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Abstract. Computer simulations of magnetic resonance imaging (MRI)
are important tools in improving this imaging modality and develop-
ing new imaging techniques. However, MRI models often have to be
simplified to enable simulations to be carried out in a reasonable time.
The computational complexity associated with the tracking of magnetic
fields’ perturbations with high spatial and temporal resolutions is very
high and, thus, it calls for using parallel computing environments. In
this paper, we present a GPU-based parallel approach to simulate MRI
of vascular structures. The magnetization calculation in different spa-
tial coordinates is spread over GPU cores. We apply CUDA framework
and take advantage of GPU memory hierarchy to efficiently exploit GPU
computational power. Experimental results with different GPUs and var-
ious images show that the proposed algorithm substantially speedups the
simulation. The proposed GPU-based approach may be easily adopted
in modeling of other flow related phenomena like perfusion or diffusion.

Keywords: Computer simulation · Graphics processing unit (GPU) ·
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1 Introduction

Computational modeling and computer simulations play a very important role
in contemporary science and industry. In medical field, they provide an addi-
tional insight to increase the comprehension of complex life processes that can
be obscured during both in vitro and in vivo experiments [1]. Computer sim-
ulations are also usually cheaper and less time consuming than experimental
investigations. Moreover, they can be performed with no need for patients to
participate and thus are not limited by the examination duration.

In our research, we focus on modeling of magnetic resonance imaging (MRI)
that is one of the most important diagnostic tools in modern medicine [2].
Although MRI is known as a highly detailed 3D imaging modality, there is still
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a lot of difficulties in magnetic resonance (MR) image formation and interpreta-
tion, especially in the area of blood flow. Imaging of such areas is crucial since
vascular diseases are the cause of large mortality rate in the populations of devel-
oped countries [3]. Thus, we concentrate mainly on MRI of vascular structures.

The modeling of MR flow imaging is not a trivial task since it requires
the integration of many processes/phenomenon (like physiology, hemodynamics,
anatomy, imaging technology) in one computational model [4]. The challenge
is also the decision about level of model detail (closeness to reality) as well as
mathematical modeling itself. Another issue is high computational complexity of
the model and, thus, the need for high performance computing to face up to such
simulations. Many computations are required to simulate each physical phenom-
enon itself as well as interactions between them. The computational needs grow
fast with the size of vascular structures. Large vascular simulations were shown
to be vital to correctly investigate internal processes in human bodies [5].

There have been proposed many approaches in modeling of MR flow
imaging [6–8] to name a few. The long simulation time was always one of the
main factors limiting the extension of these models to a 3D version or to study
complex vascular networks. Thus, it seems that further progress in computa-
tional modeling of MRI does not only depend on sophisticated equations, but
also on the development of parallel architectures and algorithms. In our recent
study [4], we successfully applied cluster computing in modeling of MR flow
imaging. It allowed complex vascular structures to be investigated.

In this paper, we propose a GPU-based approach in modeling of MR flow
imaging. Our motivation is to bring the possibility to perform MRI simulations
fast on a single workstation. This way, complex vascular structure simulations
can become independent of computer clusters that might be expensive, mainte-
nance demanding and are not always accessible. In addition, modern GPUs are
more often able to provide higher price/performance factor than computer clus-
ters. What is also important that the proposed parallel approach may be easily
applied in modeling of other flow related imaging like perfusion or diffusion MRI.

As far as we know, the proposed GPU-based algorithm is the first approach in
modeling of MRI of vascular structures. Although, a GPU-based MRI simulator
[9] was published recently, it allows only the stationary magnetization (without
blood flow) to be investigated. The same research group also extended their sim-
ulator to model various motions [10]. However, their extended solution does not
still enable vascular structures to be taken into account since the magnetization
transport model (based blood flow) is significantly simplified.

In the next section, the model of MR flow imaging is described. In Sect. 3 the
GPU-based approach is proposed. Section 4 presents the evaluation of the GPU-
based algorithm. Section 5 provides conclusion and plans for future research.

2 Computational Model Description

In our previous research, we developed a three-component model of MR flow
imaging [4] (Fig. 1). The first component is used for vascular structures genera-
tion based on physiological and hemodynamic parameters [11]. The second one
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Fig. 1. Three-component MRI model overview. The model allows us to generate vas-
cular structures, then simulate flow behaviour and finally reproduce MRI processes.

allows flow simulations to be performed in the generated vascular structures [8].
The last component makes use of the generated vascular structures and flow
characteristics to simulate MRI of vascular structures. Since, in this paper, the
algorithm of imaging is parallelized, only the last model component is described.

The 3D imaged area (object) is divided into cubic elements [8]. To each cubic
element basic MR parameters (proton density, relaxation times), determined by
the represented part of a tissue, are assigned. In addition, each cubic element
contains hydrodynamic parameters, i.e. mean flow velocity and direction of the
fluid filling it (generated by the flow model). For stationary tissue structures
(e.g. bones, vessel walls), the flow velocity equals zero.

Imaging simulation is divided into small time portions called time steps Δt.
After each time step, local magnetizations of all cubic elements are modified
taking into account both the flow influence (ΔMF ) and MRI processes (AMRI):

M(r, t + Δt) = AMRI(r,Δt)[M(r, t) + ΔMF (r,Δt)] , (1)

where M is the magnetization of the cubic element at spatial position r.
First, the flow influence is computed (see left part of Fig. 2). In each cubic

element the magnetization fractions are propagated to the neighboring cubic
elements (see black rectangles labeled by “a”, “b” and “c”) based on the flow
velocity and direction (u = ux î + uy ĵ + uzk̂, where î, ĵ, k̂ are unit vectors
in x, y, z directions). This way, parts of magnetization can leave some cubic
elements. At the same time, the magnetization fractions that leave some cubic
elements enter to neighboring cubic elements. The mean magnetization changes
during a time step Δt for a cubic element at r position are modeled as follows
ΔMF (r,Δt) = ΔMIN (r,Δt) − ΔMOUT (r,Δt) where:

ΔMIN (r,Δt) = M
(

r− Δd
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)

(1 − |ux(r)|)|uy(r)|,

ΔMOUT (r,Δt) = M(r, t)[|ux(r)||uy(r)|+
|ux(r)|(1 − |uy(r)|) + (1 − |ux(r)|)|uy(r)|].

(3)
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Fig. 2. The connection of MRI and magnetization transport algorithms.

In 3D modeling, each sum component in Eqs. 2 and 3 is made up of two more
cases, accordingly, with |uz(r)| or (1 − |uz(r)|) term.

Later, the MRI influence is computed (right part of Fig. 2). It is modeled
by the Bloch equation. We apply its discrete solution in the form of rotation
matrices and exponential scaling [12]. Such an approach allows us to track the
magnetization changes (AMRI) induced by MRI events without any integration:

AMRI(r,Δt) = ERELAX(r,Δt)Rz(Θ)RRF (r,Δt) , (4)

where ERELAX is responsible for the relaxation phenomena, Rz is the rotation
matrix about the z-axis through angle Θ used to model the influence of spatial
encoding gradients and magnetic field inhomogeneities, while RRF reproduces
the excitation process [8].

Based on Faraday’s law of an electromagnetic induction, the MR signal com-
ing from the imaged object at a time t is expressed as a sum of the transverse
magnetizations of all cubic elements. In MRI, such a signal is acquired many
times during successive sequence repetitions, with different phase encoding gra-
dients. These different gradients are used to encode spatial positions of particular
signals that compose the total received signal. Within a single repetition period,
the acquired signal fills one k-space (readout) matrix row. The MR image is
created by applying the fast Fourier transform (FFT) to the fully filled matrix.

This coupled MR flow imaging model closely follows the physical process of
MRI. In addition, it does not need additional mechanisms to consider the blood
flow influence during most of MRI events, in contrast to prior works [6,7].

3 GPU-based Parallelization of MR Flow Imaging

The most time consuming part of the algorithm is the calculation of new mag-
netization values (M(r, t + Δt)). It has to be done many times after each time



GPU Accelerated Simulations of MRI of Vascular Structures 393

step (Δt) that ought to be small enough (usually of the order of tens to hun-
dreds of microseconds). Second, in each time step, both the blood flow and MRI
influences have to be taken into account in each cubic element (which size is usu-
ally of the order of tens to hundreds of micrometers). Thus, data decomposition
strategy is naturally applied (see Fig. 3).

Fig. 3. Data decomposition strategy: 2D grid of blocks along the phase encoding direc-
tions and 1D block of threads along the frequency encoding direction.

We decide to use 2D grid of blocks along the directions of phase encoding
gradients. The cubic elements along the direction of frequency encoding gradient
are, in turn, spread over threads. By default, the number of blocks and threads
are set to the number of cubic elements (object size) in the considered directions.
If the object size excesses the maximum number of threads/blocks (which is
hardware dependent), then the maximum value is used and a single thread/block
processes more than one cubic element.

Figure 4 presents the idea behind the GPU-based algorithm of MR flow
imaging. At the beginning, at host (CPU), the 3D object and the experiment
parameters are initialized. Then, they are sent to the device (GPU) and saved
in the allocated space in global memory. This CPU to GPU data transfer is
performed only once before MRI procedure and this data is kept there during
the whole MRI experiment. This way, each thread has an access to this data.
Both the object (flow, MR parameters) and tracked magnetization values are
organized as 3D matrices of floating point values arranged in one-dimensional
arrays. The results (k-space matrix that is also arranged in a one-dimensional
array) are transferred to CPU when all MRI repetitions are finished.

After the initialization, the MR image formation is started and here the GPU-
based parallelization is applied. In each excitation/repetition, various MRI events
are simulated and finally a single line of the MR signal is acquired and saved in
the k-space matrix. Each MRI event (excitation, spatial encoding, relaxation, ...)
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Fig. 4. The flowchart of the GPU-based algorithm of MR flow imaging

is performed in consecutive time steps (Δt). The magnetization of a cubic ele-
ment in the next time step depends on its current value (time dependency), the
MRI influence and magnetization of neighboring cubic elements (spatial depen-
dency), accordingly with Eq. 1. Thus, in each time step, two kernel functions are
called. The first one is responsible for the MRI influence, while the second one for
the magnetization transport induced by blood flow. Such an approach provides
the synchronization for all threads (both inside and between blocks) after each
time step. Thereby, the time and spatial dependency between magnetizations of
cubic elements is provided. During the MRI influence calculations, each thread
accesses only the local magnetization values, while the magnetization transport
phase needs to reach into the neighboring cubic elements.

The signal acquisition phase differs a little from other MRI events. Here, not
only the MRI and flow influences are simulated, but also the signal from all cubic
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elements has to be read and saved in the k-space matrix. This operation is carried
out by two additional kernel functions (signal readout1 and signal readout2, see
Fig. 4). These two functions, in a single time step, provide the sum of all magneti-
zations (from all cubic elements). The first kernel performs the reduction of mag-
netization values for cubic elements inside blocks. It uses the mechanism of shared
memory inside thread blocks. The second kernel finishes the reduction with the
use of one block and a table in global memory.

After the signal acquisition, the relaxation process is simulated and if the next
repetition is needed, the algorithm starts again from the excitation. Otherwise,
the k-space matrix is transferred from the device to the host. Finally, the MR
image is created by the application of FFT to the received matrix at CPU.

In order to efficiently use hardware resources, we take advantage of mem-
ory hierarchy of modern GPUs. The following algorithm improvements, among
others, are applied: (i) Data stored in global memory and frequently used (e.g.
cubic element magnetization) is transferred to local variables at the beginning of
kernel functions. At the end of the kernel, the data is transferred back to global
memory. (ii) In the serial algorithm, the results of some repeated calculations
(e.g. partial computation of the magnetization increase during relaxation after
Δt time step) are saved in auxiliary tables before the MRI procedure and used
when needed. In the GPU-based algorithm, we do not use such global auxiliary
tables. Results of frequently repeated calculations are saved locally in a kernel
function when they are done for the first time. Such a mechanism increases the
number of arithmetic operations but, at the same time, reduces redundant loads
from GPU global memory. (iii) float4 data type is used to store magnetization
description in GPU global memory, despite the fact that the magnetization is
a 3D vector and we only need three float values. This way, coalesced memory
access may be provided, resulting in efficient memory requests and transfers [13].
As regards local thread variables, temporary magnetizations are stored in float3
variables since in threads register space is an important issue.

4 Experimental Results

All experiments were performed on a workstation equipped with a quad-core
processor (Intel Core i7-870, 8M Cache, 2.93 GHz), 32 GB RAM and a single
graphics card. We tested three different Kepler-based NVIDIA graphics cards:
(i) GeForce GTX 780 (3 GB memory, 2304(12×192) CUDA cores), (ii) Quadro
K5000 (4 GB memory, 1536(8×192) CUDA cores) and (iii) GeForce GTX Titan
Black (6 GB memory, 2880(15×192) CUDA cores).

We used 64-bit Ubuntu Linux 14.04.02 LTS as an operating system. The
sequential algorithm was implemented in C++, compiled with the use of gcc
version 4.8.2 and optimized many times since of long simulation time. The GPU-
based parallelization was implemented in CUDA-C and compiled by nvcc CUDA
7.0 [14]. Single precision calculations were analyzed.

We present results for four various vascular structures investigated in our
previous papers [4,8], where detailed flow and MRI settings were reported.
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Figure 5 shows examples of simulated MR flow images representing more and
more complicated vascular structure. The gradient echo (GE) imaging sequence
was used to obtained the images. Other basic imaging parameters are reported
next to the MR images.

Fig. 5. Simulated MR images: (a) a single vessel, (b) a single bifurcation, (c) multiple
bifurcations, (d) slice through the liver volume with many vascular structures.

Figure 6 shows the obtained mean speedup (over different imaging parame-
ters) for four tested vascular structures, relative to the sequential implementation
run on a single core. The speedup obtained with the use of four CPU cores by an
OpenMP parallelization is also presented. It is clearly visible that the GPU-based
parallelization provides a significant decrease in computation time. All GPUs are
able to obtain a speedup at least one order higher than the OpenMP paralleliza-
tion. Currently, the time needed to simulate e.g. MR image in Fig. 5(d) equals
about 1.5 h with the use of Titan Black GPU, instead of about 10 days by a single
core CPU or 5 days using OpenMP parallelization and four CPU cores. Moreover,
the achieved speedup is comparable (images (a–c)) or even higher (image (d)) than
the one obtained by a computer cluster of 16 nodes each equipped with 2 quad-core
CPUs (Xeon 2.66 GHz) and 16 GB RAM [4].

In Fig. 6 we can also see that the tested GPUs provide different speedups.
Concerning GTX Titan Black and GTX 780 GPUs, the difference is quite small
and it could be explained by a slightly faster memory (7.0 vs 6.0 Gbps) and a
stronger computational unit (2880 cores of 980 MHz vs. 2304 cores of 900 MHz)
of the former one. As regards Quadro K5000 GPU, it achieves much smaller
acceleration than other tested GPUs. Quadro family GPUs are known to be
designed to especially accelerate applications to design, rendering and 3D visual
modeling (like CAD software) at the expense of lower computational perfor-
mance in games and GPGPU. They are also usually more expensive than GTX
series GPUs and offer lower power consumption. Anyway, the obtained results
show that such a engineering workstation equipped with a Quadro family GPU
can also be successfully used in fast MR flow imaging simulations. Consider-
ing the price/performance factor, the GTX 780 GPU wins since, currently, it is
about 3 times cheaper than Titan Black and 5 times than Quadro K5000.
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Fig. 6. Speedup of the GPU (as well as multi-core) accelerated algorithms relative to
the serial implementation run on a single core of Intel Core I7 CPU. Images shown in
Fig. 5 and various GPUs are tested.

There is also a difference in speedup between tested objects. The first rea-
son could be the fraction of cubic elements that represent the object/image
background where no MRI is simulated (black areas in images). The second
one is the size of the object/image that does not always allow computational
resources to be exploited efficiently. The object size and fraction of background
elements were as follows: (a) 106×739, 0.37, (b) 167×543, 0.6, (c) 572×740, 0.7,
(d) 1000×1000×70, 0. The simulation box can differ from the object size due to
additional background cubic elements added to objects to apply FFT easily [8].
The worst results were obtained for the single bifurcation object where there was
a lot of background elements and the horizontal object (167) as well as simula-
tion box size (320) was too small to provide load balancing. The best speedup,
in turn, was achieved for image (d) since there was no background elements
and object size was big enough. We verified execution times with respect to the
object size for the straight vessel geometry (Fig. 5(a)) (72×705, 144×1410 and
288×2820 original/flow grid size). The obtained speedup grew with the increase
of object size, from about 80 to 120, respectively. The thorough evaluation of
the scaling properties of the algorithm was left for future investigation.

5 Conclusion

In this paper we propose a GPU-based parallel approach to simulate MRI of vascu-
lar structures. The approach was tested at various GPUs and vascular structures.
The results clearly show that it provides a significant speedup relative to the CPU
implementation. Thus, it opens a perspective to simulate more and more complex
(that is more realistic) vascular structures. Moreover, the proposed GPU-based
approach may be easily adapted in other algorithms concerning related phenom-
ena like diffusion or perfusion.
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In the future, we want to deal with multi-GPU approaches, both at a sin-
gle workstation as well as on computing clusters. We also plan to use the pre-
sented parallelization in the modeling of contrast agent propagation and dynamic
contrast-enhanced MRI [15].
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