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Abst rac t .  Decision rules are a natural form of representing knowl- 
edge. Their extraction from databases requires the capability for effective 
search large solution spaces. This paper shows, how we can deal with this 
problem using evolutionary algorithms (EAs). We propose an EA-based 
system called EDRL, which for each class label sequentially generates 
a disjunctive set of decision rules in propositional form. EDRL uses an 
EA to search for one rule at a time; then, all the positive examples 
covered by the rule are removed from the learning set and the search is 
repeated on the remaining examples. Our version of EA differs from stan- 
dard genetic algorithm. In addition to the well-known uniform crossover 
it employs two non-standard genetic operators, which we call changing 
condition and insertion. Currently EDRL requires prior discretization of 
all continuous-valued attributes. A discretization technique based on the 
minimization of class entropy is used. The performance of EDRL is eval- 
uated by comparing its classification accuracy with that of C4.5 learning 
algorithm on six datasets from UCI repository. 

1 I n t r o d u c t i o n  

Knowledge Discovery in Databases (KDD) is the process of identifying valid, 
potentially useful and understandable regularities in data [5]. The two main goals 
of KDD are prediction i.e. the use of available data to predict unknown values of 
some variables and description i.e. the search for some interesting patterns and 
their presentation in easy to understand way. 

One of the most well-known data mining techniques used in KDD process 
is extraction of decision rules. During the last two decades many methods e.g. 
AQ-family [12], CN2 [2] or C4.5 [15] were proposed. The advantages of the rule- 
based approach include natural representation and ease of integration of learned 
rules with background knowledge. 

In the paper we present a new system called EDRL (EDRL, for Evolutionary 
Decision Rule Learner), which searches for decision rules using an evolutionary 
algorithm (EA). EAs [11] are stochastic search techniques, which have been 
inspired by the process of biological evolution. They have been applied to many 
optimization problems. The success of EAs is attributed to their ability to avoid 
local optima, which is their main advantage over greedy search methods. Several 
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EA-based systems, which learn decision rules in either propositional (e.g. GABIL 
[3], GIL [10], GA-MINER [7]) or first order (e.g. REGAL [8, 14], SIAO1 [1]) form 
have been proposed. 

There are two key issues in our approach. The first one is the use of two non- 
standard genetic operators, which we call changing condition operator and inser- 
tion operator. The second issue is the application of entropy-based discretization 
[6, 4], which allows us to effectively deal with continuous-valued features. 

The reminder of the paper is organized as follows. In the next section we 
present basic definitions and outline the rule induction scheme used by EDRL. 
Section 3 describes a heuristic based on entropy minimization, which is used to 
discretize the continuous-valued attributes. Section 4 presents the details of our 
EA including representation of rules, the fitness function and genetic operators. 
Preliminary experimental results are given in Section 5. The last section contains 
our conclusions and possible directions of future research. 

2 L e a r n i n g  d e c i s i o n  r u l e s  

Let us assume that  we have a learning set E = {e l , e2 , . . .  ,eM} consisting of 
M examples. Each example e E E is described by N attributes (features) 
{A1 ,A2 , . . . ,AN}  and labelled by a class c(e) E C. The domain of a nomi- 
nal (discrete-valued) at tr ibute Ai is a finite set V(Ai)  while the domain of a 
continuous-valued attribute Ay is an interval V(A j )  = [lj,uj]. For each class 
Ck E C by E+(ck) = {e E E : c(e) = Ck} we denote the set of positive examples 
and by E-(Ck ) = E - E+ (ck ) the set of negative examples. A classification rule 
R takes the form tl A t2 A . . .  A tr -+ ck, where Ck C C and the left-hand side is a 
conjunction of r(r  < N)  conditions tl,  t 2 , . . . ,  tr. Each condition tj concerns one 
at tr ibute Akj. It is assumed that  kj r ki for j r i. If Ak~ is a continuous-valued 
at tr ibute than tj takes one of three forms: Akj > a, Akj <_ b or a < Ak~ < b, 
where a, b E V(Akj) .  Otherwise (Akj is nominal) the condition takes the form 
Akj = v, where v E V(Ak~). 

EDRL builds separately for each class Ck C C the set of disjunctive decision 
rules RS(ck)  covering all (or near all) positive examples from E+(ck). This 
aim is achieved by repeating for each ck the following procedure (also called 
sequential covering): First "the best" or "almost best" classification rule is found 
using some global search method (an EA in our case). Next all the positive 
examples covered by the rule are removed and the search process is i terated on 
the remaining learning examples. The criterion expressing the performance of a 
rule (in terminology of EAs called the fitness function) prefers rules consisting 
of few conditions, which cover many positive examples and very few negative 
ones. The sequential covering is stopped when either all the positive examples 
are covered or the EA is unable (after three consecutive trials) to find a decision 
rule covering more then ~- percent of all the positive examples from E+(Ck), 
where ~- is a user-supplied parameter called rule sensitivity threshold. 

I t  is important  to notice that,  when learning decision rules for a class Ck 
it is not necessary to distinguish between all the classes cl, c2-,..., cK. Instead 
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we merge all the classes different from Ck creating a class c k . Then we run 
discretization algorithm and finally we generate decision rules. 

3 D i s c r e t i z a t i o n  o f  c o n t i n u o u s - v a l u e d  a t t r i b u t e s  

As it was mentioned before, each continuous-valued attribute Aj requires prior 
discretization. In this section we briefly explain the method we use (for a more 
detailed description the reader is referred to [6]) The aim of discretization is 
to find a partition of the domain V ( A j )  = [l j, u j] into dj subintervals [aj,~ ajl), 

r d j - - 1  dj  [a 1, a2) , . . . ,  [aj , aj ]. Any original value of the attribute Aj is then replaced 
by the number of the interval to which it belongs. 

EDRL employs a supervised top-down greedy heuristic based on entropy 
reduction. Given a subset of examples S C_ E its class information entropy H(S) 
is defined by: 

H(S)  = - E p(S, ek)logp(S, ck), (1) 
ckEC 

where 0 < p(S, Ck) < 1 is the proportion of examples with class Ck in S. The 
partitioning of the domain of Aj is performed as follows : First the initial interval 
I = [lj, uj) is divided into two subintervals It = [lj, a) a n d / 2  = [a, uj) in such 
way that  this partition maximizes the information gain [15]: 

= m s ) -  (2) Gain(Aj , I ,a )  

where S, S1, $2 C_ E denote sets of examples for which the value of Aj belongs 
to the intervals I,  I1 and /2 respectively. This procedure is then recursively 
applied to both subintervals I1 and /2 .  The recursive partitioning is performed 
only when the condition proposed by Fayyad and Irani [6] based on the Minimal 
Description Length Principle is met: 

a a i n ( A j , I , a )  > l~ 1) A(A j , I , a )  
_ IS I + IS ] , (3)  

where A(Aj ,  I,  a) = log2(3 n - 1) - [ n i l ( S )  - nlH(S1) - n2H(S2)], and n, nl ,  n2 
denote the number of class labels presented in S, $1, $2 respectively. 

Dougherty et al. in a large experimental s tudy  [4], compared the above 
method with three others. The results indicated that  an entropy-based dis- 
cretization outperformed its competitors, namely equal interval binning, equal 
frequency binning, and 1R discretizer. 

4 S e a r c h i n g  f o r  d e c i s i o n  r u l e s  w i t h  E A  

Our version of evolutionary algorithm follows the general description presented 
in [11]. In this section we present the following application-specific issues: repre- 
sentation, the evolutionary operators, the termination condition and the fitness 
function. We assume that  all continuous-valued features have already been dis- 
cretized. 
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4.1 Representat ion 

Given the class label ck any decision rule can be represented as a fixed-length 
string S = ( f l ,  f 2 , . . ,  fN ,  COl, cOS,..., CON) where fi  is  a binary flag and coi C V(Ai)  
is the value of at tr ibute Ai encoded as an integer number. The flag fi  is set if 
and only if the condition Ai = wi is present in conjunction on the left-hand side 
of rule. The rule represented by string S can be expressed as follows: 

(Ajl = wjl) A (Aj2 = wj2) A . . .  A (AjL = coiL) --+ Ck (4) 

where L is the length of the rule and j l ,  j 2 , . . . ,  jL E {j  : f j  = 1} .  One can see 
that  if the flag fi is not set the value of coi is irrelevant. 

4.2 The Fitness function and the infeasibility criterion 

Consider a string S encoding a decision rule, which covers P O S  positive examples 
and N E G  negative ones. Its fitness is defined by the equation: 

POSa PE(x), 
f ( S )  - L + 1 (5) 

where 
N E G  

X z --/3~ 
P O S  + N E G )  

L is the number of conditions constituting the left-hand side of the rule, ~ and 
/3 (0 < /3  < 1) are two users-supplied parameters, PE(x )  is the function which 
significantly degrades the fitness of the rule when the proportion of the number 
of covered negative examples to the total number of covered examples is greater 
than/3. In all the experiments PE(x )  was given by 

1 
PE(x )  = 1 + exp(yl(x - % ) ) '  (6) 

where "}/1 = 30 and 7~ = 0.05 (see Fig. 1), although other forms (e.g. threshold 
function) might also be used. 

The value of/3 should be chosen carefully./3 excessively close to 0 allows the 
generated rules to cover very few negative examples. Such rules are likely be too 
specialized and overfit the data. They will classify perfectly the examples from 
the learning set but their accuracy will by very poor when tested on previously 
unseen examples. On the other hand, excessively high value of fl will increase 
the classification error by making the rules cover many negative examples. 

When PE(x )  is too small (we have chosen PE(x )  < 0.05) the rule is regarded 
as the in]easible one. It is rejected and the string S is re-initialized, as described 
in the next subsection. 
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Fig. 1. The plot of PE(x)  (~/1 = 30 and 72 = 0.05). 

4.3 Ini t ia l izat ion,  t erminat ion  condi t ion  and se lect ion  

Each string in the population is initialized using a randomly chosen positive 
example e from E+(ek). Let us assume that  i l , i2,  ...,i~. denote the numbers of 
non-missing features describing e and ~il ,  wi2, ..., wit denote the values of these 
attr ibutes.  A new string S is created in such way that  it represents the decision 
rule (A l l  = w i l )  A (Ai2 ~- a)i2) A . . .  A (Ai~ = wir) --+ Ck. This method a s s u r e s  

tha t  the rule represented by S covers at least one positive example and if the 
learning set is consistent it does not cover any negative ones. 

The algorithm terminates if the fitness of the best string in the population 
does not improve during NTERM generations where N T E R M  iS the user-supplied 
parameter .  

As a selection operator  we use proportional elitist selection with linear scaling 
[9]. 

4.4 Genet ic  operators  

The search in EAs is performed by genetic operators. They alter the popula- 
tion changing some individuals. Early implementations of EAs used the same 
operators  and representation for every problem they were applied to. For in- 
stance a Standard Genetic Algorithm (SGA) [9, 11] represents individuals as 
binary strings and uses two genetic operators: crossover and mutation.  The 
SGA was successfully applied to many problems, however many researchers 
e.g. Michalewicz in [11] report  tha t  it can be outperformed by the algorithm 
with carefully designed problem-dependent genetic operators and representa- 
tion. Michalewicz and others argue that  the use of problem-aware operators 
allows the EA to exploit the knowledge about  the problem, which improves the 
performance. The weakness of domain-specific EA is that  it can be applied only 
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to the task it was designed for, while SGA can be used to solve any optimization 
problem. 

C h a n g i n g  c o n d i t i o n  o p e r a t o r .  This unary operator  takes as an argument  
a single string S = (f l ,  f 2 , . . ,  fN,col,co2,.. .  ,CON}. I t  works as follows: First we 
choose a random number i where 1 < i < N.  Then the flag fi  is tested. If it is 
set i.e. the condition concerning at tr ibute Ai is present in the rule represented 
by S we reset fi  and drop this condition from the rule. If fi  is not set we set fi  
and replace cz/with randomly chosen w~ C_ V(Ai)  thus introducing the condition 
A/ = co~ to the rule. This operator is similar to s tandard muta t ion  operator  of 
genetic algorithms [9]. 

I n s e r t i o n  o p e r a t o r .  The aim of this unary operator  is to modify a classification 
rule R in such manner  that  it will cover a randomly chosen positive example e 
currently uncovered by R. This can be achieved by removing from R all logical 
conditions Ai =coi  which return false when the rule is tested on the example 
e. The  removal is done by resetting the corresponding flag fi- As a result the 
string S = (f l ,  f2, . . . fN,  col, co2,..., a)N) representing the classification rule R is 
replaced by S'  = (f~, f~ , . . ,  f~v, COl, we , . . . ,  coN} where 

f~ = { riO i f  otherwisefi = 1 and the condition Ai = wi is not satisfied by example e 

(7) 
Because the string modified by this operator will cover at least one new positive 
example there is a chance tha t  its fitness (5) will increase. Of course it may 
decrease if the new string covers some new negative examples. 

C r o s s o v e r  o p e r a t o r .  We use a modification of the uniform crossover [11]. This 
binary operator  requires two arguments sl = ( f l ,  f2, .  �9 �9 fN,  wl, w2,. . . ,  CON) and 
s2 = (gl, g2 , . . . ,  gN, vl, v 2 , . . . ,  VN). For each i = 1, 2 , . . . ,  N it exchanges fi  with 
gi and w~ with v~ with the probability 0.5. 

5 P r e l i m i n a r y  e x p e r i m e n t a l  r e s u l t s  

In this section some initial experimental results are presented. We have tested 
EDRL on 6 datasets from UCI Repository [13]. Table 1 describes these datasets. 
Table 2 shows the classification accuracies obtained by EDRL and C4.5 (Rel 8) 
learning algorithm. The results concerning C4.5 were taken from [16]. In both  
cases the accuracies were est imated by running ten times the complete ten- 
fold crossvalidation. The mean of ten runs and the s tandard error of this mean 
are presented. As a reference we show the accuracy of the majori ty  classifier 1 

1 The majority classifier assigns an unknown example to the most frequent class in 
the learning set. 
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The  values of the  p a r a m e t e r  fl of the  fitness funct ion are  also given; in all  the  
expe r imen t s  we used c~ = 2.0 and  the  rule sens i t iv i ty  th resho ld  7- = 3%. Table  
3 shows the  number  of rules and  the  t o t a l  number  of condi t ions  o b t a i n e d  when 
the  rules were e x t r a c t e d  from the  comple te  da tase t s .  

Dataset 
l australian! 

Features 
15 (9 nominal) 

diabetes 8 
german 20 (13 nominal) 

glass 9 
hepatit is 19 (13 nominal) 

4 

Examples Classes 
690 2 
768 2 
1000 2 
214 7 
155 2 
150 3 iris 

T a b l e  1. Description of the datasets used in the experiments. 

Dataset  Majority 
australian 55.5 
diabetes 65.1 
german 70.0 

glass 35.5 
hepatit is  79.4 

iris 33.3 

C4.5 
85.3 4- 0.2 
74.6 4- 0.3 
71.6 4- 0.3 
67.5 4- 0.8 
79.6 4- 0.6 
95.2 4- 0.2 

EDRL fl 
86.1 4- 0.4 0.05 

77.9 + 0.3 0.2 
70.1 4- 0.8 0.2 
66.7 4- 1.0 0.3 
81.2 4- 1.8 0.1 
96.0 4- 0.0 0.05 

T a b l e  2. Classification accuracies of our method and C4.5 (Rel 8) algorithm. 

6 C o n c l u s i o n s  a n d  f u t u r e  work  

In the  p a p e r  we p r o p o s e d  an  rule lea rn ing  E A - b a s e d  sys t em E D R L  and  con- 
duc t ed  i ts  expe r imen t a l  eva lua t ion .  The  p re l imina ry  expe r imen ta l  resul ts  mere ly  
ent i t le  us to  conclude,  t h a t  the  classif icat ion accuracy  of the  cur ren t  vers ion of 
E D R L  is compa rab l e  to  t h a t  of C4.5. A real  improvemen t  was observed  only for 
d i abe te s  da t a se t .  However  we believe t h a t  the  pe r fo rmance  of our  sys t em can be 
fu r the r  improved .  

Severa l  d i rec t ions  of fu ture  research  exist .  Cur ren t ly  all the  con t inuous-va lued  
fea tures  a re  d iscre t ized  globally [4] pr ior  to  ex t r ac t i on  of rules. Each  fea ture  is 
d i sc re t ized  i n d e p e n d e n t l y  f rom the  others .  We are  working  on the  modi f i ca t ion  
of E D R L ,  which will enable  i t  to  pe r fo rm s imul taneous  search for all  a t t r i b u t e  
th resho lds  dur ing  the  induc t ion  of rules. 
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Dataset Number of rules Number of conditions 
australian 5 15 
diabetes 8 21 
german 8 36 

glass 9 19 
hepatitis[ 12 50 

iris .... ] 5 7 

Table 3. Number of rules and conditions obtained. 

Another idea is the extension of the rule representation form to VL1 [12] 
language, in which a test can contain comparison to multiple values (internal 
disjunction). This could be especially beneficial for datasets with nominal at- 
tributes with large domains. 

We also intend to replace the current strategy of dealing with infeasible rules 
by a more sophisticated method e.g. repair algorithm [11]. 
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