
A Parallel Evolutionary Algorithm for
Discovery of Decision Rules

Wojciech Kwedlo

Faculty of Computer Science
Technical University of BiaÃlystok

Wiejska 45a, 15-351 BiaÃlystok, Poland
wkwedlo@ii.pb.bialystok.pl

Abstract. In the paper a new parallel method for learning decision rules
is proposed. The method uses evolutionary algorithm to discover deci-
sion rules from datasets. We describe a parallelization of the algorithm
based on master-slave model. In our approach the dataset is distributed
among slave processors of a parallel system. The slave procesors compute
fitness function of chromosomes in parallel. The remainder of evolution-
ary algorithm i.e. selection and genetic search operators is executed by
the master processor. Our method was implemented on a cluster of SMP
machines connected by Fast Ethernet. The experimental results show,
that for large datasets it is possible to obtain a significant speedup.

1 Introduction

One of the most well-known classification techniques used in data mining is dis-
covery of decision rules from data. The advantages of the rule-based approach
include natural representation and ease of integration of learned rules with back-
ground knowledge.

Evolutionary algorithms (EAs) [5] are stochastic optimization techniques,
which have been inspired by the process of biological evolution. Their advantage
over greedy search methods is the ability to avoid local optima. Several EA-based
systems, which learn decision rules were proposed [1, 3]. The solutions obtained
by those systems are often better than the solutions obtained by traditional
methods. However, the main disadvantage of EAs is their high computational
complexity. In many real-life applications of data mining the size of analyzed
dataset is very large. Is such cases the big computational complexity of EAs
makes their use extremely difficult. A possible solution of this problem is a
parallel implementation of the given algorithm.

In the paper we describe a parallel implementation of the system EDRL-MD
(Evolutionary Decision Rule Learner with Multivariate Discretization) [3]. The
main advantage of EDRL-MD in comparison with other EA-based systems is
the capability of direct extraction of rules from datasets with continuous-valued
attributes. The other systems require prior discretization of such attributes.

The reminder of the paper is organized as follows. The next section presents
EDRL-MD system. The parallel formulation of the system is described in Section

3. Section 4 is devoted to presentation of the results of computational experi-
ments investigating scalability of our approach. The last section contains the
conclusions.

2 Description of the system EDRL-MD

In this section we present two main topics, i.e. representation of solutions by
chromosomes and the fitness function, which are most important for parallel
formulation of the algorithm. Description of the remaining components, e.g.
genetic operators, can be found in [3] or [4].

2.1 Basic notions

We assume that a learning set E = {e1, e2, . . . , eM} consists of M examples.
Each example e ∈ E is described by N attributes (features) A1, A2, . . . , AN

and labelled by a class c(e) ∈ C. The domain of a nominal (discrete-valued)
attribute Ai is a finite set V (Ai), while the domain of a continuous-valued at-
tribute Aj is an interval V (Aj) = [lj , uj]. For each class ck ∈ C by E+(ck) =
{e ∈ E : c(e) = ck} we denote the set of positive examples and by E−(ck) =
E − E+(ck) the set of negative examples. A decision rule R takes the form
IF t1 ∧ t2 ∧ . . . ∧ tr THEN ck, where ck ∈ C and the left-hand side (LHS) is
a conjunction of r(r ≤ N) conditions t1, t2, . . . , tr; each of them concerns one
attribute. The right-hand side (RHS) of the rule determines class membership
of an example. A ruleset RS is a disjunctive set of decision rules with the same
RHS. By cRS ∈ C we denote the class on the right-hand side of the ruleset RS.

In our approach the EA is called once for each class ck ∈ C to find the ruleset
separating the set of positive examples E+(ck) from the set of negative examples
E−(ck). The search criterion, in terminology of EAs called the fitness function
prefers rulesets consisting of few conditions, which cover many positive examples
and very few negative ones.

2.2 Representation

The EA processes a population of candidate solutions to a search problem called
chromosomes. In our case a single chromosome encodes a ruleset RS. Since
the number of rules in the optimal ruleset for a given class is not known, we use
variable-length chromosomes and provide the search operators, which change the
number of rules. The chromosome representing the ruleset is a concatenation of
strings. Each fixed-length string represents the LHS of one decision rule. Because
the EA is called to find a ruleset for the given class cRS there is no need for
encoding the RHS.

The string is composed (Fig. 1) of N substrings. Each substring encodes a
condition related to one attribute. The LHS is the conjunction of these condi-
tions. In case of a continuous-valued attribute Ai the substring encodes the lower

...li ui fj

1
fj

2
fj

kj

continuous-valued Ai nominal Aj

lower
threshold

binary flagsupper
threshold

...

...

Fig. 1. The string encoding the LHS of a decision rule (kj = |V (Aj)|). The chromosome
representing the ruleset is the concatenation of strings. The number of strings in a
chromosome can be adjusted by some search operators.

li and the upper ui threshold of the condition li < Ai ≤ ui. It is possible that
li = −∞ or ui = +∞.

For a nominal attribute Aj the substring consists of binary flags. Each of the
flags corresponds to one value of the attribute.

2.3 The fitness function

Consider a ruleset RS, which covers pos positive examples and neg negative ones.
The number of positive and negative examples in the learning set is denoted by
POS and NEG respectively. The ruleset RS classifies correctly pos positive
examples and NEG − neg negative ones. Hence the probability of classifying
correctly an example from the learning set is given by:

Pr(RS) =
pos + NEG− neg

POS + NEG
. (1)

The fitness function is defined as:

f(RS) =
Pr(RS)

Compl(RS)
, (2)

where Compl(RS) is the complexity of the ruleset. As a measure of complexity
we take:

Compl(RS) = αlog10(L + 1) + 1, (3)

where L is total the number of conditions in the ruleset RS and α is a user
supplied parameter.

3 Implementation in a parallel system

The main loop of evolutionary algorithm begins with computation of fitness
function of all S individuals in the population. In the next step, called selection
[5], a new population is created by multiple random choice of chromosomes with
high fitness from the old population. After selection, some genetic operators like
mutation and crossover are applied. The algorithm iterates these three steps
until a termination condition is met.

As equation (1) shows to determine the fitness of a chromosome it is necessary
to calculate the counts of positive and negative examples denoted by pos and
neg respectively. To obtain pos and neg the algorithm has to iterate through
all the examples in the learning set. For each example ei ∈ E the algorithm
checks if ei is covered by the ruleset RS. If the example matches a premise of
at least one rule from the RS it is regarded as covered. Then, depending on the
type of the example either the counter of positive examples or the counter of
negative examples is incremented. In many practical applications M , i.e. the size
of the learning set is very large. Moreover, the CPU time required by remaining
components of the EA i.e. genetic operators and selection does not depend on
the size of the learning set. (it depends on size of the population S instead).
In almost all cases S << M . For instance in our experiments we always set
S = 50, whereas for the smallest dataset the size M = 2310. Consequently the
the computational complexity of the algorithm is dominated by the calculation
of the fitness.

For these reasons in our parallel implementation we decided to focus on com-
putation of the fitness. Selection and genetic operators are executed sequentially.
The algorithm runs in a master–slave model. The dataset is divided evenly into
subsets; each subset is placed on a single slave processor. Each slave processor
is responsible for the evaluation of the rules on the corresponding subset. At
the begin of an iteration of EA the master processor broadcasts (Fig. 2a) the
population i.e., the set of S chromosomes to all slave processors. For each rule-
set in the population a slave processor counts the number of covered positive
and negative examples from its subset. The master processor gathers (Fig. 2b)
results from each slave, sums up the counts for each ruleset and computes the
fitness.

When the fitness of all chromosomes is computed the remaining part of the
iteration of EA (i.e. the selection and genetic operators) is executed solely on
the master processor.

Master processor

Slave processor 1 Slave processor 2 Slave processor N

…

Subset 1

Subset 2

Subset N

Population
Population

Population

Master processor

Slave processor 1 Slave processor 2 Slave processor N

…

Subset 1

Subset 2

Subset N

Results on
subset 1 Results on

subset 2

Results on
subset N

å

a) b)

Fig. 2. Computation of the fitness function.

4 Experimental results

In this section experimental results are presented. We have tested the parallel
version of EDRL-MD on six datasets of varying size. The datasets were taken
from the repository of publicly available data at University of California, Irvine
[6]. The description of the datasets is shown in Table 1.

Dataset name No. of records No. of attributes
No. of
classes

page 5473 10 5
segmentation 2310 19 7
hypothyroid 3773 21 3
cmc 1473 9 3
shuttle 43500 9 7
satimage 4435 36 6

Table 1. The datasets used in the experiments

To evaluate the proposed approach we performed an experiment on a 8 CPU
cluster consisting of one four-processor and two two-processor machines (4 *
Pentium III Xeon 700 + 2 * 2 * Pentium III 750) running Linux 2.4.18. Ma-
chines in the cluster were connected via a Intel 440T Fast Ethernet switch. For
message passing MPICH [2] MPI implementation was used. We used the default
configuration of MPICH.

Usually, to compute a speedup or efficiency of an parallel algorithm the total
processing time is used. In our case this time is proportional to the number of
iterations, which in turn depends on the termination condition. The algorithm
terminates when the fitness of the best chromosome does not improve during
consecutive NTERM generations. Because the EA is a probabilistic algorithm,
number of iterations and the processing time can significantly vary with different
runs on the same data. However the time of a single iteration is approximately
constant for the given learning set. Therefore an average time of a single iteration
was used to compute speedup of our method. To compute the average time of
an iteration we divided total processing time by the number of iterations.

Figure 3 shows the speedup obtained by our implementation for all datasets.
For the largest data set (shuttle) we were able to achieve speedup greater than
7.2 for eight processors.

5 Conclusions

In this paper we have shown, that the computational efficiency of evolutionary
algorithms for data mining applications can be significantly improved by the use
of parallel machines. We proposed a parallel version of EDRL-MD based on data
distribution approach. The experimental results suggest that for large datasets
near-linear speedup is possible.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of CPUs

shuttle
cmc

satimage
segmentation

page
hypothyroid

Fig. 3. Speedup obtained for different datasets.

References

1. Janikow, C.: A knowledge intensive genetic algorithm for supervised learning. Ma-
chine Learning 13 (1993) 192–228.

2. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing standard. Parallel Computing, 22 (1996)
789–828.

3. Kwedlo, W. Kretowski, M.: An evolutionary algorithm using multivariate dis-
cretization for decision rule induction. 3rd European Conference on Principles and
Practice of Knowledge Discovery in Databases. Lecture Notes in Artificial Intelli-
gence 1704, (1999) 392–397, Springer Verlag.

4. Kwedlo, W. Kretowski, M.: Learning decision rules using a distributed evolutionary
algorithm. TASK Quarterly, 6 (2002) 483–492.

5. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs . 3rd

edn. Springer Verlag (1996).
6. Murphy, P., Aha, D.: UCI repository of machine-learning databases , available on-

line: http://www.ics.uci.edu/pub/machine-learning-databases.

