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Abstract. This paper presents a two-level parallel algorithm of vascu-
lar network development. At the outer level, tasks (newly appeared parts
of tissue) are spread over processing nodes. Each node attempts to con-
nect/disconnect its assigned parts of tissue in all vascular trees. Commu-
nication between nodes is accomplished by a message passing paradigm.
At the inner level, subtasks concerning different vascular trees (e.g. ar-
terial and venous) within each task are parallelized by a shared address
space paradigm. The solution was implemented on a computing cluster
of multi-core nodes with mixed MPI+OpenMP support. The experimen-
tal results show that the algorithm provides a significant improvement in
computational performance compared with a pure MPI implementation.

1 Introduction

The continuously increasing need for computing power and physical and eco-
nomic limitations of processor frequency scaling (i.e. significant increase of costs
and energy usage) caused that parallel machines have become the only known
alternative to improve computing performance [1]. Firstly, the need of high per-
formance arises from the necessity to solve problems of ever-rising size at the
limits of available computing resources. Moreover, parallel computing seems to
be more suitable to mimic natural world processes that may happen in the same
time and are quite often interrelated with each other. Thus, parallel processing
appears to be one of the most relevant issues in modern scientific computing [2].

In our previous studies, we developed a physiological model reflecting both
morphology and functions of vascular networks in clinical images [3]. The solu-
tion consists of a macroscopic model (vascular network and pathological anoma-
lies) and a microvascular model (blood flow simulation in capillaries and contrast
agent diffusion processes [4]). Moreover, we coupled this two-level vascular model
with imaging CT and MR simulators. Such a model-based approach represents a
non-invasive way to control physiological parameters, what would be difficult or
even impossible to do in real experiments. The whole solution constitutes a good
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way to improve the interpretation of dynamic medical images by linking image
descriptors with morphological and functional perturbations, thus offering the
potential to reveal early image indicators of pathologies.

In the model, the structure of vascular networks is obtained in the process of
vascular development. Initially, we proposed a sequential algorithm [3]. Although
we applied many algorithm and code optimizations, the simulation was still a
time expensive process. Later, we introduced the distributed memory algorithm
that parallelized the vascular development [5] (message passing interface (MPI)
[6] implementation on computing cluster). Moreover, we proposed an advanced
modeling framework [7] able to efficiently simulate vascular development on a
computing cluster (distributed memory approach) as well as on low-cost multi-
core desktop machines (shared memory approach - OpenMP [8] implementation).

Although in all our previous distributed memory algorithms we were able
to gain substantial speedups on computing clusters of nodes with single-core
chips, nowadays, the multi-core chips in clusters seem to be an industrial trend.
Moreover, a combination of shared memory and message passing paradigms in
one application may provide a better efficiency than e.g. pure MPI version [9].
Therefore, in this paper, we propose a two-level hybrid parallel algorithm of vas-
cular development, that employs both shared address space and message passing
paradigms on a cluster of nodes with multi-core chips (mixed MPI+OpenMP im-
plementation). The main aim of this work is to further accelerate the simulation
process, which will increase the possibility to create more elaborate and pre-
cise vascular models. Furthermore, our intention is to bring the model closer to
reality in which processes of vascular development are performed inherently in
a parallel way [10]. Many other vascular system have been proposed (e.g. [11],
[12]), however, as far as we know, all the previous solutions, published by other
authors, have been using only sequential approaches of vascular development.
On the other hand, one can find at least several other applications of hybrid
parallel modeling in computational biology and medicine, e.g. in PET image
reconstruction algorithms [13] or in cardiac simulations [14].

In the next section, the vascular model and sequential algorithm of vascular
development are recalled. In Sect. 3 the hybrid parallel algorithm of the vascular
development is explained. An experimental validation is performed in Sect. 4.
Conclusion and some plans for future research are sketched in the last section.

2 Vascular Model Description

In this paper, we focus on vascular development algorithms on the macroscopic
level. Therefore, this section describes basic features of the macroscopic model.
Then the sequential algorithm of vascular development is recalled.

In the macroscopic model we can distinguish two main components: the tissue
and the vascular network [3]. The tissue is represented by a set of Macroscopic
Functional Units (MFU) that are distributed inside the specified organ shape. An
MFU is a small, fixed size part of the tissue and is characterized by a class that
determines most of its structural/functional properties (e.g. size, probability of
mitosis and necrosis) and also physiological features (e.g. blood pressures, blood
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flow rate). Several classes of MFUs can be defined to differentiate functional or
pathological regions of tissue (e.g. normal, tumoral). Moreover, the class of MFU
can be changed over time, which makes it possible to simulate the evolution of
a disease (e.g. from benign nodule to malignant tumor).

2.1 Vascular Network

The model expresses the specificity of the liver, although most of its features are
not linked with any specific organ. The liver stands out from other organs by the
unique organization of its vascular network that consists of three vessel trees.
Hepatic arteries and portal veins deliver blood to tissue, whereas, the hepatic
venous tree is responsible for blood transport back to the heart.

In the model, each vascular tree is composed of vessels that can divide creating
bifurcations. A vessel segment (part of vessel between two consecutive bifurca-
tions) is represented by an ideal, rigid tube with fixed radius, wall thickness and
position. The model distinguishes vessels larger than capillaries, while the capil-
laries themselves are hidden in the MFUs (micromodel [4]). Blood is transferred
from hepatic arteries and portal veins to hepatic veins through MFUs. Vessel
intersections (anastomosis), which occur particularly among vessels with very
small radii or in pathological situations, are not taken into account. As a result,
each vascular tree forms a binary tree.

In the model, the blood is treated as a Newtonian fluid (with constant viscos-
ity) and its flow is governed by Poiseuille’s law. Moreover, the vessels’ parameters
(e.g. radius, blood flow) are calculated according to two following physical laws.
At each bifurcation the law of matter conservation is observed, i.e. the quantity
of blood entering and leaving a bifurcation is the same. Second constraint deals
with the decreasing vessel radii in the vascular tree, creating a morphological
dependency between the radius of a vessel and radii of its two descendants.

2.2 Sequential Algorithm of Vascular Network Development

The algorithm begins with the model initialization [3]. Few vessels are placed in
the 3D shape of an organ whose size is a fraction of the adult one. Afterwards,
in discrete time moments (called cycles), the organ enlarges its size (growth
phase) until it reaches its full, mature form. Additionally, each cycle consists of
subcycles during which each MFU can divide and give birth to a new MFU of the
same class (mitosis process) or die (necrosis process). The processes of mitosis
and necrosis are repeated in consecutive subcycles until spaces appearing during
the growth phase are filled by new MFUs.

The appearance and development of new vessels are induced by new MFUs
that are initially not perfused by the existing vascular system. As a result, for
each new MFU a fixed number of the closest/candidate vessels (in each tree) is
found. Then each candidate vessel creates a new bifurcation that temporarily
perfuses the MFU, i.e. new temporary vessels are sprouted. The spatial position
of the bifurcation point is controlled by local minimization of additional blood
volume needed for the MFU perfusion.
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Fig. 1. The two-level parallel perfusion process. At the outer level, new MFUs are
spread over nodes and each node is responsible for searching optimal bifurcation points.
At the inner level, within each MFU calculations concerning different vascular trees
are delegated to different cores.

Only one candidate vessel from each tree can finally be designated to perfuse
the new MFU. Therefore, the algorithm tests all possible combinations of can-
didate vessels (a single combination consists of one vessel from each tree). Since
only non-crossing vessels can be accepted, the algorithm firstly detects intersec-
tions between vessels coming from the same tree or from two different trees (e.g.
between arteries and veins) and rejects theses vessels. Finally, the combination
with the lowest sum of volumes is chosen to permanently perfuse the MFU and
a recalculation of vessels’ characteristics in all vascular trees is performed.

In each subcycle, after the reproduction (mitosis and perfusion processes), the
algorithm goes to the degeneration phase. Based on the necrosis probabilities of
individual MFUs, some of them can die (necrosis process). Next, all the ves-
sels supplying these MFUs retract and disappear (retraction process), and the
algorithm goes back to the reproduction phase again.

3 Hybrid Parallel Algorithm of Vascular Development

At the beginning, the general idea of the algorithm is described. Then we present
in more detail parallel perfusion and retraction algorithms. The main attention
is focused on the perfusion phase since it is the most time consuming part of the
algorithm (from 70% to 95% of the total simulation time).

The hybrid algorithm applies a hierarchical (two-level) parallelism. At the
outer level, tasks are carried out by pool of processes running on different pro-
cessing nodes. Interactions between the nodes are accomplished by the message
passing paradigm with the master-slave model [2]. At the inner level, parallel
subtasks are spread over threads running on different cores and the shared mem-
ory space paradigm is exploited. For the sake of explanation clarity, we neglect
the mapping of threads/processes to cores/processing nodes and assume that one
node is identified with one process and one core is identified with one thread.

During the whole simulation, each processing node has its own copy of the or-
gan. Therefore, at the beginning, the master node broadcasts the initial vascular
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system and tissue providing the same starting information for all slave nodes.
After that, cycle and subcycles are iterated until the adult organ is obtained.

Each subcycle starts from a sequential mitosis performed at the master node.
Next, the two-level parallel perfusion is performed (see Fig. 1). The new MFUs
that are created during the mitosis are spread over slave nodes (outer level
of parallelization). Moreover, calculations within each single MFU are divided
between cores (inner level of parallelization). After the perfusion process, the
degeneration phase follows. At the beginning, at the master node the sequential
necrosis is carried out. Next, the two-level parallel retraction is performed.

3.1 Two-Level Hybrid Parallel Perfusion Algorithm

The outer level parallelization of the perfusion is based on the distributed mem-
ory approach of vascular development [5]. After the sequential mitosis, the master
node spreads new MFUs (tasks) over slave nodes (see Fig. 1) and then this node
is responsible for managing the perfusion process. When it receives a message
with an optimal bifurcation of one of the new MFUs, it takes a decision about
permanent perfusion. Communication latency and independent work of slave
nodes cause that vascular networks at individuals nodes can be slightly different
(tree nonuniformity). Therefore, the master node searches, in its vasculature,
the vessels related with the proposed optimal bifurcation (vessels to form the
optimal bifurcation). If at least one of these vessels cannot be found, then the
MFU is rejected. But in the other case, the new MFU is permanently perfused
and all organ changes related with the new MFU are broadcasted over slaves.

As regards the slave nodes, each of them is responsible for searching optimal
bifurcation points to perfuse the received new MFUs. Each time, when the search
ends successfully, the optimal bifurcation parameters are sent to the master node.
Next, if there are any queued messages with permanent organ changes broad-
casted by the master node, the slave node applies these changes and continues
to perform its remaining tasks. Moreover, when the master node is under-loaded
(e.g. as a result of small number of slave nodes), it can also perform calculations
to find parameters of optimal bifurcation points [7].

The inner level parallelization of the perfusion, both at the master and slave
nodes, introduces a possibility to divide calculations concerning single MFU (see
Fig. 1). Individual cores are responsible for the calculation concerning different
vascular trees (i.e. hepatic arteries, portal veins or hepatic veins in liver).

In the case of the master node, there are two algorithm blocks (i.e. making
decision about permanent perfusion and permanent perfusion) during which in-
dividual cores are responsible for calculations in different vascular trees. When
the master node receives a message with an optimal bifurcation to perfuse a new
MFU, each core tries to find, in its assigned tree, the vessel that may create
the proposed optimal bifurcation. If all cores find such vessels, the new MFU is
permanently perfused in a parallel way in all vascular trees based on the infor-
mation from the optimal bifurcation. However, if at least one of the cores cannot
find the vessel, the other cores abandon their jobs and the MFU is rejected.
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In the case of the slave nodes, the inner parallelization is applied to spread cal-
culations within each new MFU (see Fig. 1) during following subtasks: searching
of optimal bifurcations, choice of one optimal bifurcation and permanent per-
fusion. At first, each core of a slave node searches the candidate vessels in its
vascular tree, then it creates one optimal temporary bifurcation to each found
candidate vessel and recalculates tree characteristics, taking into account the
new vascular structures for these temporary bifurcations. Afterwards, all pos-
sible combinations of candidate vessels (a single combination consists of one
vessel from each tree) are created, sorted according to increasing volume and
then tested. Each time, to determine the volume of a verified combination, cal-
culations in different vascular trees are divided between cores. Moreover, the
inner parallelization is applied when slave nodes perform permanent perfusions
as a result of organ changes broadcasted by the master node.

3.2 Two-Level Hybrid Parallel Retraction Algorithm

In comparison to our previous solutions [5], [7], in the hybrid one, we decided to
pay more attention to the retraction phase. The profiling results showed that the
time needed for that part of the algorithm is too short to apply a sophisticated
message passing strategy. However, in order to create a possibility to gain higher
performance (especially in the context of Amdahl’s law of a maximum attainable
speedup [15]), we decided to apply here a naive message passing strategy at outer
level and shared address space paradigm at inner level.

After the sequential necrosis, the master node broadcasts to all other nodes
identifiers of the MFUs that have to be removed. Then, the entire algorithm of
retraction is performed at each node. As regards the inner parallelization, both
the master and slave nodes spread calculations concerning different vascular trees
over cores. Hence, the MFUs are disconnected concurrently in all vascular trees.

4 Experimental Results

This section focuses on performance analysis. The presented mean results come
from experiments on the vascular development algorithm starting from small size
configurations (about 1000 MFUs) and ending on large configurations (about
50000 MFUs and consequently 300000 vessel segments). Figure 2 shows a visu-
alization of one of the simulated vascular networks.

The solution was implemented in C++ with support MPI [6] and OpenMP
[8] interfaces. At the outer level of parallelization, the MVAPICH2 version 1.6.1
as MPI2 implementation over infiniband networks was used. The OpenMP was
exploited at the inner level of parallelization. The Intel C++ Compiler 10.1 was
used. For performance measuring we made use of the Multi-Processing Environ-
ment (MPE) library with the graphical visualization tool Jumpshot-4 [6].

Two computing clusters were used. The first one consisted of sixteen SMP
nodes running on Linux and connected by an Infiniband network. Each node
was equipped with two single-core chips (two 64-bit Xeon 3.2GHz CPUs) with
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a) b) c)

Fig. 2. Visualization of an adult liver (about 50000 MFUs and 300000 vessel segments):
a) hepatic veins with a tumor shape, b) portal veins with a tumor shape, c) main hepatic
arteries, portal veins and hepatic veins with liver and tumor shapes

a) b)

Fig. 3. Speedup of the pure MPI version on the cluster of: a) single-core dual-socket
SMP nodes, b) multi-core dual-socket SMP nodes

2MB L2 cache, 2GB of RAM and an Infiniband 10GB/s HCA connected to a
PCI-Express port. The second cluster was also built with sixteen SMP nodes but
each node was equipped with two multi-core chips (two 64-bit quad-core Xeon
2.66 GHz CPUs) with 2MB L2 cache and 8GB of RAM.

Figure 3a shows the mean speedup of the distributed memory algorithm [5]
(pure MPI implementation) on the computing cluster of single-core nodes. It is
clearly visible that good performance was obtained. Moreover, we were able to
obtain the speedup better than its upper bound value based on Amdahl’s law
[15]. It results from the introduced periodical memory reallocation mechanisms
improving memory cache usage. However, the same algorithm running on the
computing cluster of multi-core nodes tends to decrease its performance if too
many cores inside each node are involved in computations (see Fig. 3b). Profiling
results showed that it is caused by intra-node memory traffic that increases the
mean time of message passing and the time of searching optimal bifurcations.

The performance of the proposed two-level hybrid solution is presented in Fig.
4. The outer level parallelization is accomplished by MPI processes, while the in-
ner level one by OpenMP threads. We verify two cases: i) one MPI process (three
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a) b)

Fig. 4. Speedup of the two-level hybrid version on a cluster of multi-core SMP nodes:
a) without and b) with two-level parallelization during retraction

a) b)

Fig. 5. Performance comparison of pure MPI, pure OpenMP [7] and hybrid MPI-
OpenMP versions on the cluster of multi-core SMP nodes: a) speedup within one
node, b) speedup across nodes. Different configurations in the hybrid version within
one node: four cores (master process - one thread, slave process - three threads), six
cores (master process - three threads, slave process - three threads), seven cores (master
process - one thread, two slave processes - each three threads)

OpenMP threads) per node and ii) two MPI processes (six OpenMP threads) per
node. Figure 4a shows the mean speedup if the two-level hybrid parallelization is
applied only during the perfusion process. It is clearly visible that the obtained
efficiency is better than in the pure MPI version. If also the retraction process
exploits the two-level hybrid parallelization, the gained speedup still remarkably
increases. Although in the presented results the retraction process takes approx-
imately only 2% of total CPU time during sequential algorithm execution (in
contrast to 95% for the perfusion), it is enough to further accelerate the solution,
especially in terms of Amdahl’s law.

It can be also observed that the number of MPI processes per node has an
influence on the performance (see Fig. 4). When the number of cluster nodes
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increases (i.e. eight and more), only one MPI process and consequently three
OpenMP threads should be run per node even though each node is equipped
with eight cores. The performance reduction, in the case of two MPI processes
per node, comes from the higher load of a master process having more slaves
to manage. Profiling results indicated that an overloaded master process can
be inefficient in broadcasting permanent changes, i.e. time between sending the
message with an optimal bifurcation by a slave and making a decision about
permanent perfusions till broadcasting related changes by a master is lengthened
excessively. Such a situation increases the tree’s nonuniformity between slave
nodes, which causes more MFUs rejections and finally more algorithm iterations.

In Fig. 5a, the performance of our all parallel solutions running within one
cluster node is summarized. The best speedup can be gained with the two-level
hybrid algorithm, especially in the case of seven cores and three MPI processes
(master process - one thread, two slave processes - each three threads).

On the other hand, Fig. 5b shows the summary comparison between the best
results of pure MPI version and hybrid one across nodes. It is clearly visible
that the proposed hybrid solution provides better speedup than the pure MPI
version. The improvement rises with the increase in the number of cluster nodes.

The hybrid solution was tested on the cluster of nodes with two quad-core
chips. Hence, it may seem a waste of computational power since only three
or six cores in each node can be arranged in computations. However, due to
limited memory bandwidth, it can be even advantageous (e.g. in terms of power
consumption) to use fewer treads than available cores [16]. On the other hand,
there also exist six-cores processors (e.g. AMD Phenom II X6) that could be used
with better efficiency. Moreover, most of internal human organs are supplied by
two vascular trees (i.e. arterial and venous) and then the proposed approach
would be more suitable for the most widespread two and quad-core processors.

5 Conclusion

In the paper a two-level parallel algorithm of vascular development is presented.
The algorithm employs shared memory and message passing paradigms (mixed
MPI+OpenMP implementation). Experimental results on a multi-core cluster
show that a significant improvement in computational efficiency has been ob-
tained. As a result, it helps us to extend the vascular model and to test multiply
sets of parameters in reasonable period of time.

In the future, we will continue to work on the hybrid approach, among oth-
ers, to investigate the influence of communication and calculations overlapping
model, e.g. splitting one OpenMP thread off only to handle communication and
the others to perform useful calculations.
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