
Soft Comput (2017) 21:7363–7379
DOI 10.1007/s00500-016-2280-1

METHODOLOGIES AND APPLICATION

Evolutionary induction of a decision tree for large-scale data:
a GPU-based approach

Krzysztof Jurczuk1 · Marcin Czajkowski1 · Marek Kretowski1

Published online: 22 August 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Evolutionary induction of decision trees is an
emerging alternative to greedy top-down approaches. Its
growing popularity results from good prediction perfor-
mance and less complex output trees. However, one of the
major drawbacks associated with the application of evo-
lutionary algorithms is the tree induction time, especially
for large-scale data. In the paper, we design and imple-
ment a graphics processing unit (GPU)-based parallelization
of evolutionary induction of decision trees. We apply a
Compute Unified Device Architecture programming model,
which supports general-purpose computation on a GPU
(GPGPU). The selection and genetic operators are performed
sequentially on a CPU, while the evaluation process for the
individuals in the population is parallelized. The data-parallel
approach is applied, and thus, the parts of a dataset are spread
over GPU cores. Each core processes the assigned chunk of
the data. Finally, the results from all GPU cores are merged
and the sought tree metrics are sent to the CPU. Compu-
tational performance of the proposed approach is validated
experimentally on artificial and real-life datasets. A compari-
son with the traditional CPU version shows that evolutionary
induction of decision trees supported by GPGPU can be
accelerated significantly (even up to 800 times) and allows
for processing of much larger datasets.

Communicated by V. Loia.

B Krzysztof Jurczuk
k.jurczuk@pb.edu.pl

1 Faculty of Computer Science, Bialystok University
of Technology, Wiejska 45A, 15-351 Białystok, Poland

Keywords Evolutionary algorithms · Decision trees ·
Parallel computing · Graphics processing unit (GPU) ·
Large-scale data

1 Introduction

Decision trees (DTs) (Kotsiantis 2013; Rokach and Maimon
2008) are one of the most famous classification methods
in data mining (Fayyad et al. 1996). Traditionally, DTs are
induced with greedy top-down algorithms; however, in the
recent past, an evolutionary approach for tree induction has
attracted a great deal of interest. Application of evolution-
ary algorithms (EAs) (Michalewicz 1996) in DT induction
results in simpler but still accurate trees in comparison with
greedy strategies (Barros et al. 2012; Czajkowski and Kre-
towski 2014). The main downside of this approach is that
EAs entail relatively high computational costs as they gener-
ally evaluate all candidate solutions in a population for every
generation. Currently, data mining systems are faced with
increasingly larger datasets (Bacardit and Llora 2013), and
the issue of fast processing and analyzing often becomes cru-
cial. The survey (Barros et al. 2012) of evolutionary induction
of DTs stands at the fore of future trends the need of speeding
up the tree-building process.

Fortunately, EAs are naturally prone to parallelism and
the process of artificial evolution can be implemented in var-
ious ways (Chitty 2012). There are three main strategies that
have been studied for the parallelization and/or distribution
of computation effort in EAs:

– master–slave paradigm (Cantu-Paz 2000)—simple paral-
lelization of the most time-consuming operations in each
evolutionary loop; the master spreads usually indepen-
dent tasks or chunks of data over the slaves and, finally,
gathers and merges the results;

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2280-1&domain=pdf

7364 K. Jurczuk et al.

– island (coarse-grained) model (Bull et al. 2007)—
grouping individuals into subpopulations that are distrib-
uted between islands and can evolve independently; some
policies are also defined for the migration of individuals
between islands each other;

– cellular (fine-grained) algorithm (Llora 2002)—redistri-
bution of single individuals that can communicate only
with the nearest individuals for selection and reproduc-
tion based on the defined neighborhood topology.

This manuscript concerns massive parallelization of evo-
lutionary induction using graphics processing units (GPUs)
(Tsutsui and Collet 2013). The GPUs of modern graphics
cards are equippedwith hundreds or even thousands of small,
energy-efficient computing units (GPU cores) for handling
multiple tasks in parallel andmanagingworkloads efficiently.
Moreover, they have an unmatched price/performance ratio
and enable scale-up on a single workstation, which is simply
not achievable using only multi-core CPUs. Thus, not only
graphics applications but also general-purpose computation
on GPUs (GPGPU) have gained in popularity (Yuen et al.
2013).

In this paper, a GPU-based parallelization of evolution-
ary induction of DTs is proposed. We focus on one of the
most common data mining applications—classification. In
particular, we concentrate on evolutionary-induced univari-
ate classification trees (Kretowski and Grześ 2005). To the
best of our knowledge, a study on speeding up the evolution-
ary induction ofDTs usingGPGPU, perhaps surprisingly, has
not yet been attempted in the literature. Although the GPU
computational model differs from the conventional CPUone,
the strategy that we apply is similar to the master–slave par-
adigm. The CPU (master) executes EA steps and assigns
computationally demanded tasks to a GPU. The GPU exe-
cutes the tasks in parallel on its cores that could be considered
as slaves. This way, so-called global parallelism (Alba and
Tomassini 2002) is preserved and the original sequential
algorithm does not change.

The proposed approach is applied to a system called
global decision tree (GDT). Its framework can be used
for the evolutionary induction of classification (Kretowski
and Grześ 2007) and regression (Czajkowski and Kretowski
2014) trees, and the GDT solution concept can be applied in
many real-life applications, such as finance (Czajkowski et al.
2015) and medicine (Grześ and Kretowski 2007). The main
objectives of this work are to accelerate the GDT system and
to enable efficient evolutionary induction of DTs on large-
scale data. For these purposes, the proposed parallelization
manages to exploit the potential of modern GPUs to handle
computing intensive jobs like fitness calculation and leaves
the evolutionary flow control and communication tasks to the
CPU. This parallel computing model is an alternative to pre-
vious attempts to parallelize the GDT solution (Czajkowski

et al. 2015), which were based on a hybrid MPI+OpenMP
approach.

This paper is organized as follows: Section 2 provides
a brief background on DTs, the GPGPU computing model,
and most recent related works. Section 3 describes in detail
our approach for parallel implementation of evolutionary tree
induction. Section 4 presents experimental validation of the
proposed solution on artificial and real-life datasets. In the
last section, the paper is concluded and possible future work
is outlined.

2 Background

Data mining (Fayyad et al. 1996) can reveal important and
insightful information hidden in data. However, to effectively
identify correlations and patterns within the data, appropriate
tools and algorithms are required.

2.1 Decision trees

Decision trees (DTs) (Kotsiantis 2013; Rokach and Maimon
2008) represent one of the main techniques for discriminant
analysis in data mining. They have a knowledge represen-
tation structure that is built of nodes and branches, where
each internal node holds a test on one or more attributes;
each branch represents the outcome of a test; and each leaf
(terminal node) is designed by a class label. Most tree induc-
ing algorithms partition the feature space with axis-parallel
hyper-planes. These types of trees are called univariate deci-
sion trees as the split at each non-terminal node involves a
single feature.

The success of tree-based approaches can be explained by
their ease of application, fast operation, and effectiveness.
Furthermore, the hierarchical tree structure, where appropri-
ate tests from consecutive nodes are sequentially applied,
closely resembles the human way of making decisions. All
this makes DTs natural and easy to understand, even for an
inexperienced analyst. Despite 50years of research on DTs,
some open issues still remain (Loh 2014).

Inducing an optimal DT is known to be NP-complete
(Hyafil and Rivest 1976). Consequently, practical decision-
tree learning algorithms must be heuristically enhanced. The
most popular type of tree induction is based on a top-down
greedy search (Rokach and Maimon 2005). It starts from the
root node, where the locally optimal split (test) is searched
according to the given optimality measure. Next, the training
instances are redirected to the newly created nodes, and this
process is repeated for each node until a stopping condition
is met. Additionally, post-pruning (Esposito et al. 1997) is
usually applied after the induction to avoid the problem of
over-fitting the training data and to improve the generaliza-
tion power of the predictivemodel. Some of themost popular

123

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7365

representatives of top-down-induced decision trees are the
solution proposed by Breiman et al. (1984) called Classifica-
tion And Regression Tree (CART), the C4.5 system proposed
by Quinlan (1992), and the C H AI D algorithm proposed by
Kass (1980).

Inducing the DT through a greedy strategy is fast and
generally efficient in many practical problems, but it usually
produces locally optimal solutions. To mitigate some of the
negative effects of locally optimal decisions, EAs were intro-
duced for DT induction (Barros et al. 2012). The strength of
such an approach lies in a global search for the tree structure
and the tests in the internal nodes. This global induction is
obviously much more computationally complex; however, it
can reveal hidden regularities that are often undetectable by
greedy methods.

2.2 GPGPU and CUDA

Recently, research on parallelization of various evolution-
ary computation methods (Bacardit and Llora 2013; Chitty
2012) has seemed to focus on GPUs as the implementation
platform. The popularity of GPUs results from their high
computational power at a relatively low cost. A single work-
station equipped with a top-end GPU is more often able to
provide a lower price/performance factor than a traditional
computer cluster.Moreover, computer clusters are not always
accessible and demand more maintenance.

The use of graphics hardware for generic problems has
become known as general-purpose computation on GPUs
(GPGPU). One of the first and most popular frameworks to
facilitate GPGPU is a Compute Unified Device Architecture
(CUDA) (Wilt 2013) created by the NVIDIACorporation. In
the CUDA programming model, a GPU (device) is consid-
ered as a co-processor that can execute thousands of threads
in parallel to handle the tasks traditionally performed by the
CPU (host) (see Fig. 1). The GPU engine is a scalable array
of streaming multiprocessors (SMs). Each SM consists of
a collection of simple streaming processors (called CUDA
cores).

The CUDA GPU memory also has a hierarchical struc-
ture (NVIDIA2015). Several types ofmemories are provided
with different scopes, lifetimes, and caching behaviors. They
can be grouped into two classes: small, fast on-chip memory
(cache, resisters, etc.) and globalmemorywith a larger capac-
ity but much higher latency access. All SMs have access to
the whole global memory. As regards on-chip memory, all
CUDA cores inside the same SM share some memory space
as well as having their own local memory.

CUDA employs a single-instruction multiple-data paral-
lelism (Grama et al. 2003). From a programming perspective,
when the CPU delegates a job to the GPU, it calls a kernel
that is a function run on the device. Then, a grid of (threads)
blocks is created and each thread executes the same ker-

Fig. 1 CUDAhardwaremodel. AGPU is considered as a co-processor
to a CPU. The CPU delegates some jobs to the GPU and receives
results. The GPU is equipped with two types of memory—small, fast
on-chip memory and global memory with larger capacity but much
higher latency access. Computational resources are grouped into multi-
ple streaming processors (SMs) consisting of a collection of streaming
processors (SPs) (called CUDA cores)

nel code in parallel. Each thread has an ID that allows an
assigned part of the data to be computed and/or to make
control decisions. Each block of threads is mapped to one
of the SMs, and the threads inside the block are mapped
to CUDA cores. Blocks can be organized into one- or two-
dimensional grids, while threads can be organized into one-,
two-, or three-dimensional blocks. The dimension and size
in each dimension of grids and blocks are both important
factors, and they should be set based on GPU specifications
as well as parallelization granularity.

2.3 Parallelization of EA

GPGPU has widely been used to reduce the CPU load and
boost the performance of different kinds of computational
intelligence methods such as fuzzy systems (Anderson et al.
2008) and neural networks (Oh and Jung 2014). In the field
of evolutionary computation (Tsutsui and Collet 2013), GPU
parallelization has been applied to many computing tech-
niques, such as ant colony optimization (Cano et al. 2013),
evolutionary strategies (Zhu 2011), and differential evolution
(Fabris and Krohling 2012; Veronese and Krohling 2010).
EAs, due to their parallel nature, have been parallelized in
many ways using various techniques (Langdon 2011; Oiso
et al. 2011). Application of GPUs in EAs usually focuses
on speeding up the evolutionary process (Chitty 2016; Cano
et al. 2012) that is relatively slow due to high computational
complexity or/and performing large-scale data mining (Bac-
ardit and Llora 2013; Langdon 2013). GPUs have already
been successfully applied in machine learning, specifically
in speeding up the evaluation process for classification rules

123

7366 K. Jurczuk et al.

(Cano et al. 2014, 2015) and evolutionary-mined association
rules (Cano et al. 2013).

Various proposals have been made with regard to the
design and implementation of EAs (Alba and Tomassini
2002). In this paper, we focus on a typical EA framework
with a single, unstructured population. Two main decompo-
sition techniques are used to parallelize EAs (Chitty 2012;
Freitas 2002): a control approach (also known as a popula-
tion approach) and a data approach. In the first approach,
individuals from the population are evaluated at the same
time on different processors. One of the main drawbacks of
this approach is the weak scalability to very large datasets. In
order to achieve a sufficient parallelization effect, the pop-
ulation size is often much larger than generally employed
and can exceed even tens of thousands of individuals (Maitre
et al. 2012; Oiso et al. 2011). Moreover, shared-memory sys-
tems (like multi-core architectures) can suffer from memory
access contention and the number of available processors if
often insufficient (Grama et al. 2003). On the other hand,
distributed-memory systems (like computer clusters) may
have problems with high inter-processor data traffic as well
as with storing a copy of large datasets for each processing
unit.

The second decomposition technique for parallelizing
EAs (applied in this paper) focuses on distributing the dataset
across the processors of the parallel system. In the data
approach, the objects are evaluated by the individuals in
parallel. This technique is considerably much more scalable
with respect to the size of the dataset than is the population
approach as the entire dataset can be gradually distributed
among the local memories of all processors. However, issues
with high inter-processor data traffic can still remain. The
data parallelization approach for EAs became more popu-
lar with the success of GPGPU, which may eliminate or at
least hide the communication overhead. The literature on
GPGPU in EAs contains algorithms that apply both decom-
position techniques (Chitty 2016). In addition, the current
research on parallelization of EAs goes even further and pro-
poses additional dimensions of parallelization. In a genetic
programming system (Cano and Ventura 2014), the popula-
tion and data approaches were extended with a GPU-parallel
interpreter. A new technique for decomposition focuses on
concurrent evaluation of individual’s subtrees.

GPGPU has also been used in systems with other struc-
tures for EA populations. In Luong et al. (2010), the authors
proposed schemes for the island model on GPU archi-
tectures in which the islands and the individuals within
the islands were run in parallel. The coarse-grained strat-
egy was applied in an evolutionary learning system called
BioHEL (Franco et al. 2010), where the authors proposed
two-dimensional parallelization that compared all the rules
and the instances in the training set in parallel. In the litera-
ture, there is also a cellular EA framework on GPUs (Soca

et al. 2010) that focuses on a control approach parallelization
technique. Another study Franco and Bacardit (2016) pro-
posed three-dimensional parallelization for the fine-grained
parallelization strategy. The GPGPU parallelization not only
covered the individuals and the instances, but also performed
calculations for the attributes within each dataset instance in
parallel.

2.4 Related work

Despite the fact that there is a strong need for parallelizing
the EA tree-building process (Barros et al. 2012), the topic
has not yet been adequately explored. In fact, it has hardly
been studied in the literature. One of the reasons is that the
straightforward application of GPGPU to EA may be insuf-
ficient. In order to achieve high speedup and exploit the full
potential of GPGPU parallelization, there is a need to incor-
porate knowledge about DT specificity and its evolutionary
induction.

In one of the fewpapers that cover parallelization of evolu-
tionary induced DT, a hybridMPI+OpenMP approach (Cza-
jkowski et al. 2015) was investigated. The algorithm used the
master–slave paradigm, and the most time-consuming oper-
ations, such as fitness evaluation and genetic operators, were
executed in parallel on slaves. The authors applied the control
parallelization approach in which the population was evenly
distributed to the available nodes and cores. The experimen-
tal validation, performed on artificial datasets with different
sizes (from 10,000 to 1,000,000 instances, and from 2 to 10
attributes), showed that the hybrid parallelization approach
for evolutionary-induced decision trees managed to achieve
a speedup of up to ×15 with 64 CPU cores.

So far in the literature, two types of DT systems using
GPU-based parallelization have been investigated. In the
first one, GPU-based parallelization of the greedy induc-
tion of DTs was examined. One of the propositions was a
CUDT system (Lo et al. 2014) that parallelized the top-down
induction process of a single tree. The GPGPU was used to
perform a parallel search through the attributes in each inter-
nal node in order to find the best locally optimal splits. The
authors showed experimentally that their approach managed
to reduce the induction time of a typical decision tree from
5 to 55 times when compared with the traditional CPU ver-
sion. This approach was later extended with a new dataset
decomposition strategy (Nasridonov et al. (2014)) as well as
processing multiple tree nodes simultaneously (Strnad and
Nerat 2016); however, the registered speedups remained sim-
ilar.

The second type of DT systems covers the paralleliza-
tion of ensembles of trees, such as random forests. The
most straightforward idea was proposed in a CudaRF system
(Grahn et al. 2011) that used one CUDA thread to build one
tree in the forest. However, such implementation works only

123

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7367

with a large number of trees. Experimental results showed
that the induction time of the CudaRF trees was between
30 and 50 times faster than other systems with the assump-
tion that the number of trees is 128 or higher. Another level
of parallelization was proposed in the GPU random forests
designed for data streams (Marron et al. 2014). The authors
used a GPU approach for parallelization of the calculations
the majority class in the leaves and the splits in the internal
nodes.

However, it should be noted that all the aforementioned
systems used the GPGPU approach for parallelization trees
that were built with a greedy strategy through a process that
is known as recursive partitioning. To the best of our knowl-
edge, there are as yet no studies in the literature about the
parallelization of evolutionary induced DTs using the GPU-
based approach.

3 Globally induced decision trees

This section briefly recalls the GDT system whose gen-
eral structure follows a typical EA framework (Michalewicz
1996) with an unstructured population and a generational
selection. We have limited the GDT system description to a
univariate binary classification tree version as this type of the
tree is parallelized with the proposed GPU-based approach.

3.1 Representation

The type of EA may be identified by the way the individu-
als in the populations are represented. A genetic algorithm
is typically considered when solutions are encoded in a
fixed-length linear string. The tree-encoding schemes usu-
ally imply genetic programming (GP), where the solution
encodes data and functions (Woodward 2003); however, the
border between different types of EAs is vague and debat-
able.

DTs are complex tree structures in which the number of
nodes, the type of tests, and even the number of test out-
comes are not known in advance for a given dataset. This
is why the tree representation may be more suitable, espe-
cially if the entire tree is searched in one EA run. Therefore,
in the GDT system, DTs are not specially encoded and are
represented in their actual form as typical univariate classifi-
cation trees. Each test in a non-terminal node concerns only
one continuous-valued attribute. Typical inequality tests with
two outcomes are applied, but only precalculated candidate
thresholds (Fayyad et al. 1996) are considered as potential
splits. A candidate threshold for the given attribute is defined
as the midpoint between such a successive pair of examples
in the sequence sorted by the increasing value of the attribute,
in which the examples are characterized by different classes.
The GDT systems also allow univariate tests based on nom-

inal attributes or multivariate (oblique) splits in the internal
nodes; however, those variants are not considered in our solu-
tion.

Additionally, in every node, information about training
instances associated with the node is stored. This enables the
algorithm to more efficiently perform local structure and test
modifications during applications of genetic operators.

3.2 Initialization, selection, and terminal condition

In general, an initial population (default size equals 64 indi-
viduals) should be randomly generated and cover the entire
range of possible solutions (Crepinsek et al. 2013) to provide
enoughdiversity of individuals.Due to the large search space,
the application of greedy heuristics in the initialization phase
is often considered to improve the EA computation time. The
downside of this strategy is the possibility to trap EA in the
local optima. Therefore, while creating the initial population,
a good trade-off between a high degree of heterogeneity and
a relatively low computation time is usually desired.

In the GDT system, the initial individuals are created by
applying a simple top-down algorithm based on the dipolar
principle (Kretowski 2004) to randomly chosen subsamples
of the original training data (default: 10% of data, but not
more than 500 instances). Among instances located in the
considered node, two objects from different classes are ran-
domly chosen. An effective test that separates these two
objects into subtrees is randomly created, taking into account
only attributes with different feature values. Recursive parti-
tions are repeated until the stopping criterion is met. Finally,
the resulting tree is post-pruned based on the fitness function.

Ranking linear selection (Michalewicz 1996) is used as a
selection mechanism. Additionally, in each iteration, a sin-
gle individual with the highest value of fitness function in
the current population is copied to the next one (elitist strat-
egy). Evolution terminates when the maximum number of
generations (default value: 1000) is reached.

3.3 Genetic operators

To maintain genetic diversity, the GDT system applies two
specialized genetic meta-operators corresponding to clas-
sical mutation and crossover. Both operators influence the
tree structure and the tests in non-terminal nodes. They are
applied with a given probability to a tree (default value is 0.8
for mutation and 0.2 for crossover). Successful application
of any operator results in the necessity for relocation of the
learning instances between tree parts rooted in the modified
nodes.

Each crossover begins by randomly selecting two indi-
viduals that will be affected. The next step is choosing the
positions in both individuals. Depending on the recombina-
tion variant, randomly selected nodes may:

123

7368 K. Jurczuk et al.

– exchange subtrees (if they exist) randomly or based on
the mixed dipole principle (Kretowski and Grześ 2007);

– exchange tests associatedwith the nodes (onlywhen non-
terminal nodes are chosen and the numbers of outcomes
are equal) randomly or based on the mixed dipole prin-
ciple;

– exchange branches in random order, which starts from
the selected nodes (only when non-terminal nodes are
chosen and the numbers of outcomes are equal);

– transfer subtrees asymmetrically where the subtree of the
first/second individual is replaced by a new one that was
duplicated from the second/first individual. The replaced
subtree starts in the node denoted as a receiver, and the
duplicated subtree starts in the node denoted as a donor.
In contrast to the symmetric crossovers, two nodes in
each individual are modified as both trees. It is pre-
ferred that the receiver node has a high classification error
because it is replaced by the donor node that should have
a small value of classification error as it is duplicated.
The application of this variant is more likely to improve
the affected individuals because with higher probability,
the good nodes are duplicated and they replace the weak
nodes.

The mutation operator begins by randomly choosing the
node type (equal probability of selecting a leaf node or an
internal node). Next, the ranked list of nodes of the selected
type is created, and a mechanism analogous to the rank-
ing linear selection is applied to decide which node will be
affected. Depending on the type of node, the ranking takes
into account:

– location (level) of the internal node in the tree—it is evi-
dent that modification of the test in the root node affects
the entire tree and has a large impact, whereas the muta-
tion of an internal node in the lower parts of the tree has
only a local impact. Therefore, internal nodes in the lower
parts of the tree are mutated with a higher probability.

– number of misclassified objects—nodes with a higher
error per instance are more likely to be mutated. In addi-
tion, pure nodes (nodes with all instances from one class)
are not mutated.

Modifications performed by the mutation operator depend
on the node type (i.e., if the considered node is a leaf node
or an internal node) and cover different variants:

– shift the thresholds of the tests in the internal nodes;
– replace the test in the internal node with a new one based
on the dipole principle;

– prune the internal nodes or expand the leaves that contain
objects from different classes.

3.4 Fitness function

The evolutionary search process is very sensitive to proper
definition of the fitness function, which drives the evolution-
ary search process bymeasuring howgood a single individual
is in terms of meeting the problem objective. In the con-
text of DTs, a direct minimization of the reclassification
quality measured on the learning dataset usually leads to an
over-fitting problem and poor performance on unseen, test-
ing observations because the trees are overgrown. In typical
top-down induction of DTs (Rokach andMaimon 2005), this
problem is partially mitigated by defining a stopping condi-
tion and by applying post-pruning (Esposito et al. 1997). In
the case of evolutionary induced DTs, this problem may be
mitigated by a complexity term incorporated into the fitness
function. In the GDT system, the fitness function is maxi-
mized and has the following form:

Fitness (T) = QReclass(T) − α · (Comp (T) − 1.0), (1)

where QReclass(T) is the reclassification quality of the tree
T andα is the relative importance of the classifier complexity
(default value is 0.001). The tree complexity term Comp (T)

can be viewed as a penalty for over-parametrization. It equals
the tree size, which is usually considered to be the number of
nodes. The penalty associated with the classifier complexity
increases proportionally with the tree size and prevents over-
fitting. Subtracting the value 1.0 eliminates the penalty when
the tree is composed of only one leaf. A similar idea is used
in cost complexity pruning in the CART system (Breiman
et al. 1984).

4 GPU-based approach for GDT

The proposed parallelization of the DT evolutionary inducer
is based on the sequential GDT algorithm for univariate clas-
sification trees. The general flowchart of our GPU-based
approach is illustrated in Fig. 2 and in Listing 1. It can be seen
that the evolutionary induction is run in a sequential manner
on a CPU, and the most time-consuming operations (evalu-
ation of the individuals) are performed in parallel on a GPU.
This way, the parallelization does not affect the behavior of
the original EA.

The initialization phase (see Fig. 2) begins by sending
the whole dataset to the GPU and saving it in the allocated
space in the global memory. This CPU to GPU data transfer
is performed only once, and the data are kept on the GPU
till evolutionary induction stops. This way, data transfer is
substantially reduced, especially for large datasets, and each
GPU thread has access to these data. Next, the creating an
initial population, as well as selection, is performed on the
CPU.This step is not parallelized as it is performedonly once,

123

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7369

[else]

[stopping condition is met]

calling kernel1

calling kernel2

fo
r

ea
ch

 in
di
vi

du
al

in more
detail

in more
detail

in more
detail

Fig. 2 Flowchart for the GPU-based approach of the evolutionary-induced DT algorithm (* genetic operator is not applied for the evaluation of
the initial population)

and the population is created on a small fraction of the dataset.
Only the evaluation of initial individuals (fitness calculation)
is delegated to the GPU. In the evolutionary loop, genetic
operators (without individual evaluation) and selection also
run on the CPU as these operations are relatively fast.

In the GDT system, the evaluation (fitness calculation) of
the individuals in the population is the most time-consuming
operation, which is typical in EAs. In the case of DTs, all
objects in the training dataset need to be passed through the
tree starting from the root node to an appropriate leaf. There-
fore, when there is a need to evaluate an individual after
successive crossover or mutation, the GPU is called to per-
form the calculations. At first, the affected individual is sent
to the GPU. Then, the CPU asks the GPU to take on some
of its work. Two kernel functions are called. The first kernel
(kernel1 in Fig. 2) is called to propagate objects from the tree
root to the leaves. The dataset is spread into smaller parts,
first between different GPU blocks and then further between
the threads.

Next, the second kernel function (kernel2 in Fig. 2)merges
information about the objects’ location in the leaves. Then,
the class distributions and classification errors are calculated
and propagated from the leaves toward the tree root. In addi-
tion, the second kernel function stores in each tree node two
randomly selectedobjects fromeach class thatmay take apart

in the genetic operators (e.g., as a dipole) that will run in the
next evolutionary loop. Both the tree statistics (class distribu-
tion, errors) and the selected objects are sent back to the CPU
that uses them to update the affected individual. The follow-
ing sections describe in greater detail the data decomposition
and merge strategies (Sect. 4.1) and additional optimizations
that shorten the evaluation time of the individuals on theGPU
(Sect. 4.2).

4.1 Data decomposition and merge strategy

The first kernel function (see Fig. 2) uses the data decomposi-
tion strategy illustrated in Fig. 3. The dataset is decomposed
at two levels. At first, the whole dataset is spread into smaller
parts that are processed by different GPU blocks. Next, in
each block, the objects from the fraction of the dataset are
spread further over the threads.

In Fig. 4, which illustrates the GPU-based individual eval-
uation, we see that all blocks of threads process the same tree
but with different data chunks. The role of each GPU block
is to counter for each leaf the objects of each class from the
assigned part of the data that reach the leaves. Every GPU
block has a copy of the individual,which is loaded into shared
memory, and the threads within the block count objects from
different parts of the data in parallel [step (1)]. In addition,

123

7370 K. Jurczuk et al.

Listing 1 Pseudo code of the main procedures of the GPU-based
approach for the evolutionary induced DTs.
1 __global__
2 procedure kernel1(classDist, dipoles, indivTab)
3 index=0;
4
5 for i=1 to nObjectsToCheck do
6 node=indivTab[index];
7 while true do
8 if node is leaf then
9 //increment class counter

10 temp=index*N_CLASSES+dataset[i].classId;
11 atomicAdd(classDist[temp], 1);
12
13 //save objects for dipoles
14 setDipoles(dipoles, dataset[i]);
15 break;
16 else
17 if dataset[i][node.attr] > node.value then
18 index = index*2+1; //left child
19 else
20 index = index*2+2; //right child
21 end if
22 end if
23 end while
24 end for
25 end
26
27 __global__
28 procedure kernel2(classDist, dipoles, results)
29 __shared__ classDistSum[N_NODE*N_CLASSES];
30 __shared__ dipolesRandom[N_NODE*N_CLASSES*N_DIPOLES];
31
32 //merge data collected in kernel1
33 for i=1 to N_NODES*N_CLASSES do
34 atomicAdd(classDistSum[i], classDist[i]);
35 end for
36
37 //merge data collected in kernel1
38 for i=1 to N_NODES*N_CLASSES*N_DIPOLES do
39 if dipoles[i]!=0 then
40 atomicCAS(dipolesRandom[i], false, dipoles[i]);
41 end if
42 end for
43
44 if threadIdx.x==0 then
45 //calculate errors in the leafs
46 for i=N_NODES to 1 do
47 index=i*N_CLASSES;
48 if classDistSum[index]>classDistSum[index+1] then
49 results[index]=classDistSum[index];
50 results[index+1]=classDistSum[index+1];
51 else
52 results[index]=classDistSum[index+1];
53 results[index+1]=classDistSum[index];
54 end if
55 end for
56

57 //propagate errors to the tree root
58 for i=N_NODES to 1 do
59 index = i*N_CLASSES
60 if i\%2 then
61 results[i-2]+=classDistSum[index];
62 results[i-1]+=classDistSum[index+1];
63 else
64 results[i-1]+=classDistSum[index];
65 results[i]+=classDistSum[index+1];
66 end if
67 end for
68
69 //propagate class distribution to the tree root
70 //in analogy
71 ...
72 //propagate dipoles to the tree root
73 //in analogy
74 ...
75 end if
76 end
77
78 procedure evaluateIndividual(indiv)
79 copyTreeToTable(indiv, indivTab, indiv.getRoot());
80 allocateMemoryAtGPU(indivTab);
81 sendDataToGPU(indivTab);
82
83 kernel1<<N_BLOCKS, N_THREADS>>(classDist, dipoles,

indivTab);
84
85 cudaDeviceSynchronize();
86
87 kernel2<<N_INDIV, N_BLOCKS>>(classDist, dipoles,
88 results);
89 cudaDeviceSynchronize();
90
91 updateIndividual(indiv, results); //show in Listing 2
92 deallocateMemoryAtGPU(indivTab);
93 end
94
95 procedure main()
96 allocateMemoryAtGPU(dataset);
97 sendDataToGPU(dataset);
98 createInitPopulation();
99 evaluatePopulation();

100 selection();
101
102 while !stopCondition do
103 for all indiv in individuals do
104 mutation(indiv);
105 evaluateIndividualAtGPU(indiv);
106 crossover(indiv);
107 evaluateIndividualAtGPU(indiv);
108 end for
109 selection();
110 end while
111
112 deallocateMemoryAtCPU(dataset);
113 end

two objects of each class are randomly selected in each tree
leaf [step (2)].

The role of the second kernel function is to merge infor-
mation from multiple copies of the individual allocated in
each GPU block. In Fig. 4, one can see that after the merge
operation, there is only one single tree that gathered infor-
mation for the whole dataset. The total number of objects of
each class in each tree leaf is a sum of counters from copies
of the individual [step (3)]. In addition, in each tree leaf, two

objects of each class are randomly selected from the objects
provided by the first kernel function [step (4)].

Finally, we calculate reclassification errors in each leaf
[step (5)] and propagate all gathered information: class dis-
tribution, stored objects, and errors from the leaves toward
the root node [step (6)]. The reason why the two objects
from different classes are stored in each tree node is because
the CPU does not have access to the objects that fall in par-
ticular nodes of the tree. Although the CPU does not need

123

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7371

dataset

dataset part 1

dataset part M

dataset part i

Fig. 3 Data decomposition strategy. The dataset is spread into smaller parts. Each part is processed by different GPU blocks. Objects inside the
dataset parts are spread further over block threads

access to all objects from the dataset, pure andmixed (object)
dipoles are required for some variants of genetic operators
(Kretowski 2004). With two objects from different classes,
theCPUcanquickly and easily constitute such dipoles.When
the CPU receives objects stored earlier by the GPU, dipoles
are created and stored in each tree node when an individual
is updated. This way, the CPU does not need to locate the
objects in a node at all, which would take much more time.

4.2 Optimization and implementation aspects

After the successful application of a genetic operator on the
CPU, the propagation of objects from the tree root toward the
leaves is performed in the first kernel function on the GPU.
This process of associating each object with an appropriate
leaf is very time-consuming, especially on large datasets.
In order to eliminate the propagation of all dataset objects,
we propose processing only the modified part of the tree
(see Fig. 5 and Listing 2). This way, instead of relocating all
objects in the entire tree, we only update a part of the data in
the node (together with all subnodes) that was affected.

The GDT assumption that internal nodes at lower parts of
the tree are mutated with higher probability could improve
the benefit of the proposed optimization, as it is expected
that the lower parts of the tree held fewer objects that need to
be assigned. When this optimization mechanism is switched
on, the CPU sends to the GPU only information about the

affected node (together with all subnodes) and the route from
this node to the tree root to update tree statistics.

In order to better suit the GPU computation and yield
efficient GPU memory management (Wilt 2013), the indi-
viduals’ representation differs between the CPU and GPU.
Before an individual is transferred to the GPU, its flat rep-
resentation (one-dimensional array) is created based in its
binary tree representation used by the CPU. Such a flat rep-
resentation is also used during GPU computation. Figure 6
illustrates how each tree node is assigned to a specific posi-
tion in the array. The size of the array is fixed to the height
of the tree so it is large enough to hold any binary tree of
this height. Each tree node can store t elements, such as
information about the split, node statistics (e.g., errors, class
distribution), and indexes of the stored objects.With the fixed
size of the array, it is easy to find positions of a specific node
together with its stored information, which for the i-th node
are in the range <t ∗ i, t ∗ i + t − 1>. The position of the
left and right child of the i-th node equals (2 ∗ i + 1) and
(2 ∗ i + 2), respectively.

5 Experimental validation

This section shows the performance of the proposed parallel
version of the GDT system. Experiments were performed on
artificial and real-life datasets and with different NVIDIA

123

7372 K. Jurczuk et al.

dataset part 1
i-th individual

i-th individual

dataset part M
i-th individual

and

Fig. 4 The same individual is processed in parallel by successive
blocks (of threads) that are responsible for the different parts of the
dataset. Eachblock saves the results in its copyof the individual. Threads
inside the blocks share the same copy of the individual. Kernel1 func-

tion is responsible for propagation of the objects to the tree leaves,
while kernel2 merges the results from different blocks and propagates
tree statistics from the leaves toward the tree root

optimization

Fig. 5 The optimization mechanism to process only part of the tree
when an internal node or a leaf is affected

graphics cards. We wanted to test large-scale datasets, and
therefore, we have concentrated mainly on sets with at least
1 million objects. In this paper, we focused only on the time

performance of the GDT system; therefore, results for the
classification accuracy are not included. However, for all
tested artificial datasets, the GDT system managed to induce
trees with optimal structures and almost perfect accuracies
(99–100%). For detailed information about accuracy perfor-
mance of the GDT system, we refer readers to our previous
papers (Kretowski and Grześ 2005, 2007; Czajkowski and
Kretowski 2014).

5.1 Setup

Experimental verification was performed with the univari-
ate classification version of the GDT system. All presented
results correspond to averages of 20 runs and were obtained
with a default set of parameters from the sequential version
of the GDT system. In the fitness evaluation, the pro-

123

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7373

Listing 2 Pseudo code of themain procedures improved to process only
a part of the tree.
1 __global__
2 procedure kernel1(classDist , dipoles ,indivTab)
3 index =0;
4
5 for i=1 to nObjectsToCheck do
6 node=indivTab[index];
7 while true do
8 //check if we are already
9 //in the non -affected tree part

10 if node.attr == -2 then
11 // TREE_PART_ALGORITHM
12 break;
13 end if
14
15 if node is leaf then
16 //the rest looks like kernel1 in Listing 1
17 ...
18 end while
19 end for
20 end
21
22 procedure copyNodeToTable(node , indivTab , index)
23 indivTable[index]=node;
24 if node.hasLeftChild () then
25 copyNodeToTable(node.getLeftChild (),
26 indivTab , index *2+1)
27 end if
28 if node.hasRightChild () then
29 copyNodeToTable(node.getRightChild (),
30 indivTab , index *2+2)
31 end if
32 end
33
34 procedure copyTreeToTable(indiv , indivTab ,

affectedNode)
35 if affectedNode ==root then
36 copyNodeToTable(root , indivTab , 0);
37 else// TREE_PART_ALGORITHM
38 index=findIndex(indiv , affectedNode);
39 copyNodeToTable(affectedNode , indivTab ,
40 index);
41 markedPathFromNodeToRoot(affectedNode ,
42 root , -2);
43 end if
44 end
45
46 procedure updateIndividual(indiv , results)
47 if TREE_PART_ALGORITHM then
48 node=indiv.getAffectedNode ();
49 fillFromAffectedNodeToRoot(indiv , node ,

results);
50 else
51 node=indiv.getRoot();
52 end if
53
54 fillSubTrees(node , results);
55 end

posed algorithm processed only the modified part of the tree
(individual), as described in Sect. 4.2. The impact of this
optimization on the overall algorithm speedup is discussed
in Sect. 5.3. The size of the data processed in each block and
thread was determined experimentally. We tested different
blocks× threads configurations (see Sect. 5.3) and selected
256 × 1024 for the datasets with no more than 1 million
instances and 1024 × 1024 for the larger datasets.

Experimental validation was performed on the datasets
described in Table 1:

array index

flattening the tree
to a one-dimensional array

left child

right child

left child

right child

node

if more elements
are stored in each node

('t' elements)

left child

right child

Fig. 6 Flattening of the tree structure on theGPU to a one-dimensional
array [tree node (n), attribute (A), threshold (T), by default t = 2]

Table 1 Characteristics of the datasets: name, number of instances,
number of attributes, and number of classes

Dataset Instances Attributes Classes

Chess1M 1,000,000 2 2

Chess5M 5,000,000 2 2

Chess10M 10,000,000 2 2

Chess20M 20,000,000 2 2

Suzy 5,000,000 18 2

Higgs 11,000,000 28 2

– Chess dataset—an artificially generated dataset in which
objects are arranged on a 3 × 3 chessboard (Czajkowski
et al. 2015). Different sizes and different numbers of
the dataset attributes were analyzed (additional attributes
were randomly generated).

– Higgs dataset—one of the largest real-life datasets avail-
able in the UCI Machine Learning Repository (Blake
et al. 1998). It concerns a classification problem to dis-
tinguish between a signal process that produces Higgs
bosons and a background process that does not;

– Suzy dataset—a real-life dataset from the UCI repository
that covers the problem of distinguishing between a sig-
nal process that produces super-symmetric particles and
a background process that does not.

123

7374 K. Jurczuk et al.

All the experiments were performed on a regular PC
equipped with a quad-core processor (Intel Core i7-870,
8M Cache, 2.93 GHz), 32 GB RAM, and a single graph-
ics card. We used a 64-bit Ubuntu Linux 14.04.02 LTS as
an operating system. The sequential algorithm was imple-
mented in C++ and compiled with the use of GCC version
4.8.2. The GPU-based parallelization was implemented in
CUDA-C and compiled by nvcc CUDA 7.0 (NVIDIA
2015) (single-precision arithmetic was applied). We tested
a group of different NVIDIA graphics cards, described
in Table 2. For each graphics card, we gathered basic
specifications that covered the number of CUDA cores,
as well as clock rate, available memory, bandwidth, and
price.

5.2 Obtained results

Figure 7 presents the mean speedup of the proposed GPU-
accelerated approach in comparison with the sequential
GDT solution for different datasets and various GPUs.
More details, including the mean speedup for the multi-core
OpenMP version (Czajkowski et al. 2015), are demonstrated
in Table 3. In addition, at the bottom of the table, we provide
the mean execution time for the sequential algorithm as well
as for the GPU-based solution on the fastest GPU.

The experimental results suggest that with the proposed
approach, even a regular PCwith a cheap graphics card is suf-
ficient for accelerating the GDT tree induction time over 100
times. As expected, better graphics cards manage to achieve
much better improvement, the scale of which is quite surpris-
ing. The most expensive tested graphics card in comparison
with the cheapest one is often more than 2 times faster and is
able to induce trees almost 800 times faster than the sequen-
tial GDT solution. With such a high acceleration of the tree
induction, the speedup achieved by the quad-core CPU using
onlyOpenMP parallelization is—to put themildly—not very
impressive.

The scale of the improvement is even more visible when
comparing the execution time between the sequential and
parallel version of the GDT system. The results presented

 0

 100

 200

 300

 400

 500

 600

 700

 800

Chess5M Chess20M Susy Higgs

S
pe

ed
up

Dataset

NVIDIA Geforce GTX 650 Ti
NVIDIA Geforce GTX 760

NVIDIA Quadro K5000
NVIDIA Geforce GTX 780

NVIDIA Geforce GTX Titan Black

Fig. 7 Mean speedup for selected datasets and various GPUs

at the bottom of Table 3 show that the tree induction time
for the proposed solution can be counted in seconds and
minutes, whereas the original sequential solution often needs
several days. Moreover, the GPU-based accelerated solution
has lower memory consumption as there is no need to store
in every node information about training objects associated
with the node (used in the sequential version to accelerate the
evaluation of individuals). We verified the execution times
of the GPU-based induction for even larger datasets—for
50,000,000 and 100,000,000 objects, and they were about
64min and 2.5h, respectively. Because of very long compu-
tation times and high memory consumption, these datasets
were not processed using the sequential version of the algo-
rithm.

In the results reported in Table 3, we can also see that the
speedup for the smallest tested dataset is much worse than
for the rest of the analyzed datasets. The explanation of this
observation can be found in Fig. 8, which illustrates in detail
the time-sharing information of the proposed approach. It
can be seen that the propagation of the dataset objects to
the leaves (first kernel function), which is the most time-
expensive algorithm phase, takes only one-third of the total
evolutionary induction timeon theChess1M dataset,whereas

Table 2 Processing and memory resources of the NVIDIA graphics cards used in the experiments

NVIDIA graphics card Engine Memory ≈Price ($)

No. CUDA
cores

Clock
rate (MHz)

Size
(GB)

Bandwidth
(GB/s)

Geforce GTX 650 Ti 768 828 2 86.4 122

Geforce GTX 760 1152 980 2 192.2 139

Quadro K5000 1536 706 4 173.0 1679

Geforce GTX 780 2304 863 3 288.4 588

Geforce GTX Titan Black 2880 889 6 336.0 1899

Prices provided at http://www.videocardbenchmark.net/, updated November 29, 2015, are also included

123

http://www.videocardbenchmark.net/

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7375

Table 3 Mean speedup for different datasets and various GPUs

Chess1M Chess5M Chess10M Chess20M Suzy Higgs

Speedup

Intel Core i7—4 cores (OpenMP) ×3.2 ×3.3 ×3.1 ×3.0 ×2.5 ×2.4

NVIDIA Geforce GTX 650 Ti ×148 ×290 ×220 ×166 ×192 ×165

NVIDIA Geforce GTX 760 ×220 ×443 ×357 ×287 ×321 ×286

NVIDIA Quadro K5000 ×146 ×359 ×303 ×268 ×282 ×259

NVIDIA Geforce GTX 780 ×250 ×667 ×588 ×603 ×574 ×578

NVIDIA Geforce GTX Titan Black ×302 ×781 ×669 ×653 ×568 ×537

Time

Intel Core i7—sequential 29,000s 191,249s 322,000s 727,000s 159,134s 350,000s

≈8h ≈2days ≈4days ≈8days ≈2days ≈4days

The shortest time 96s 245s 481s 1113s 277s 606s

≈1.5min ≈4min ≈8min ≈18.5min ≈4.5min ≈10min

The mean speedup obtained for the multi-core OpenMP version is also provided. Below speedups, the mean execution time of the sequential
algorithm as well as its GPU-accelerated version on the fastest GPU is presented (in sec and days/h/min)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Chess1M

Chess5M

Chess10M

Chess20M
Suzy

Higgs

Ti
m

e
[%

]

Dataset

GPU calculation (kernel1)
GPU calculation (kernel2)

GPU memory allocation/deallocation
dataset CPU/GPU transfer

other GPU/CPU data transfer
CPU data flattening

CPU calculations

Fig. 8 Detailed time-sharing information (mean time as a percentage)
of the GPU-accelerated execution on Geforce GTX Titan Black for
various datasets

for the Chess20M dataset, it is almost 95%. This means that
other algorithm parts (like the second kernel function or GPU
memory allocation/deallocation) are also important in the
case of the smallest dataset. Because the execution times for
these other parts of the algorithm are only tree size dependent
(but not dataset size dependent), their time contribution in
the whole algorithm execution decreases when the dataset
size grows. Thus, for larger datasets, actions like propagating
the statistics from the leaves to the root node (second kernel
function) ormemory allocation/deallocation on theGPU take
a much smaller fraction of the total tree induction time. As
expected, the time spent by the CPU on calculations is almost

equal for all the datasets (about 2–3%) and is very short in
comparison with the GPU computation time. The influence
of the rest of the operations, such as transferring the trees
from/to GPU/CPU or the tree representation flattening, is
almost unnoticeable.

In Sect. 4.2, we proposed an optimization of the GPU-
accelerated algorithm that concerns processing only the
modified part of the tree (individual) instead of the whole
tree. To check the benefit (if any) of relocating only a part of
the data that falls into the modified nodes, additional experi-
ments were performed. In Fig. 9, we can observe noticeable
improvement in the speedup when only a part of the tree
is updated on all four variants of the Chess dataset using
two different graphics cards (Geforce GTX Titan Black and
Geforce GTX 780).

Performance of the proposed optimization strongly
depends on the size of the individual. As the lower parts
of the tree in the GDT system are modified more often, the
benefit of the proposed improvement should be higher on
larger trees. However, even for the tested Chess datasets,
in which the induced trees are not very big (8 internal
nodes and 9 leaves), the speedup increased almost 50%
in comparison with the algorithm without this improve-
ment.

We also experimentally checkedwhether different sizes of
the data processed in each block/thread influences the algo-
rithm speedup. Figure 10 presents the mean speedup for the
Chess dataset with a different number of objects for one
of the graphics cards (Geforce GTX Titan Black). It can be
observed that for all larger datasets (starting with Chess5M),
the configuration of blocks× threads equal to 1024 × 1024
fits the best, whereas Chess1M configuration 256 × 1024
gives noticeably better results.

123

7376 K. Jurczuk et al.

 100

 200

 300

 400

 500

 600

 700

 800

1M 5M 10M 20M

S
pe

ed
up

Dataset size

tree part, Titan Black
whole tree, Titan Black

tree part, 780
whole tree, 780

Fig. 9 The influence of the proposed improvement to process only the
modified part of a tree (individual) at the GPU instead of the whole
tree. The mean speedup when the improvement is switched on (solid
lines)/off (dotted lines) for the different sizes of the Chess dataset (1, 5,
10, and 20 million instances) using Geforce GTX Titan Black as well
as Geforce GTX 780 is shown

 100

 200

 300

 400

 500

 600

 700

 800

1M 5M 10M 20M

S
pe

ed
up

Dataset size

1024x1024
512x1024
256x1024
128x1024
512x512

Fig. 10 The influence of the number of blocks× threads on the per-
formance of the GPU-accelerated algorithm. The mean speedup for a
few blocks× threads configurations and the different sizes of the Chess
dataset (1, 5, 10, and 20 million instances) using Geforce GTX Titan
Black is shown

The reasonwhy the smaller number of blocksworks better
for smaller datasets can lie in the number of objects processed
in each thread. If the number of objects in each thread is small
(e.g., 1 or 2), the performance level falls. This is the case for
the Chess1M dataset in which for the configuration of 1024
blocks× 1024 threads, each thread processes a maximum of
2 objects. On the other hand, processing toomany objects per
thread (e.g., 8 and above) seems to slow down the evolution-
ary speed as well (see the configuration of 128 blocks× 1024
threads). Unfortunately, the maximum number of threads per

block is currently limited to 1024 by graphics card vendors.
As regards the number of blocks, it is limited by the approach,
as the number of blocks in the first kernel function is equal
to the number of block threads in the second kernel function
(see Fig. 4).

There are at least two reasons that may explain the
described algorithm behavior. The first one concerns the
problem with load balancing when the chunks of data are
too big. On the other hand, too small data portions could
cause more overhead as there are more threads to create,
manage, and so on. Interestingly, reducing the number of
threads in favor of blocks (512× 512 instead of 256× 1024)
yielded worse results on the Chess1M dataset and almost the
same for the rest of the datasets. More effort and research
on blocks× threads configurations is needed as this issue is
not only dataset dependent but also GPU dependent (Chitty
2016).

5.3 Additional discussion

Within the proposed solution, we tested the different par-
allelization techniques (population and/or data approach)
mentioned in Sect. 2.3. One of the studied cases was a hybrid
parallelization that was based on the decomposition of both
the population and the data. The original GDT system uses a
small number of individuals in the population; therefore, to
achieve a better parallelization effect, it was necessary for the
population size to be significantly increased (e.g., 100 times).
However, performed experiments (not included) showed that
even then, the solution proposed in this paper is more effi-
cient.

With our approach, there are sufficient data to load the
available multiprocessors and even to saturate the GPU.
Moreover, the fine-grained parallelization and data decompo-
sition itself facilitate load balancing. All threads in all blocks
process the same tree (individual), and each thread usually
processes the same number of objects. Therefore, individuals
with different sizes do not affect the overall parallelization
performance as all threads last a similar amount of time. The
benefits of the population or population-data approach might
bemore visible with much smaller datasets than the ones val-
idated in the manuscript.

Having the performance results for different graphics
cards (Table 3) as well as their prices (Table 2) gives us
an opportunity to estimate how much (in dollars) a single
speedup unit for particular GPUs costs. Table 4 shows us that
although Geforce GTX 780 and Geforce GTX Titan Black
provide the best algorithm acceleration, the Geforce GTX
760 is the best graphics card when the price/speedup factor
is analyzed.QuadroK5000achieves the lowest score.Quadro
familyGPUs are designed to accelerate application to design,
rendering, and 3D visual modeling (like CAD software) at
the expense of lower computational performance in games

123

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7377

Table 4 Costs (in dollars) of a single speedup unit for various GPUs
based on the mean speedups from all tested datasets in Table 3 and
prices in Table 2

NVIDIA graphics card Mean speedup Price/speedup

Geforce GTX 650 Ti 197 0.62

Geforce GTX 760 319 0.44

Quadro K5000 270 6.23

Geforce GTX 780 543 1.08

Geforce GTX Titan Black 585 3.25

1

10

100

1000

10k 100k 500k 1M

S
pe

ed
up

Dataset size

 2 attributes
 10 attributes
 20 attributes
 50 attributes
100 attributes

Fig. 11 The influence of the number of objects/attributes on the per-
formance of the GPU-accelerated algorithm. The mean speedup for
different sizes of the Chess dataset (10,000, 100,000, 5,000,000, and
1,000,000 instances) using Geforce GTX Titan Black is shown

and GPGPU. They offer lower power consumption but are
usually more expensive than GTX series GPUs. Regardless,
the obtained results show that even an engineering worksta-
tion equipped with a Quadro family GPU can be successfully
used in the fast evolutionary inductions of DTs.

We also verified the performance of the solutions on
datasets with fewer objects but with more attributes (see
Fig. 11). It is seen that for 10,000 instances and 2 attributes,
the speedup is the worst—a little higher than 1. However, in
this case, the calculation timewas only 1min. It is also visible
that the speedup grows with an increase in both the number
of attributes and number of objects. Because we focus on
large-scale data in this article, we left a thorough investiga-
tion of high-dimensional data (Cano et al. 2015) for future
studies. For such data, a hybrid parallelization (including
both population and date decompositions) or only popula-
tion decomposition (particularly for small dataset objects)
would probably be a more efficient approach.

6 Conclusions and future work

The growing popularity of evolutionary-induced DTs can be
withheld if there are no effective solutions for improving their
speed and ability to analyze large-scale data. In this paper,
we propose GPU-based parallelization to extend the GDT
system. Even a regular PC equipped with a medium-class
graphics card is sufficient for our algorithm to reduce the
tree induction time by more than two orders of magnitude.
The experiments performed on artificial and real-life datasets
presented in Table 3 show that our solution is fast, scalable,
and can explore large-scale data (e.g., the tree induction for
the dataset with 20,000,000 instances is performed under
20min, which would take around 8days for the sequential
solution).

We see many promising directions for future research.
A number of ideas for tuning the proposed solution, such
as the computation and data transfer overlapping mecha-
nism using concurrent execution design, can be investigated.
Additional levels of data/population/individual decomposi-
tion (Cano and Ventura 2014; Nasridonov et al. 2014) are
interesting directions to explore. We also plan to deal with a
multi-GPUparallelization to speed up evolutionary induction
even further. Hybrid parallelizations, such as MPI/CUDA,
are also within the scope of our interest. In addition, we will
continue to work with the presented approach to adapt it to
the evolutionary induction of regression and model trees.

Acknowledgements This work was supported by the Grants W/WI/2/
2014 (first author) and S/WI/2/2013 (third author) from Bialystok Uni-
versity of Technology founded by Ministry of Science and Higher
Education as well as by the Polish National Science Center and a
Grant allocated on the basis of decision 2013/09/N/ST6/04083 (sec-
ond author).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms.
IEEE Trans Evol Comput 6(5):443–462

Anderson DT, Luke RH, Keller JM (2008) Speedup of fuzzy cluster-
ing through stream processing on graphics processing units. IEEE
Trans Fuzzy Syst 16:1101–1106

Bacardit J, LloraX (2013)Large-scale datamining using genetics-based
machine learning. WIREs Data Min Knowl Discov 3:37–61

Barros RC, Basgalupp MP, Carvalho AC, Freitas AA (2012) A survey
of evolutionary algorithms for decision-tree induction. IEEETrans
SMC C 42(3):291–312

123

7378 K. Jurczuk et al.

Blake C, Keogh E, Merz C (1998) UCI repository of machine learning
databases. http://www.ics.uci.edu/~mlearn/MLRepository.html

Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and
regression trees. Wadsworth Int. Group, Belmont

Bull L, Studley M, Bagnall A, Whittley I (2007) Learning classifier
system ensembles with rule-sharing. IEEE Trans Evol Comput
11:496–502

Cano A, Zafra A, Ventura S (2012) Speeding up the evaluation phase of
GP classification algorithms on GPUs. Soft Comput 16:187–202

Cano A, Olmo JL, Ventura S (2013) Parallel multi-objective ant pro-
gramming for classification usingGPUs. J Parallel Distrib Comput
73:713–728

Cano A, Luna JM, Ventura S (2013) High performance evaluation of
evolutionary-mined association rules on GPUs. J Supercomput
66(3):1438–1461

Cano A, Luna JM, Ventura S (2014) Parallel evaluation of Pittsburgh
rule-based classifiers on GPUs. Neurocomputing 126:45–57

Cano A, Ventura S (2014) GPU-parallel subtree interpreter for genetic
programming. In: Proceedings of GECCO’14, pp 887–894

Cano A, Luna JM, Ventura S (2015) Speeding up multiple instance
learning classification rules on GPUs. Knowl Inf Syst 44(1):127–
145

Cantu-Paz E (2000) Efficient and accurate parallel genetic algorithms.
Kluwer Academic, Norwell

Chitty DM (2012) Fast parallel genetic programming: multi-core CPU
versus many-core GPU. Soft Comput 16:1795–1814

Chitty DM (2016) Improving the performance of GPU-based genetic
programming through exploitation of on-chip memory. Soft Com-
put 20(2):661–680

Crepinsek M, Liu S, Mernik M (2013) Exploration and exploitation in
evolutionary algorithms: a survey. ACMComput Surv 45(3):35:1–
35:33

Czajkowski M, Kretowski M (2014) Evolutionary induction of global
model trees with specialized operators and memetic extensions.
Inf Sci 288:153–173

Czajkowski M, Czerwonka M, Kretowski M (2015) Cost-sensitive
global model trees applied to loan charge-off forecasting. Decis
Support Syst 74:55–66

Czajkowski M, Jurczuk K, Kretowski M (2015) A parallel approach for
evolutionary induced decision trees. MPI+OpenMP implementa-
tion. In: Proceedings of ICAISC’15. Lecture notes in computer
science, vol 9119, pp 340–349

Esposito F, Malerba D, Semeraro G (1997) A comparative analysis of
methods for pruning decision trees. IEEETrans PatternAnalMach
Intell 19(5):476–491

Fabris F, Krohling RA (2012) A co-evolutionary differential evolution
algorithm for solving min-max optimization problems imple-
mented on GPU using C-CUDA. Expert Syst Appl 39(12):10324–
10333

Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (1996)
Advances in knowledge discovery and data mining. AAAI Press,
Palo Alto

FrancoMA,Krasnogor N, Bacardit J (2010) Speeding up the evaluation
of evolutionary learning systems using GPGPUs. In: Proceedings
of GECCO 10. ACM, New York, pp 1039–1046

Franco MA, Bacardit J (2016) Large-scale experimental evaluation
of GPU strategies for evolutionary machine learning. Inf Sci
330:385–402

Freitas AA (2002) Data mining and knowledge discovery with evolu-
tionary algorithms. Springer, Secaucus

Grahn H, Lavesson N, Lapajne MH, Slat D (2011) CudaRF: a CUDA-
based implementation of random forests. In: Proceedings of
IEEE/ACS, pp 95–101

Grama A, Karypis G, Kumar V, Gupta A (2003) Introduction to parallel
computing. Addison-Wesley, Reading

Grześ M, Kretowski M (2007) Decision tree approach to microarray
data analysis. Biocybern Biomed Eng 27(3):29–42

Hyafil L, Rivest RL (1976) Constructing optimal binary decision trees
is NP-complete. Inf Process Lett 5(1):15–17

Kass GV (1980) An exploratory technique for investigating large quan-
tities of categorical data. Appl Stat 29(2):119–127

Kotsiantis SB (2013) Decision trees: a recent overview. Artif Intell Rev
39:261–283

Kretowski M (2004) An evolutionary algorithm for oblique decision
tree induction. In: Proceedings of ICAISC’04. Lecture notes in
computer science, vol 3070, pp 432–437

Kretowski M, Grześ M (2005) Global learning of decision trees by
an evolutionary algorithm. In: Saeed K, Pejaś J (eds) Information
processing and security systems. Springer, US, pp 401–410. http://
link.springer.com/chapter/10.1007%2F0-387-26325-X_36

KretowskiM,GrześM (2007)Evolutionary induction ofmixeddecision
trees. Int J Data Wareh Min 3(4):68–82

Langdon WB (2011) Graphics processing units and genetic program-
ming: an overview. Soft Comput 15:1657–1699

LangdonWB(2013)Large-scale bioinformatics dataminingwith paral-
lel genetic programming on graphics processing units. In: Tsutsui
S, Collet P (eds) Massively parallel evolutionary computation on
GPGPUs, Springer, Berlin, Heidelberg, pp 311–347

Llora X (2002) Genetics-based machine learning using fine-grained
parallelism for data mining. Ph.D. Thesis. Barcelona, Ramon Llull
University

Lo WT, Chang YS, Sheu RK, Chiu CC, Yuan SM (2014) CUDT: a
CUDA based decision tree algorithm. Sci World J 1–12. http://
www.hindawi.com/journals/tswj/2014/745640/

Loh W (2014) Fifty years of classification and regression trees. Int Stat
Rev 83(3):329–348

Luong TV, Melab N, Talbi E (2010) GPU-based island model for evo-
lutionary algorithms. In: Proceedings of GECCO ’10. ACM, New
York, pp 1089–1096

Maitre O, Kruger F, Querry S, Lachiche N, Collet P (2012) EASEA:
specification and execution of evolutionary algorithms onGPGPU.
Soft Comput 16:261–279

Marron D, Bifet A, Morales GF (2014) Random forests of very fast
decision trees on GPU for mining evolving big data streams. In:
Proceedings of ECAI, pp 615–620

Michalewicz Z (1996)Genetic algorithms+ data structures= evolution
programs, 3rd edn. Springer, Berlin

Nasridonov A, Lee Y, Park YH (2014) Decision tree construction
on GPU: ubiquitous parallel computing approach. Computing
96(5):403–413

NVIDIA (2015)CUDACprogrammingguide. Technical report. https://
docs.nvidia.com/cuda/cuda-c-programming-guide/

NVIDIA (2015) CUDA C best practices guide in CUDA toolkit. Tech-
nical report. https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/

OhKS, JungK (2014) GPU implementation of neural networks. Pattern
Recogn 37(6):1311–1314

Oiso M, Matsumura Y, Yasuda T, Ohkura K (2011) Implementing
genetic algorithms to CUDA environment using data paralleliza-
tion. Tech Gaz 18(4):511–517

Quinlan JR (1992) Learning with continuous classes. In: Proceedings
of AI’92, World Scientific, pp 343–348

Rokach L, Maimon OZ (2005) Top–down induction of decision trees
classifiers—a survey. IEEE Trans SMC C 35(4):476–487

Rokach L, Maimon OZ (2008) Data mining with decision trees: the-
ory and application. Mach Percept Artif Intell 69. http://www.
worldscientific.com/worldscibooks/10.1142/6604

SocaN,Blengio JL,PedemonteM,Ezzatti P (2010)PUGACE, a cellular
evolutionary algorithm framework on GPUs. In: Proceedings of
IEEE congress on evolutionary computation (CEC), pp 1–8

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://link.springer.com/chapter/10.1007%2F0-387-26325-X_36
http://link.springer.com/chapter/10.1007%2F0-387-26325-X_36
http://www.hindawi.com/journals/tswj/2014/745640/
http://www.hindawi.com/journals/tswj/2014/745640/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://www.worldscientific.com/worldscibooks/10.1142/6604
http://www.worldscientific.com/worldscibooks/10.1142/6604

Evolutionary induction of a decision tree for large-scale data: a GPU-based approach 7379

Strnad D, Nerat A (2016) Parallel construction of classification trees on
a GPU. Concurr Comput Pract Exp 28(5):1417–1436

Tsutsui S, Collet P (2013) Massively parallel evolutionary computation
on GPGPUs. Springer, Berlin

Veronese L, Krohling R (2010) Differential evolution algorithm on the
GPU with C-CUDA: In: Proceedings of IEEE congress on evolu-
tionary computation (CEC), pp 1–7

Wilt N (2013) Cuda handbook: a comprehensive guide to GPU pro-
gramming. Addison-Wesley, Reading

Woodward JR (2003) GA or GP? That is not the question. In: Proceed-
ings of IEEE CEC, pp 1056–1063

Yuen D, Wang L, Chi X, Johnsson L, Ge W (2013) GPU solutions to
multi-scale problems in science and engineering. Springer, Berlin

Zhu W (2011) Nonlinear optimization with a massively parallel evolu-
tion strategy–pattern search algorithm on graphics hardware. Appl
Soft Comput 11:1770–1781

123

	Evolutionary induction of a decision tree for large-scale data: a GPU-based approach
	Abstract
	1 Introduction
	2 Background
	2.1 Decision trees
	2.2 GPGPU and CUDA
	2.3 Parallelization of EA
	2.4 Related work

	3 Globally induced decision trees
	3.1 Representation
	3.2 Initialization, selection, and terminal condition
	3.3 Genetic operators
	3.4 Fitness function

	4 GPU-based approach for GDT
	4.1 Data decomposition and merge strategy
	4.2 Optimization and implementation aspects

	5 Experimental validation
	5.1 Setup
	5.2 Obtained results
	5.3 Additional discussion

	6 Conclusions and future work
	Acknowledgements
	References

