition Ai = wi is not satisfied by example e

(7)
Because the string modified by this operator will cover at least one new positive
example there is a chance tha t its fitness (5) will increase. Of course it may
decrease if the new string covers some new negative examples.

C r o s s o v e r o p e r a t o r . We use a modification of the uniform crossover [11]. This
binary operator requires two arguments sl = (f l , f2, . �9 �9 fN, wl, w2,. . . , CON) and
s2 = (gl, g2 , . . . , gN, vl, v 2 , . . . , VN). For each i = 1, 2 , . . . , N it exchanges fi with
gi and w~ with v~ with the probability 0.5.

5 P r e l i m i n a r y e x p e r i m e n t a l r e s u l t s

In this section some initial experimental results are presented. We have tested
EDRL on 6 datasets from UCI Repository [13]. Table 1 describes these datasets.
Table 2 shows the classification accuracies obtained by EDRL and C4.5 (Rel 8)
learning algorithm. The results concerning C4.5 were taken from [16]. In both
cases the accuracies were est imated by running ten times the complete ten-
fold crossvalidation. The mean of ten runs and the s tandard error of this mean
are presented. As a reference we show the accuracy of the majori ty classifier 1

1 The majority classifier assigns an unknown example to the most frequent class in
the learning set.

376

The values of the p a r a m e t e r fl of the fitness funct ion are also given; in all the
expe r imen t s we used c~ = 2.0 and the rule sens i t iv i ty th resho ld 7- = 3%. Table
3 shows the number of rules and the t o t a l number of condi t ions o b t a i n e d when
the rules were e x t r a c t e d from the comple te da tase t s .

Dataset
l australian!

Features
15 (9 nominal)

diabetes 8
german 20 (13 nominal)

glass 9
hepatit is 19 (13 nominal)

4

Examples Classes
690 2
768 2
1000 2
214 7
155 2
150 3 iris

T a b l e 1. Description of the datasets used in the experiments.

Dataset Majority
australian 55.5
diabetes 65.1
german 70.0

glass 35.5
hepatit is 79.4

iris 33.3

C4.5
85.3 4- 0.2
74.6 4- 0.3
71.6 4- 0.3
67.5 4- 0.8
79.6 4- 0.6
95.2 4- 0.2

EDRL fl
86.1 4- 0.4 0.05

77.9 + 0.3 0.2
70.1 4- 0.8 0.2
66.7 4- 1.0 0.3
81.2 4- 1.8 0.1
96.0 4- 0.0 0.05

T a b l e 2. Classification accuracies of our method and C4.5 (Rel 8) algorithm.

6 C o n c l u s i o n s a n d f u t u r e work

In the p a p e r we p r o p o s e d an rule lea rn ing E A - b a s e d sys t em E D R L and con-
duc t ed i ts expe r imen t a l eva lua t ion . The p re l imina ry expe r imen ta l resul ts mere ly
ent i t le us to conclude, t h a t the classif icat ion accuracy of the cur ren t vers ion of
E D R L is compa rab l e to t h a t of C4.5. A real improvemen t was observed only for
d i abe te s da t a se t . However we believe t h a t the pe r fo rmance of our sys t em can be
fu r the r improved .

Severa l d i rec t ions of fu ture research exist . Cur ren t ly all the con t inuous-va lued
fea tures a re d iscre t ized globally [4] pr ior to ex t r ac t i on of rules. Each fea ture is
d i sc re t ized i n d e p e n d e n t l y f rom the others . We are working on the modi f i ca t ion
of E D R L , which will enable i t to pe r fo rm s imul taneous search for all a t t r i b u t e
th resho lds dur ing the induc t ion of rules.

377

Dataset Number of rules Number of conditions
australian 5 15
diabetes 8 21
german 8 36

glass 9 19
hepatitis[12 50

iris] 5 7

Table 3. Number of rules and conditions obtained.

Another idea is the extension of the rule representation form to VL1 [12]
language, in which a test can contain comparison to multiple values (internal
disjunction). This could be especially beneficial for datasets with nominal at-
tributes with large domains.

We also intend to replace the current strategy of dealing with infeasible rules
by a more sophisticated method e.g. repair algorithm [11].

A c k n o w l e d g m e n t s The authors are grateful to Prof. Leon Bobrowski for his
support and useful comments. This work was partially supported by the grant
8TILE00811 from State Committee for Scientific Research (KBN), Poland and
by the grant W / I I / 1 / 9 7 from Technical University of Bialystok.

R e f e r e n c e s

1. Augier, S., Venturini, G., Kodratoff, Y.: Learning first order logic rules with a
genetic algorithm. In: Proc. o] The First International Conference on Knowledge
Discovery and Data Mining KDD-95, AAAI Press (1995) 21-26.

2. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3 (1989)
261-283.

3. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithm for concept
learning. Machine Learning 13 (1993) 168-182.

4. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Machine Learning: Proc of 12th International Confer-
ence. Morgan Kaufmann (1995) 194-202.

5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances
in Knowledge Discovery and Data Mining. AAAI Press (1996).

6. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In Proc. of 13th Int. Joint Conference om Arti-
ficial Intelligence. Morgan Kaufmann (1993) 1022-1027.

7. Flockhart, I.W., Radcliffe, N.J.: A Genetic Algorithm-Based Approach to Data
Mining. In: Proc. of The Second International Conference on Knowledge Discovery
and Data Mining KDD-96, AAAI Press (1996) 299-302.

8. Giordana, A., Neri, F.: Search-intensive concept induction. Evolutionary Compu-
tation 3(4) (1995) 375-416.

378

9. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley (1989).

10. Janikow, C.: A knowledge intensive genetic algorithm for supervised learning. Ma-
chine Learning 13 (1993) 192-228.

11. Michalewicz, Z.: Genetic Algorithms § Data Structures = Evolution Programs. 3rd
edn. Springer-Verlag (1996).

12. Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N., : The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains. In:
Proe. of the 5th National Conference on Artificial Intelligence (1986) 1041-1045.

13. Murphy, P.M., Aha, D.W.: UCI repository of machine-learning databases, available
on-line: http://www.ics.uci.edu/pub/machine-learning-databases.

14. Neri, F., Saitta, L.: Exploring the power of genetic search in learning symbolic
classifiers. IEEE Transaction on Pattern Analysis and Machine Intelligence 18
(1996) 1135-1142.

15. Quinlan, J.R.: C~.5: Programs for Machine Learning. Morgan Kaufmann (1993).
16. Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research 4 (1996) 77-90.

