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Abstract In this paper, we present a three-stage approach
to incorporation of texture analysis into a two-dimensional
active contour segmentation framework. This approach
allows to utilise texture information alongside other image
features. The proposed method starts with an initial unsuper-
vised feature computation and selection, then moves to a fast
contour evolution process and ends with a final refinement
stage. The algorithm is designed to be general in its nature
and not restricted to any particular texture feature extrac-
tion method. In this paper, the initial stage generates a set of
feature maps consisting of grey-level co-occurrence matrix
and Gabor features. The implementation makes an extensive
use of hardware acceleration for efficient calculation of a
relatively large number of features. The performance of the
method was tested on various synthetic and natural images
and compared with results of other algorithms.
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1 Introduction

Segmentation is a common tasks in image processing and
still an important topic of ongoing research. One of the most
successful groups of segmentation algorithms are deformable
models [16]—a class ofmethods based on a deforming shape
that tries to adapt to a specific image region, extracting
it from the background. Historically, the deformable mod-
els were best suited for regions with distinctive (but not
necessary continuous) borders and fairly uniform interior
intensity, as the influencing image forces used edge- and
intensity-based features. This traditional approach, although
highly effective in many applications, is often insufficient
in case of regions with a distinctive texture. The mere
task of texture recognition, easy for the human observer, is
not trivial in the current state of the computer vision. As
there is no universal model for the description of the image
texture, the algorithms must rely on different feature extrac-
tion methods, like grey-level co-occurrence matrices [7],
Gabor filters [11] or wavelet transforms [13]. Incorpora-
tion of the texture features into a deformable model-based
method can increase its effectiveness and application possi-
bilities, but it also has to deal with the various characteristics
of the features and also keep in mind the performance
issues.

In this paper, we propose a deformable model-based
method for segmentation of images with various texture pat-
terns. The method uses a multi-stage active contour driven
by the textural features, alongside other image information.
The segmentation process is divided into three stages: fea-
tures calculation and selection, initial contour evolution and
a refinement stage that fine-tunes the final result. The goal of
the algorithm is to create a framework that employs differ-
ent types of texture features. Currently, our implementation
uses a set of grey-level co-occurrence matrices (GLCM) and
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Gabor features, generated with the help of graphics process-
ing unit (GPU) acceleration.

2 Background and related work

Deformable model is an active shape (e.g. a 2D contour or
a 3D surface) that tries to adapt to a specific image region.
This adaptation process is usually influenced by external and
internal forces that deform the shape towards the boundaries
of the segmented region. The external forces attract themodel
to desired image features, while the internal forces control
its smoothness and continuity. This formulation allows the
models to overcome many problems, like image noise and
boundary irregularities.

Deformable models were popularised with a seminal
“snake” algorithm [12], which was a parametric active con-
tour with an image force and a set of internal energies that
controlled bending and stretching of the curve. Since then,
the classical model has been heavily modified and extended,
e.g. with addiction of expansion forces [4], edge-based vec-
tor field energies [31], adaptive topology mechanisms [15]
and region-based image energies [23]. Furthermore, different
othermodels, like level set-basedgeodesic active contours [2]
and region-based active contours without edges (ACWE) [3],
were also created.

External forces can come from a variety of image features.
Many segmentation methods commonly use edge [12,31]
and region intensity statistics [23,32] to drive the segmen-
tation process. However, larger patterns with high-contrast
pose a greater challenge to traditional methods. In order to
address this problem, methods combining deformable mod-
els with texture extraction and classification [19] were also
introduced.

Texture-based methods generally fall into two categories:
supervised and unsupervised. The supervised methods use
information obtained from prior (and often controlled) tex-
ture analysis stage. Paragios and Deriche [17] proposed an
extension of the geodesic active contour for texture segmen-
tation. Their solution requires a given set of texture patterns
that are present in the segmented image. An offline feature
extraction and analysis are then performed on the pattern set.
The computed information is used to generate region and
boundary forces that influence the contour evolution. Pujol
andRadeva [18] used a set ofGLCMmeasures to generate the
feature space, which was later reduced using linear discrim-
inant analysis and was utilised to create a likelihood map
that influenced the model deformation. Again, the method
requires samples of the image texture patterns for the train-
ing stage.

Unsupervised methods usually utilise the features of the
segmented region without earlier image analysis or pattern
classification. Shen et al. [26] proposed a method for creat-

ing a likelihood deformationmap from the intensity statistics
of the initial region in addition to the boundary information.
This solution was applied to 2D and 3D deformable models.
A similar approach was used by Huang et al. [10], where
the intensity characteristics were used to create the likeli-
hood map for the textures with small texons, and a small
bank of Gabor filters was utilised in the case of textures with
larger patterns. Rousson et al. [24] proposed an unsupervised
level set-based method that uses a variational framework
based on texture features extractedwith a structure tensor and
nonlinear diffusion scheme. Tatu and Bansal [29] proposed
a geodesic contour that uses intensity covariance matrices
as the texture features. Savig et al. [25] created a texture
edge detector from a Gabor feature space using the Bel-
trami framework [28] and integrated it with the geodesic
and Chan-Vese models. The Beltrami framework was also
used by Houhou et al. [9]. In this case, the proposed fea-
ture described not only the edge, but the properties of the
entire texture region. The utilised active contour model was
based on Kullback–Leibler distance and used a fast numer-
ical segmentation scheme. Awate et al. [1] proposed a fast
multi-stage level set method based on threshold dynamics [6]
that uses general nonparametric statistical image neighbour-
hoods model instead of specific texture features. It provides
automatic adaptation to image features and requires very few
user-provided parameters, including the number of texture
classes in the image and their scale. Recently, Wu et al. [30]
presented a method based on ACWE with a global minimi-
sation scheme, where GLCM and Gabor features are fused
together to create final feature space.

3 Multistage texture-based active contour overview

The presented segmentation method is based on an active
contour model equipped with a multistage evolution process.
The goal of the evolution is to expand the contour shape
according to the textural properties of its initial region.
The evolution procedure consists of three main stages (see
Fig. 1). Firstly, the algorithmgenerates a set of texture feature
maps and selects the features that characterise the segmented
region in themostmeaningfulway andwhichwill serve as the
influence of the deformation process.Next, the fast expansion
stage moves the contour towards the edge of the segmented
region using a strict textural stopping energy: it assumes that
a sudden change in one of the selected features indicates
a change in the texture pattern. Finally, the information col-
lected in the previous stage is used to refine the contour shape.

The utilised parametric active contour is designed to
segment a single continuous region, starting from a man-
ual initialisation. In contrast to more global region-based
methods, the contour provide a more local approach to the
segmented region and its border, which results in a fast evolu-
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Fig. 1 Diagram of the
proposed method with the three
stages

tion process that does not require any additional information
about other texture classes in the image. The contour is also
more sensitivity to small local changes that could be lost in
global region statistics.

3.1 Stage I: Texture feature extraction and selection

The first stage of the proposed method is responsible for the
generation and selection of the texture features that will be
used in the contour evolution process. The algorithm does
not specify the type of the features. In fact, any method that
can generate a feature map of the segmented image can be
used. As there is no supervised texture classification step [17,
27] and the number of different textures in the image is not
known, the selection condition picks the texture features that
will distinguish only the segmented area from regions with
different patterns regardless of their type or scale.

The generation stage begins with calculation of the texture
features within the bounding box of the initial contour. The
contour area should be large enough to sufficiently cover
the texture pattern, preferably by including several texture
pattern tiles. The features are calculated independently for
each image pixel in the bounding box which creates a set
of initial feature maps, denoted as Tinit . Next, the selection
step picks the maps with the most uniform feature values
inside the contour. For the pixels covered by the initial
snake in each of the feature maps ti , the mean of the fea-
ture values x̄i , standard deviation σi and relative standard
deviation %RSD(ti ) = σi

x̄i
× 100 are calculated. The texture

feature used in the next stages must have the %RSD lower
than a user-specified threshold, as defined:

Tbest = {ti ∈ Tinit : %RSD(ti ) < r}, (1)

where Tbest is the set of selected features and r is the thresh-
old (equal to 65% by default). Additionally to this uniformity
detection, a set of extraction method-specific conditions can
be employed to reduce the number of features in Tbest for
performance reasons. For example, generations of features
in larger scales can be omitted in case of fine-grained pat-
terns, as well as extraction of orientation-sensitive features
in isotropic textures.On the other hand, generation of features
in multiple scales is often desired to mitigate the influence
of image resolution on the patters, which allows the method
to adapt to textures of different scale.

With the features selected, their maps are then calcu-
lated for the entire image. The final set Tbest contains the
features that will drive the evolution of the contour in next
stages.

3.2 Stage II: Main contour evolution

The second stage performs a fast evolution process that
expands the contour towards the edge of the segmented
region. This stage is expected to find only a rough outline
of the region, as its final refinement will be performed in the
last stage.

In its present form, the method uses a discrete parametric
contour [22]. The shape of the snake is composed of a set
of points (snaxels) interconnected with line segments. The
movement of each snaxel can be steered by a set of energies
that describe the snaxel state in the given image position.
The snake evolution process aims to minimise the energies
of the snaxels by moving them to the positions of the lowest
energy, i.e. a snaxel can be moved only if its energy in the
potential destination will be lower than the energy in the cur-
rent position. The calculations are performed iteratively, and
the contour energy Esnake is minimised. Esnake is defined as:

Esnake =
∑

si∈snake
Eint(si ) + Eimg(si ) + Econ(si ) (2)

where si is a single snaxel, Eint is the internal energy (con-
trolling the form of the contour), Eimg represents the energy
based on the image features and Econ is the energy of other
constraints. The iterative evolution stops when there is no
more movement of the snaxels or the number of displaced
points is lower than a specified threshold.

The proposed method utilised a texture-based image
energy, as well as a dynamic topology reformulation method
[15] that allows the contour to refine its geometry in each
iteration and reduces the necessity of strong internal forces.
In each iteration, the position of every snaxel is updated
by examining its neighbourhood and choosing a new posi-
tion with lower textural energy. This energy Es

tex2, proposed
in [20], takes into consideration all the texture feature maps
from Tbest, selected in the first stage: the current snaxel s can
be moved into the new position p only if a similarity condi-
tion is fulfilled for all the texture feature maps from Tbest, as
defined in:
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Es
tex2(p) =

⎧
⎪⎨

⎪⎩

1
d(s,p)+1

if ∀t ∈ Tbest :
|valt (p) − x̄t | ≤ θ2 × σt

1 otherwise,

(3)

where d(s, p) is the distance between the location on snaxel
s and point p, t is a texture feature map in the Tbest set,
x̄t and σt are the feature mean and standard deviation of
the snake initial region, valt (p) is the value of the texture
feature in the point p, and θ2 is a user-defined constant. As
the energy is inversely proportional to the distance between
the current snaxel and its potential position, it prefers more
distant points, enabling faster expansion of the contour. This
energy works under two assumptions: (1) features with a
low dispersion in the initial snake region have a potential to
discriminate it from other patterns and (2) a significant value
change in one of themaps discourage the current snaxel from
further movement. The method gathers such points in the
next stage of the algorithm. It should be noted that a snaxel
stoppage caused by the energy is not necessary permanent, as
the topology reformulation can deal with outlier points that
have a high value of Es

tex2.

3.3 Stage III: Final contour refinement

The third stage of the algorithm results in a final form of
the contour. As the borders of texture regions are especially
difficult to extract, this stage performs a more advanced
fine-tuning of the snake, assuming that the contour after the
second stage is close to the actual boundaries of the region
and the necessary computations will not affect the overall
performance. This stage is also based on minimisation of the
contour energy, but it uses a different version of the texture-
based condition. Instead of focusing on a single unfitting
texture feature, the energy accumulates the dissimilarities of
the many features and discourages the snaxel from further
movement when a given error threshold is reached. Fur-
thermore, the calculations are performed for a range of the
threshold values, which results in multiple final segmenta-
tions, from which the best one is finally selected.

The third stage uses a modified version of the texture
energy described in Eq. (3). The energy uses the informa-
tion about the features that were responsible for stopping the
contour at its final position in the previous stage. With these
data available, a local energy of a snaxel s is based on a new
set of features Tlocal that contains only the features that over-
passed the threshold [see Eq. (3)] in its local neighbourhood
(10×10 pixelswindowby default). This operation eliminates
the features that were selected in the first stage but were not
useful in the second. Moreover, every feature map in Tlocal
is assigned a weigh wti , which is calculated by dividing the
number of stoppages for themap in the snaxel neighbourhood
by the total number of the stoppages from all feature maps in

the analysed window. This parameter gives more influence
to the features that were responsible for more stoppages in
the snaxel neighbourhood at the border of the contour.

The texture energy Es
tex3 in this stage is defined as:

Es
tex3(p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
d(s,p)+1

if

( ∑

ti∈Tlocal

|valti (p) − x̄ti |
x̄ti

× 100 × wti

)
≤ θ3

1 otherwise,

(4)

where ti is a texture feature map in the selected set Tlocal,
x̄ti is the feature mean in the initial snake region, valti (p) is
the value of the texture feature in the point p, and θ3 is a
user-defined constant. In this version of the energy, the per
cent errors between valti (p) and x̄ti for every feature map
in Tlocal are multiplied by the weight wti and added up. The
energy encourages the expansion of the contour only when
the sum of the errors does not exceed a given threshold θ3.

With the final form of the energy defined, the method
performs a series of contour evolutions by incrementing the
value of θ3 by 50% in each iteration, creating a set of pos-
sible segmentation results (see Fig. 2). The final result can
be currently selected in two ways: manually by the operator,
or using the algorithm suggestion based on two conditions:
(1) tracking of changes of the snake area and (2) analysis of
values of the texture features in consecutive iterations. The
changes are detected by calculating a slope m = |Δv

Δi | of
a characteristic v in the iteration i . The slope is calculated
only between two consecutive iterations, therefore Δi = 1
and the slopem = |Δv| = |v(in)−v(in−1)|. A slope greater
than a specified threshold indicates a sudden change in the
characteristics.

The first selection condition tracks the snake area. As the
third stage is not expected to cause a big increase in the
shape of the snake, a sharp change of the area will suggest
a local “leakage” of the contour due to oversegmentation
[see Fig. 2(c)]. Similarly, the second condition detects rapid
changes in the standard deviations of the image texture fea-
tures in the area covered by the snake in each iterations [see
Fig. 2(e)]. This stage tracks only the features responsible for
80%of the stoppages after the second stage. The final result is
suggested by selecting the iteration before the sudden change
(in the tracked value) occurred. The final result is obtained
by selecting a median value from the iterations suggested by
the area and all tested texture features.

4 Method realisation

This section details an example realisation of the proposed
approach. Currently, the utilised texture feature set consists
of GLCM and Gabor features.
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Fig. 2 Example of the Stage III
result selection: a initial circular
contour and result of Stage II,
b final result from iteration 3,
c rejected leaked contour from
iter. 4, d plot of the change in
contour area during Stage III
and e plot of the change in
texture features in the
consecutive iterations (iteration
3 marked with a vertical line.)

(a) (b) (c)
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4.1 GLCM features generation

Currently, themethod uses fiveGLCMfeatures: entropy, cor-
relation, homogeneity, contrast and energy. This selection
represents only a subset of available GLCM features, but it
was deemed to be sufficient for this example implementation.
With these five measures, a feature space/set is generated
using a combination of specific parameters: window size,
displacement and orientation. The calculated feature space
should be large enough to be useful for characterisation of
various texture patterns in different scales and resolutions.
Generation of a large feature space, however, can hinder
the overall performance of the method, even with the GPU-
accelerated algorithm being used. In order to address this
concern, the method start with a fixed set of GLCM proper-
ties and, if necessary, performs additional computations.

The generation algorithm uses a few pre-selection condi-
tions to reduce the feature space in the case of isotropic and
fine-grained textures. The window size is initially calculated
for 3 × 3, 5 × 5 and 7 × 7 square pixel neighbourhoods.
This parameter set can be too limited to capture the prop-
erties of larger texture pattern; therefore, an additional step
checks the possibility for an expansion of the window. In the
calculated homogeneity maps, the initial region of the con-
tour is partitioned into square regions with the size of the two
biggest windows (5×5 and 7×7). For a givenwindow size s,
this partitioning creates a matrix of regions Ws with a single
region denoted as wi, j . A set of arithmetic means qi, j of the

feature values inside of each of the region wi, j is calculated,
followed by relative standard deviation of the feature means
from all the regions, defined as

%RSD(Ws) = σq

q̄
× 100, (5)

where σq and q̄ are the average and standard deviation of
feature means of all regions. A high value of this measure
for the tested windows sizes (%RSD(W5) and %RSD(W7)

greater than 20% by default) signalise a high dispersion of
the average feature values inside the sub-regions, which can
be an indicator of a larger texture pattern. In that case, the
method to calculate the GLCM maps for bigger windows
(9 × 9, 11 × 11, and so on) until the dispersion is below the
acceptable threshold or the window area exceeds 25% of the
initial region.

By default, the algorithm generates a map for the orien-
tations of 0◦, 45◦, 90◦, 135◦, and one complete map that
combines all these angles. Then, it selects only the direc-
tionalmapswhich have their average feature value (inside the
initial region) sufficiently different (at least 50% by default)
from the average value in the completemap. This process can
exclude maps where the orientation angle has no meaning-
ful effect. Furthermore, in case of a clearly isotropic texture
pattern, generation of the maps with different orientations
can be manually turned off, leaving only the map with all
angles.
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Fig. 3 Segmentation of
synthetic images: a, c, e
initialisation of the contour with
the final result and (b, d, f) next
result after the selected
segmentation

Fig. 4 Segmentation of different texture patterns: a, c, e initialisation
with the final result and maps showing a visualisation of the texture fea-
tures that were themost responsible for stopping the contour on the final

border: b contrast, energy and correlation, d contrast and homogeneity
and f contrast, entropy and energy

Fig. 5 Natural image
segmentation: a initialisation; b
final result; c combined map of
the most influential GLCM
texture features; and d, e, f maps
of the influence of single
features (respectively): entropy,
correlation and homogeneity

4.2 Gabor features generation

In addition to the GLCM features, our method also uses a
bank of Gabor filters to extend the initial feature set. Gabor
filters are linear filters that are supposed to model the behav-
iour of certain cells in the mammalian visual cortex [5] and
have an ability to localise the information in both spatial
and frequency domain. This properties make them useful in
the image feature extraction process, particularly in the tex-
ture analysis field [11,19]. In our method, we use a bank
of 24 filters with four orientations (0◦, 45◦, 90◦ and 135◦),
three wavelengths (2, 4 and 8 pixels) and two Gaussian enve-
lope scales. The filtering performance benefits greatly from
the GPU-accelerated convolution algorithm. The generation
process also employs an angle detection scheme, similar as
in the case of GLCM features.

5 Experimental evaluation

The proposed method was tested on 256 × 256 synthetic
images created using the Brodatz texture database , as well
as on a set of natural images. The initial contours were man-

ually placed inside the desired regions and scaled to the
preferred size. During the experiments, only the sensitivity
parameter θ2 wasmodified (between 3 and 5), while the other
parameters were left constant on default values (r = 65%,
θ3 = 100 with 50% increase). The first stage of the algo-
rithm selects usually from 20 to 40 feature maps to be used
in the next stages. The number of the influential maps in
the third stage depends on the pattern characteristics, but
for the presented examples was usually lower than 10. The
experiments were performed on a machine with AMD FX
8150 Eight-Core processor, 16 GB RAM, Nvidia GeForce
GTX 660 graphics card (with 960 CUDA cores). The total
segmentation time was between 5 and 10 s for each of the
presented examples. The algorithm uses OpenCL and was
implemented using the MESA system [21]—a platform for
designing and evaluation of the deformablemodel-based seg-
mentation methods.

The first example (see Fig. 3) presents segmentation
results of synthetically composed images. In the first two
images, the area condition in the third stage was success-
ful in detection of the proper result—the area threshold was
exceeded right after the contour “leaked out” of the seg-
mented region. The result of the second stage was also close
to the final form of the contour.
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Fig. 6 Natural images segmentation: a ACWE with GLCM entropy
map, bACWE with GLCM correlation, (c,d) ACWE and level set with
GLCM entropy and (e, f) results of the proposed method

Table 1 Segmentation quality for natural images: results of the ACWE
and ILS in comparison with the results from the proposed method

Image Method VOE RVD ASSD

Leopard Tex. ACWE 17.2 13.0 6.6

Tex. ILS 14.1 −9.7 5.5

Zebra Tex. ACWE 56.4 124.0 204.0

Tex. ILS 24.8 3.5 8.5

Another example (see Fig. 4) shows the validity of the
multi-feature approach. During the segmentation of the
regions, different texture features were responsible for stop-
ping the contour on the borders with other regions. The usage
of many features allowed the method to adapt itself to a spe-
cific local situation, where different features were necessary
to discriminate the texture from other patterns.

The last two examples present the results of natural image
segmentation. Figure 5 shows a situation where different tex-
ture features were needed in different parts of the region.
Figure 6 compares the results of the proposed method with
ACWE and an intensity-based level set (ILS) [14]. Both
methods support only image intensity by default and are not
suited for regions with high- contrast patterns. Therefore, the
ACWE and ILS methods were run on single texture feature
maps selected from the third stage of the proposed methods,
effectively simulating a single-feature approach. Although
the maps were chosen to contain a possibly uniform fea-

tures, ACWE and ILS running on just the single feature map
could not give the desired results. The segmentation quality
(see Table 1) was assessed with three error measures: volume
overlap error (VOE), relative volume difference (RVD) and
average symmetric surface distance (ASSD) (see [8] for full
definitions).

6 Conclusions and future works

In this paper, a multi-stage texture-based parametric active
contour has been presented. The proposed method improves
the segmentation results of traditional snake methods on
imageswith textures of various size, contrast and complexity.
Moreover, the algorithm does not require any previous infor-
mation about the texture classes in the segmented image.
The contour uses a relatively large number of GLCM and
Gabor features while maintaining a high performance thanks
to GPU acceleration. Despite its relative simplicity, the
proposed approach gives promising results on artificially
composed and natural images.

The present form of the algorithm can benefit from many
possible improvements. The general nature of the initial fea-
ture generation and selection stage makes the method open
to incorporation of different texture features and is not lim-
ited to the current GLCM/Gabor approach. This stage can
be also extended to employ a more advanced feature selec-
tion scheme. Furthermore, the simple discrete form of the
contour can be replaced with a more robust level set-based
method [14,17]. The final refinement stage is the part of the
algorithm that can benefit from some additional improve-
ments. The final result selection mechanism works well in a
case of significant changes in the tracked characteristics, but
is not yet suited for detection of less abrupt changes (e.g. on
a smooth boundary between textured regions).

We are also investigating a level set-based adaptation of
the method into 3D and its possible usage on biomedical
images, since modern imaging techniques are inherently 3D.

Ackowledgements This work was supported by Bialystok University
of Technology under Grants W/WI/1/2016 and S/WI/2/2013.

References

1. Awate, S.P., Tasdizen, T., Whitaker, R.T.: Unsupervised tex-
ture segmentation with nonparametric neighborhood statistics. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—
ECCV 2006, pp. 494–507. Springer, Berlin (2006)

2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int.
J. Comput. Vis. 22(1), 61–79 (1997)

3. Chan, T., Vese, L.: Active contours without edges. IEEE Trans.
Image Process. 10(2), 266–277 (2001)

4. Cohen, L.D.: On active contour models and balloons. CVGIP
Image Underst. 53, 211–218 (1991)

123



816 SIViP (2017) 11:809–816

5. Daugman, J.G.: Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual
cortical filters. J. Opt. Soc. Am. A. 2(7), 1160–1169 (1985)

6. Esedoglu, S., Ruuth, S., Tsai, R.: Threshold dynamics for shape
reconstruction and disocclusion. In: Proceeding IEEE International
Conference on Image Processing, vol. 2, pp. 502–505 (2005)

7. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for
image classification. IEEETrans. Syst.,Man, Cybern. Syst. 6, 610–
621 (1973)

8. Heimann, T., van Ginneken, B., Styner, M.A., et al.: Comparison
and evaluation ofmethods for liver segmentation fromCT datasets.
IEEE Trans. Med. Imaging 28, 1251–1265 (2009)

9. Houhou, N., Thiran, J., Bresson, X.: Fast texture segmentation
model based on the shape operator and active contour. In: Proceed-
ing IEEEConference onComputerVision andPatternRecognition.
pp. 1–8 (2008)

10. Huang, X., Qian, Z., Huang, R., Metaxas, D.: Deformable-model
based textured object segmentation. EnergyMinimizationMethods
in Computer Vision and Pattern Recognition pp. 119–135 (2005)

11. Jain, A., Farrokhnia, F.: Unsupervised texture segmentation using
Gabor filters. Pattern Recognit. 24(12), 1167–1186 (1991)

12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour
models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

13. Laine, A., Fan, J.: Texture classification by wavelet packet signa-
tures. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1186–1191
(1993)

14. Lefohn, A.E., Cates, J.E., Whitaker, R.T.: Interactive, GPU-based
level sets for 3D segmentation. In: Ellis, R.E., Peters, T.M., (eds.)
Proceeding Medical Image Computing Computer Assisted Inter-
vention (MICCAI), pp. 564–572. Springer (2003)

15. Mcinerney, T., Terzopoulos, D.: T-snakes: Topology adaptive
snakes. Med. Image Anal. 4(2), 73–91 (2000)

16. Moore, P., Molloy, D.: A survey of computer-based deformable
models. International Machine Vision and Image Processing Con-
ference pp. 55–66 (2007)

17. Paragios, N., Deriche, R.: Geodesic active regions and level set
methods for supervised texture segmentation. Int. J. Comput. Vis.
46(3), 223–247 (2002)

18. Pujol, O., Radeva, P.: Texture segmentation by statistical
deformable models. Int. J. Image Gr. 4(03), 433–452 (2004)

19. Reed, T., DuBuf, J.: A review of recent texture segmentation and
feature extraction techniques. CVGIP Image Underst. 57(3), 359–
372 (1993)

20. Reska, D., Boldak, C., Kretowski, M.: A texture-based energy for
active contour image segmentation. In: Image Processing Com-
munications Challenges 6, Advances in Intelligent Systems and
Computing, vol. 313, pp. 187–194. Springer International Publish-
ing (2015)

21. Reska, D., Jurczuk, K., Boldak, C., Kretowski, M.: MESA: Com-
plete approach for design and evaluation of segmentation methods
using real and simulated tomographic images. Biocybern. Biomed.
Eng. 34(3), 146–158 (2014)

22. Reska, D., Kretowski, M.: HIST - an application for segmentation
of hepatic images. Zesz. Naukowe Politech. Bialostoc. Inform. 7,
71–93 (2011)

23. Ronfard, R.: Region-based strategies for active contour models.
Int. J. Comput. Vis. 13(2), 229–251 (1994)

24. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture
segmentation on a diffusion based feature space. In: Proceeding
IEEE Conference on Computer Vision and Pattern Recogition. pp.
699–704 (2003)

25. Sagiv, C., Sochen, N., Zeevi, Y.: Integrated active contours for
texture segmentation. IEEE Trans. Image Process. 15(6), 1633–
1646 (2006)

26. Shen, T., Zhang, S., Huang, J., Huang, X., Metaxas, D.: Integrat-
ing shape and texture in 3D deformable models: fromMetamorphs
to Active Volume Models. In: Multi Modality State-of-the-Art
Medical Image Segmentation and Registration Methodologies, pp.
1–31. Springer (2011)

27. Singh, P., Garg, R.: Fixed point ica based approach for maximiz-
ing the non-gaussianity in remote sensing image classification. J.
Indian Soc. Remote Sens. 43(4), 851–858 (2015)

28. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low
level vision. IEEE Trans. Image Process. 7(3), 310–318 (1998)

29. Tatu, A., Bansal, S.: A novel active contour model for texture seg-
mentation. In: Energy Minimization Methods Computer Vision
Pattern Recognition. pp. 223–236. Springer (2015)

30. Wu, Q., Gan, Y., Lin, B., Zhang, Q., Chang, H.: An active contour
model based on fused texture features for image segmentation.
Neurocomputing 151, 1133–1141 (2015)

31. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE
Trans. Image Process. 7(3), 359–369 (1998)

32. Yadollahi, M., Procházka, A., Kašparová, M., Vyšata, O.: The use
of combined illumination in segmentation of orthodontic bodies.
Signal, Image and Video Process. 9(1), 243–250 (2015)

123


	Towards multi-stage texture-based active contour image segmentation
	Abstract
	1 Introduction
	2 Background and related work
	3 Multistage texture-based active contour overview
	3.1 Stage I: Texture feature extraction and selection
	3.2 Stage II: Main contour evolution
	3.3 Stage III: Final contour refinement

	4 Method realisation
	4.1 GLCM features generation
	4.2 Gabor features generation

	5 Experimental evaluation
	6 Conclusions and future works
	Ackowledgements
	References




