
An Evolutionary Algorithm Using Multivariate
Discretization for Decision Rule Induction

Wojciech Kwedlo and Marek Krȩtowski

Institute of Computer Science, Technical University of Bia lystok, Poland
{wkwedlo, mkret}@ii.pb.bialystok.pl

Abstract. We describe EDRL-MD, an evolutionary algorithm-based sy-
stem, for learning decision rules from databases. The main novelty of our
approach lies in dealing with continuous - valued attributes. Most of de-
cision rule learners use univariate discretization methods, which search
for threshold values for one attribute at the same time. In contrast to
them, EDRL-MD simultaneously searches for threshold values for all
continuous-valued attributes, when inducing decision rules. We call this
approach multivariate discretization. Since multivariate discretization is
able to capture interdependencies between attributes it may improve
the accuracy of obtained rules. The evolutionary algorithm uses problem
specific operators and variable-length chromosomes, which allows it to
search for complete rulesets rather than single rules. The preliminary
results of the experiments on some real-life datasets are presented.

1 Introduction
Discovery of decision rules from databases is one of the most important problems
in machine learning and data mining [6]. If a dataset contains some numerical
(continuous-valued) attributes a decision rule learner must search for threshold
values to create conditions (selectors) concerning these attributes. This process
is called discretization and has attracted a lot of attention in the literature.

The simplest discretization algorithm called equal interval binning partiti-
ons the range of a continuous-valued attribute into several equal sized intervals.
Since it does not make use of class labels it belongs to the group of unsuper-
vised methods. Many experimental studies show [4], that supervised methods
which use the class membership of examples, perform much better than their
unsupervised counterparts.

The supervised discretization can be performed globally before the induction
of rules by dividing the range of each continuous-valued attribute into intervals
independent of the other attributes. An alternative approach, called local su-
pervised discretization consists in searching for attribute thresholds during the
generation of inductive hypothesis. However, even the systems, which use this
method (e.g. C4.5 [10]) are often unable to search at the same time for thres-
hold values for more than one attribute. Both approaches belong to the group
of univariate discretization methods.

In the paper we propose a new system called EDRL-MD (EDRL-MD, for Evo-
lutionary Decision Rule Learner with Multivariate Discretization) combining the
two steps: the simultaneous search for threshold values for all continuous-valued
attributes, which we call multivariate discretization, and the discovery of deci-
sion rules. As a search heuristic we use an evolutionary algorithm (EA) [9]. EAs

J.M. Żytkow and J. Rauch (Eds.): PKDD’99, LNAI 1704, pp. 392–397, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

An Evolutionary Algorithm for Decision Rule Induction 393

are stochastic techniques, which have been inspired by the process of biological
evolution. The success of EAs is attributed to the ability to avoid local optima,
which is their main advantage over greedy search methods. Several systems,
which employ EAs for learning decision rules (e.g. GABIL [3], GIL [7], EDRL
[8]) were proposed. According to our knowledge all of them either work only
with nominal attributes or discretize continuous-valued ones prior to induction
of rules using univariate methods.

2 The Weakness of the Univariate Discretization
The univariate discretization methods,
although computationally effective, are
not able to capture interdependencies
between attributes. For that reason they
run the risk of missing information neces-
sary for correct classification. A following
example shows the shortcomings of uni-
variate discretization.

Consider an artificial dataset shown
(a similar idea was presented in [2]) on
Fig. 1. Every example is described by
two attributes A1 and A2 distributed uni-
formly on the interval [0, 1]. The exam-
ples are divided approximately equally
into two classes denoted by + and 2. The
optimal decision rules for this dataset are:

0.5

0.5

A2

A1

0 1

1

Fig. 1 An artificial dataset, for which
the univariate approach is unlikely to
find the proper thresholds.

(A1 < 0.5) ∧ (A2 < 0.5) → 2 (A1 < 0.5) ∧ (A2 > 0.5) → +
(A1 > 0.5) ∧ (A2 > 0.5) → 2 (A1 > 0.5) ∧ (A2 < 0.5) → +

Note that each of the conditions Ai < th or Ai > th, where th ∈ (0, 1) splits
the examples into two subsets having roughly the same class distribution as the
whole dataset. Hence a single condition related to one attribute A1 or A2 does
not improve the separation of the classes. Let H(Ai, th) be the class information
entropy of the partition induced by the threshold th, a measure commonly used
[4,5] by supervised discretization algorithms. We can say that for each Ai ∈
{A1, A2} and th1, th2 ∈ (0, 1) H(Ai, th1) ∼= H(Ai, th2). This property holds for
the other functions based on impurity or separation of the classes. Therefore any
supervised univariate discretization algorithm will have difficulties with finding
the proper thresholds for both attributes. This limitation does not apply to
multivariate methods.

The above-mentioned example indicates, that in some cases a multivariate
discretization is more appropriate and it leads to more accurate rules.

3 Description of the Method
We assume that a learning set E = {e1, e2, . . . , eM} consists of M examples. Each
example e ∈ E is described by N attributes (features) A1(e), A2(e), . . . , AN (e)

394 W. Kwedlo and M. Krȩtowski

and labeled by a class c(e) ∈ C. The domain of a nominal (discrete-valued)
attribute Aj is a finite set V (Aj), while the domain of a continuous-valued
attribute Ai is an interval V (Ai) = [ai, bi]. For each class ck ∈ C by E+(ck) =
{e ∈ E : c(e) = ck} we denote the set of positive examples and by E−(ck) =
E − E+(ck) the set of negative examples. A decision rule R takes the form
t1∧t2∧ . . .∧tr → ck, where ck ∈ C and the left-hand side (LHS) is a conjunction
of r(r ≤ N) conditions t1, t2, . . . , tr; each of them concerns one attribute. The
right-hand side (RHS) of the rule determines class membership of an example.
A ruleset RSck for a class ck is defined as a disjunction of K(ck) decision rules
Rck

1 ∨ Rck
2 ∨ · · · ∨ Rck

K(ck), provided that all the rules have ck on the RHS.
In EDRL-MD the EA is called separately for each class ck ∈ C to find

the ruleset RSck . The search criterion, in terminology of EAs called the fitness
function prefers rulesets consisting of few conditions, which cover many positive
examples and very few negative ones.

3.1 Representation

The EA processes a population of candidate solutions to the search problem
called chromosomes. In our case a single chromosome encodes a ruleset RSck .
Since the number of rules in the optimal ruleset for a given class is not known, we
use variable-length chromosomes and provide the search operators, which change
the number of rules. A chromosome representing the ruleset is a concatenation
of strings. Each fixed-length string represents the LHS of one decision rule.
Because the EA is called to find a ruleset for the given class ck there is no need
for encoding the RHS.

...li ui fj

1
fj

2
fj

kj

continuous-valued Ai nominal Aj

lower
threshold

binary flagsupper
threshold

...

...

Fig. 2. The string encoding the LHS of a decision rule (kj = |V (Aj)|). The chromosome
representing the ruleset is concatenation of strings.

The string is composed (Fig. 2) of N substrings. Each substring encodes a
condition related to one attribute. The LHS is the conjunction of these conditi-
ons. In case of a continuous-valued attribute Ai the substring encodes the lower
li and the upper ui threshold of the condition li < Ai ≤ ui. It is possible that
li = −∞ or ui = +∞.

Both li and ui are selected from the finite set of all boundary thresholds. A
boundary threshold for the attribute Ai is defined (Fig. 3) as a midpoint between
such a successive pair of examples in the sequence sorted by the increasing value
of Ai, that one of the examples is positive and the other is negative. Fayyad and
Irani proved [5], that evaluating only the boundary thresholds is sufficient for
finding the maximum of class information entropy. This property also holds for
the fitness function (1).

An Evolutionary Algorithm for Decision Rule Induction 395

For a nominal attribute Aj the substring consists of binary flags; each of
them corresponds to one value of the attribute. If e.g. the domain of attribute
Aj is {low, moderate, high} then the pattern 011 represents condition Aj =
(moderate∨high), which stands for: ”the value of Aj equals moderate or high”.

Note, that it is possible, that a condition related to an attribute is not present
on the LHS. For a continuous-valued attribute Ai it can be achieved by setting
both li = −∞ and ui = +∞. For a nominal Aj it is necessary to set all the flags
f1

j , f2
j , . . . , f

|V (Aj)|
j .

Each chromosome in the population is initialized using a randomly chosen
positive example. The initial chromosome represents the ruleset consisting of a
single rule, which covers the example.

thi

k-1

Ai

thi

k+1

thi

k

… …

Fig. 3. An example illustrating the notion of boundary threshold. The boundary thres-
holds th1

i , . . . , th
k
i , . . . , thNTi

i for the continuous-valued attribute Ai are placed between
groups of negative (•) and positive (2) examples.

3.2 The Fitness Function
Consider a ruleset RSck , which covers pos positive examples and neg negative
ones. The fitness function is given by:

f(RSck) =
pos − neg

log10(L + α) + β
. (1)

where α = 10, β = 10, L is total the number of conditions in the ruleset RSck .
Note, that maximization of the numerator of (1) is equivalent to maximization
of the probability of correct classification of an example. The denominator of (1)
is a measure of complexity of the ruleset. An increase of the complexity results
in a reduction of the fitness and thus prevents overfitting . To avoid overfitting
we also limit the number of rules in a chromosome to maxR, where maxR is a
user-supplied parameter.

The formula for function (1) including the values of the parameters α and β
was chosen on the experimental basis. We found it performed well in comparison
with other functions we tested.

3.3 Genetic Operators
Our system employs six search operators. Four of them: changing condition,
positive example insertion, negative example removal , rule drop are applied to a
single ruleset RSck (represented by chromosome). The other two: crossover and
rule copy require two arguments RSck

1 and RSck
2 .

A similar approach was proposed by Janikow. However, his GIL [7] system is
not able to handle continuous-valued attributes directly, since it represents a con-

396 W. Kwedlo and M. Krȩtowski

dition as a sequence of binary flags corresponding to the values of an attribute
(we use the same representation for nominal attributes).

The changing condition is a mutation-like operator, which alters a single
condition related to an attribute. For a nominal attribute Aj a flag randomly
chosen from f1

j , f2
j , . . . , f

|V (Aj)|
j is flipped. For a continuous-valued Ai a threshold

(li or ui) is replaced by a random boundary threshold.
The positive example insertion operator modifies a single decision rule Rck in

the ruleset RSck to allow it to cover a new random positive example e+ ∈ E+(ck),
currently uncovered by Rck . All conditions in the rule, which conflict with e+

have to be altered. In case of a condition related to a nominal attribute Aj the
flag, which corresponds to Aj(e+), is set. If a condition li < Ai ≤ ui concerning
continuous-valued attribute Ai is not satisfied because ui < Ai(e+) the threshold
ui is replaced by ûi, where ûi is the smallest boundary threshold such that
ûi ≥ Ai(e+). The case when Ai(e+) ≤ li is handled in a similar way.

The negative example removal operator alters a single rule Rck from the
ruleset RSck . It selects at random a negative example e− from the set of all the
negative examples covered by Rck . Then it alters a random condition in R in such
way, that the modified rule does not cover e−. If the chosen condition concerns a
nominal attribute Aj the flag which corresponds to Aj(e−) is cleared. Otherwise
the condition li < Ai ≤ ui concerning continuous-valued Ai is narrowed down
either to l̂i < Ai ≤ ui or to li < Ai ≤ ûi, where l̂i is the smallest boundary
threshold such that Ai(e−) ≤ l̂i and ûi is the largest one such that ûi < Ai(e−).

Rule drop and rule copy operators [7] are the only ones capable of changing
the number of rules in a ruleset. The single argument rule drop removes a ran-
dom rule from a ruleset RSck . The two argument rule copy adds to one of its
arguments RSck

1 a copy of a rule selected at random from RSck
2 , provided that

the number of rules in RSck
1 is lower than maxR.

The crossover operator selects at random two rules Rck
1 and Rck

2 from the
respective arguments RSck

1 and RSck
2 . It then applies an uniform crossover [9]

to the strings representing Rck
1 and Rck

2 .

4 Experiments

In this section some initial experimen-
tal results are presented. We have tested
EDRL - MD on several datasets from
UCI repository [1]. Table 1 shows the
classification accuracy obtained by our
method and C4.5 (Rel. 8) [10] algorithm.
The accuracy was estimated by running
ten times the complete ten-fold crossva-
lidation. The mean of ten runs and the
standard deviation are given. In all the
experiments involving C4.5 decision rules

Dataset C4.5 EDRL-MD
australian 84.8 ± 0.9 84.5 ± 0.5

bupa 66.5 ± 2.5 65.6 ± 1.5
breast-w 95.2 ± 0.4 95.2 ± 0.3

glass 67.5 ± 1.6 70.7 ± 2.9
hepatitis 80.6 ± 2.2 83.0 ± 2.4

iris 95.3 ± 0.7 95.4 ± 0.7
pima 74.2 ± 1.1 74.5 ± 0.6
wine 94.2 ± 1.4 93.6 ± 1.2

Table 1 The results of the experiments.

were obtained from decision trees by C4.5rules program.

An Evolutionary Algorithm for Decision Rule Induction 397

5 Conclusions
We have presented EDRL-MD, an EA-based system for decision rule learning,
which uses a novel multivariate discretization method. The preliminary expe-
rimental results indicate, that both classification accuracy and complexity of
discovered rules are comparable with the results obtained by C4.5.

Several directions of future research exist. One of them is the design of a
better fitness function, which has a critical influence on the performance of the
algorithm. The current version was chosen on the basis of very few experiments.
Hence the classification results presented in the paper should be viewed as the
lower limits of the attainable performance. We believe that the performance can
be further improved.

It is a well-known fact, that many applications of KDD require the capability
of efficient processing large databases. In such cases algorithms, which offer very
good classification accuracy at the cost of high computational complexity cannot
be applied. Fortunately, EAs are well suited for parallel architectures. We plan
to develop a parallel implementation of EDRL-MD, which will be able to extract
decision rules from large datasets.

Acknowledgments The authors are grateful to Prof. Leon Bobrowski for his
support and useful comments. This work was supported by the grant W/II/1/97
from Technical University of Bialystok.

References
1. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases,

available on-line: http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998).
2. Bobrowski, L.: Piecewise-linear classifiers, formal neurons and separability of the

learning sets. Proc. of 13th Int. Conf. on Pattern Recognition ICPR’96. IEEE
Computer Society Press (1996) 224-228.

3. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithm for concept
learning. Machine Learning 13 (1993) 168-182.

4. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Machine Learning: Proc of 12th Int. Conference. Morgan
Kaufmann (1995) 194-202.

5. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attri-
butes for classification learning. In Proc. of IJCAI’93. Morgan Kaufmann (1993)
1022-1027.

6. Fayyad, U.M, Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances
in Knowledge Discovery and Data Mining. AAAI Press (1996).

7. Janikow, C.Z.: A knowledge intensive genetic algorithm for supervised learning.
Machine Learning 13 (1993) 192-228.

8. Kwedlo, W., Krȩtowski, M.: Discovery of decision rules from databases: an evo-
lutionary approach. In Principles of Data Mining and Knowledge Discovery. 2nd

European Symposium PKDD’98. Springer LNCS 1510 (1998) 370-378.
9. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd

edn. Springer (1996).
10. Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research 4 (1996) 77-90.

	Introduction
	The Weakness of the Univariate Discretization
	Description of the Method
	Representation
	The Fitness Function
	Genetic Operators

	Experiments
	Conclusions

