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Abstract. A new approach to the induction of multivariate decision
trees is proposed. A linear decision function (hyper-plane) is used at
each non-terminal node of a binary tree for splitting the data. The search
strategy is based on the dipolar criterion functions and exploits the basis
exchange algorithm as an optimization procedure. The feature selection
is used to eliminate redundant and noisy features at each node. To avoid
the problem of over-fitting the tree is pruned back after the growing
phase. The results of experiments on some real-life datasets are presented
and compared with obtained by state-of-art decision trees.

1 Introduction
Decision trees are hierarchical, sequential classification structures that recursi-
vely partition the feature space. The tree contains terminal nodes (leaves) and
internal (non-terminal) nodes. A terminal node generates no descendants, but is
designated by a class label, while an internal node contains a split, which tests
the value of an expression of the attributes. Each distinct outcome of the test
generates one child node, hence all non-terminal nodes have two or more child
nodes. An object is classified through traversing a path from the root node until
a terminal node. At each non-terminal node on the path, the associated test is
used to decide which child node the feature vector is passed to. At the terminal
node the class label is used to classify the input vector.

Decision trees are extensively investigated especially in statistics, machine
learning and pattern recognition (see [13] for a very good multi-disciplinary sur-
vey). Most of the research effort focuses on the univariate tests for symbolic or
numeric (continuous-valued) attributes (e.g. C4.5 [14], CHAID [10]). An univa-
riate test compares a value of a single attribute to a constant, so this is equivalent
to partitioning the set of observations with an axis-parallel hyper-plane. A mul-
tivariate decision tree may use as the split an expression, which exploits more
than one feature (see Fig. 1). A special case of the multivariate tree that we are
particular interested in is an oblique decision tree ([12]). A test in such type of
the tree uses a linear combination of the attributes.

Several methods for generating multivariate trees have been introduced so far.
One of the first trials was done in CART (Classification And Regression Trees)
[5]. The system is able to search for a linear combination of the continuous-valued
attributes instead of using only a single attribute. The CART system has the
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strong preference for univariate tests and chooses multivariate one very rare. In
LMDT (Linear Machine Decision Trees) [6] each test is constructed by training
a linear machine and eliminating variables in a controlled manner. Murthy et al.
[12] introduce OC1 (Oblique Classifier 1), the algorithm that combines deter-
ministic and randomized procedures to search for a good tree. The method was
applied to classify a set of patients with breast cancer and showed excellent accu-
racy. Another tree was proposed by Chai et al., [7]. BTGA (Binary Tree-Genetic
Algorithm) uses the maximum impurity reduction as the optimality criterion of
linear decision function at each non-terminal node. The modified BTGA was
used to the pap smear classification and demonstrated the high sensitivity along
with the lowest possible false alarm rate. Recently, Ltree (Linear tree) was pre-
sented, which combines a decision tree with a linear discrimination by means
of constructive induction [9]. At each node a new instance space is defined by
insertion of new attributes that are projections over the hyper-planes given by
a linear discrimination function and new attributes are propagated downward.
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Fig. 1. An example of the simple two-class problem and its possible solutions by various
decision trees: (a) multivariate and (b) univariate. If an associated test is true then we
choose the left outcome, otherwise the right one.

2 Dipolar Criteria
We will take into account the N -dimensional feature vectors x = [x1, ..., xN ]T

(xi ∈ {0, 1} or xi ∈ R1) which can belong to one of the K classes ωk (k = 1, ..., K).
The learning set Ck = {xj(k)}(j = Mk−1 + 1, ..., Mk−1 + mk) contains mk fea-
ture vectors xj(k) from the class ωk, where Mk−1 is the number of objects xj in
the first (k − 1) sets Ck.

The feature space could be divided into two regions by the following hyper-
plane H(w, θ) = {x : 〈w,x〉 = θ}, where w = [w1, ..., wN ] (w ∈ RN ) is the
weight vector, θ is the threshold and 〈w,x〉 is the inner product. In the special
case the weight w could be reduced to the unit vector ei = [0, ..., ei = 1, ..., 0].
The hyper-plane H(ei, θ) is parallel to all but the i-th axis of the feature space.
The learning sets are linearly separable if each of these sets Ck could be separated
by some hyper-plane from the sum of all remaining sets Ci.

For simplicity of notion we introduce augmented feature space, where y =
[1, x1, ..., xN ]T is the augmented feature vector, v = [−θ, w1, ..., wN ] is the weight
vector and H(v) = {y : 〈v,y〉 = 0} is the hyper-plane.
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Dipoles We recall some basic definition, for more detailed description please
refer to [3] and [4]. A dipole is a pair (xj(k), xj′

(k′)) of the feature vectors xj(k)
from the learning sets Ck, where 0 ≤ j < j′ ≤ m, and m is the number of the
vectors in all learning sets. We call the dipole (xj(k), xj′

(k′)) mixed if and only
if the objects constituting it belong to the different learning sets Ck (k 6= k′).
Similarly, a pair of the vectors from the same class ωk constitutes the pure dipole.

Hyper-plane H(v) splits the dipole (yi,yj) if and only if: 〈v,yi〉 · 〈v,yj〉 < 0.
It means that the input vectors yi and yj are situated on opposite sides of the
dividing hyper-plane. The necessary and sufficient condition for preserving the
separability of the learning sets by the hyper-plane is the division of all mixed
dipoles by the hyper-plane. The tree induction is connected with the repeated
search for such a hyperplane H(v) which ”divides a possible high number of
mixed dipoles and a possible low number of pure ones”. These requests are
related to demand for a low error rate of the resulting tree.

Hyper-plane H( )v

Pure dipoles

Mixed dipoles

C2

C1

Fig. 2. A simple situation where only one hyper-plane H(v) is enough to divide all
mixed dipoles and no pure one.

Dipolar Criterion Function The search for ”good” hyper-planes H(v) could
be based on minimization of some criterion functions like the perceptron one [8].
The dipolar criterion function Ψ(v) has been proposed for this purpose [4]. Lets
first define a penalty function, which is associated with each input vector yj(k):

ϕ+
j (v) =

{
δj − 〈v,yj〉 if 〈v,yj〉 < δj

0 if 〈v,yj〉 ≥ δj (1)

and

ϕ−
j (v) =

{
δj + 〈v,yj〉 if 〈v,yj〉 < −δj

0 if 〈v,yj〉 ≥ −δj (2)

where δj(δj ≥ 0) is the parameter defining the margin. If δj = 0, the penalty
function is related to the error correction algorithm used in the perceptron [8].
We usually assume, that the margin is equal to 1. We can force to move H(v)
to obtain situation when yj(k) is on a positive (if we use ϕ+

j (v)) or a negative
(ϕ−

j (v)) side of H(v). With each dipole we associate two functions, depending
on our goal. Thus for a mixed dipole (yi,yj) we use two function with opposite
signs, because we are interested in cutting all dipoles of such type:

ϕm
ij (v) = ϕ+

i (v) + ϕ−
j (v) (or ϕm

ij (v) = ϕ+
j (v) + ϕ−

i (v)) (3)

To avoid dividing a pure dipole both end-points of it should be situated on the
same side of the hyper-plane H(v), so the penalty function is defined as follows:

ϕp
ij(v) = ϕ+

i (v) + ϕ+
j (v) (or ϕp

ij(v) = ϕ−
j (v) + ϕ−

i (v)) (4)



334 L. Bobrowski and M. Krȩtowski

The choice of the form of ϕm
ij (v) (ϕp

ij(v)) is devoted to an orientation of a dipole
and for the simplicity reason we do not take into account in this paper. More
detailed explanation of the orientation one can find in [4]. The dipolar criterion
function Ψ(v) could be represented in the following manner:

Ψ(v) =
∑

(i,j)∈Ip

αij · ϕp
ij(v) +

∑
(i,j)∈Im

αij · ϕm
ij (v), (5)

where αij determines a relative importance (price) of dipole (yi,yj) and Ip(Im)
is the set of the pure (mixed) dipoles.

It is worth to emphasize that the mechanism of dipole’s prices is very flexible.
In all experiments presented in the paper we used a very simple strategy - we
differentiate only prices for mixed (1.0) and pure dipoles (0.01). We work on a
little bit more complicated strategy which exploits the length of dipoles.

Because Ψ(v) is the sum of the convex and piece-wise linear penalty functions
ϕ+

j (v) and ϕ−
j (v), Ψ(v) is also a function of this type. The basis exchange

algorithms, similar to linear programming methods, have been developed as an
efficient tool for minimization of such a function [2]. In fact the minimization
has been carried out by combining the basis exchange algorithms with a search
for the adequate orientations of dipoles [4].

3 Multivariate Tree Induction
Most of the existing tree induction systems proceed in a greedy, top-down fas-
hion. At each non-terminal node, starting from the root, the best split is learned
by using a criterion of optimality. The learned decision function divides the trai-
ning subset into two (or more) subsets generating child nodes. The process is
repeated at each newly created child node until a stopping condition is satisfied
and the node is declared as a terminal node.

We are taking into consideration the binary decision tree. At the i-th non-
terminal node the set Si of the input vectors from the training data, which
reaches the node is divided into two subsets SL

i and SR
i by the hyper-plane

H(vi) (or in a case of an univariate tree by H(e)):

SL
i = {y : y ∈ Si and 〈vi,y〉 ≥ 0} (6)

SR
i = {y : y ∈ Si and 〈vi,y〉 < 0} (7)

All feature vectors from the set SL
i constitute the left child of the i-th node and

SR
i the right one. To find the optimal dividing hyper-plane H(vi) the dipolar cri-

terion function Ψ(vi) is used, which is constituted exclusively on dipoles created
from the feature vectors belonging to Si.

Feature Selection At each internal node of the tree we are interested in obtai-
ning the simplest possible test, hence we try to exclude noisy (or/and irrelevant)
features. This way we increase understandability of the model and what is even
more important, we can improve performance. There exist many feature selec-
tion algorithms (for a good review, in the context of multivariate trees see [6]).
Our goal is not the comparison of various methods, so we have to choose one.
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We use Heuristic Sequential Search proposed in [6]. It is a combination of Se-
quential Backward Elimination (SBE) and Sequential Forward Selection (SFS)
and it works as follows: firstly finds the best test based on all features and si-
milarly the best test using only one feature. Depending which one is better SFS
or SBE search is chosen. The only problem which we have to solve is: how to
compare various subsets of features. We prefer the subset (and the hyper-plane
build on it), which divides more mixed dipoles (and less pure ones, when a tie
is observed). During the feature selection process one cannot forget the problem
of ”underfitting” the training data. The number of objects used to find a test
should be several times greater than the number of attributes used [8] (in all
experiments: ”x5”). Such a situation occurs often near the leaves of the tree.

Avoiding Over-fitting It is well known fact, that the data over-fitting can
decrease the classifier’s performance in a significant way, especially in a noisy
domain. There exist two the most common approaches to avoid this problem
and to determine the correct tree size: to stop the tree growing before the per-
fect classification of the training data or to post-prune the tree after the full
partitioning of the instance space ([5]). Although the post-pruning is definitely
superior, but usually both techniques are combined and in our system we deci-
ded to follow this idea. We use a very simple stopping rule - when the number
of cases in a node is lower than Nstop then the node is declared as terminal
(Nstop = 5 in all experiments). We have chosen also one of the simplest pruning
methods: reduced-error pruning ([14]). It exploits a separate part of the training
data (in all experiments 30%) as a validation set used during the pruning phase
to determine the error rates of the sub-tree.

4 Experimental Results
We have tested our approach on several datasets taken from UCI repository
([1]). The left part of Table 1 shows the classification error rates obtained by
our method and C4.5, LMDT (results are taken from [11]). To estimate the
error rate of an algorithm we use the testing set (when provided) or the ten-
fold stratified cross-validation procedure. In the right part of Table 1 we try to
present the complexity of obtained models. We include the number of nodes in
the whole tree, but it is not the best measure of the complexity, especially if we
want to compare univariate and multivariate trees. And even if we compare the
multivariate trees we need to be careful (e.g. in the multi-class domain LMDT in
each node includes more than one hyper-plane). In case of trees generated using
our method we also provide the number of features used in all tests.

5 Conclusions
In the paper we presented how to induce decision trees based on dipolar criteria.
The preliminary experimental results indicate that both classification accuracy
and complexity are comparable with the results obtained by other systems. Fur-
thermore many places for the possible improvements still exist. Especially the
pruning strategy is very simple and we hope that applying more sophisticated
method will help to improve the results. The feature selection at each non-
terminal node is the most time consuming part of the induction process. At the
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moment we are working on integrating the feature selection with searching for
the best hyper-plane, which will significantly reduce the learning time. One of
the future research directions could be devoted to incorporating the variable
misclassification cost into the decision tree induction. We think that it could be
easily done only by a modification of dipole’s prices.

Table 1. The error rates (left part) and the number of nodes in the whole tree (right
part; the number of features used in all test is given in brackets) of compared systems

Dataset Our method C4.5 LMDT Our method C4.5 LMDT
breast-w 0.038 0.042 0.035 3 (7) 11 3

heart 0.191 0.196 0.163 3 (10) 23 3
housing 0.248 0.221 0.251 23 (71) 36 11

pima 0.233 0.242 0.249 13 (22) 18 11
smoking 0.292 0.305 0.350 69 (139) 1 61
vehicle 0.243 0.277 0.215 25 (122) 65 13

waveform 0.213 0.261 0.176 11 (65) 54 4
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