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Abstract. In this work, a system for the classification of liver dynamic contest-
enhanced CT images is presented. The system simultaneously analyzes the im-
ages with the same slice location, corresponding to three typical acquisition
moments (without contrast, arterial- and portal phase of contrast propagation).
At first, the texture features are extracted separately for each acquisition mo-
ment. Afterwards, they are united in one “multiphase” vector, characterizing
a triplet of textures. The work focuses on finding the most appropriate features
that characterize a multi-image texture. At the beginning, the features which
are unstable and dependent on ROI size are eliminated. Then, a small subset
of remaining features is selected in order to guarantee the best possible clas-
sification accuracy. In total, 9 extraction methods were used, and 61 features
were calculated for each of three acquisition moments. 1511 texture triplets,
corresponding to 4 hepatic tissue classes were recognized (hepatocellular carci-
noma, cholangiocarcinoma, cirrhotic, and normal). As a classifier, an adaptive
boosting algorithm with a C4.5 tree was used. Experiments show that a small
set of 12 features is able to ensure classification accuracy exceeding 90%, while
all of the 183 features provide an accuracy rate of 88.94%.

Introduction

In Global Cancer Statistics, Jemal et al. (2011) reported that “Liver

cancer in men is the fifth most frequently diagnosed cancer worldwide but
the second most frequent cause of cancer death. In women, it is the seventh

most commonly diagnosed cancer and the sixth leading cause of cancer
death”. According to the mentioned research, in 2008, there were estimated

to be 748 300 new liver cancer cases in the world, and 695 900 people died
from liver cancer. Moreover, Jemal et al. (2011) revealed that the incidence

and mortality rate of primary liver cancers were increasing across many
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parts of the world. Most patients diagnosed with primary liver cancer die

within six months of diagnosis. In this context, the earliest possible detection
of such a disease becomes critical to successful treatment.

In clinical practice, a preliminary diagnosis of liver disorders is usually
based on several contrast-enhanced Computed Tomography (CT) scans. The

first series of images are acquired without contrast media injection. The next
two series concern two scenarios (i) when injected contrast media reaches

the liver through the hepatic artery (hepatic phase) and (ii) when it reaches
the liver through the portal vein (portal phase). Thus, an enhancement of

two vascular trees (branching from the hepatic artery and from the portal
vein) is possible. An evolution of the liver tissue region appearance, over

the contrast media propagation, could be a discriminating factor in tumor
diagnosis.

Visual analysis of liver CT scans, performed by an experienced radi-
ologist, often is not sufficient to correctly recognize the type of pathology.

Due to the fact that those performing the analysis are able to identify only
a small part of information stored in images, invasive techniques (such as

a needle biopsy) still remain a gold standard for a definitive diagnosis of hep-
atic disorders. The use of invasive procedures could be avoided if doctors

had the appropriate tools to interpret the image content. The solution could
be the image-based Computer Aided/Assisted Diagnosis/Detection (CAD)

systems, which have recently and rapidly become of growing interest. They
include many techniques of image analysis, such as organ segmentation, le-

sion extraction, and tissue characterization, often based on texture analysis
(Bruno et al., 1997), combined with classification algorithms. A large num-

ber of publications on the subject proves that the (semi)automatic CAD
systems appear to be a powerful tool for supporting medical decisions.

Two main stages of work of a typical image-based CAD system exist,
regardless of the imaging technique, the organ analyzed, or the possible

diseases to diagnose. The first stage is a system preparation for recognition
of a certain number of tissue classes. This stage, called learning (or training),

consists in the classifiers’ induction from a set of labeled vectors of features.
The learning set is created on the basis of the tissue regions, traced on

the images, for which a diagnosis has been verified. The second stage is an
application of the classifiers to aid a diagnosis.

Our goal is to develop a (semi)automatic CAD system for aiding a diag-
nosis of hepatic diseases from dynamic contrast-enhanced CT images. The

system we are working on simultaneously analyzes the triplets of images of
the same slice of the liver, corresponding to the three different moments of

contrast media propagation. Several CAD systems based on liver CT im-
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ages have already been investigated. Nevertheless, systems taking texture

evolution into account over contrast media propagation in hepatic vessels
are still rare. In this study, we focus on the choice of texture features that

best describe the “triphase” liver texture.
The rest of the paper is organized as follows: at first, we give a short

overview of the proposed CAD systems concerning the hepatic diseases di-
agnosis, based on CT images. Afterwards, we detail the two stages of work of

our system. We also discuss some strategies for choosing the most appropri-
ate texture features for triphase texture characterization: (i) an assessment

of a feature stability and of its dependency on the size of the analyzed
image region, (ii) feature selection with two searching directions – For-

ward and Backward. Then, the classification results obtained with selected
features are discussed. Finally, the conclusions and future works are out-

lined.

Review of Image-Based CAD Systems Based on Liver CT Images

One of the earliest studies concerning a computer-assisted diagnosis

based on liver CT images was undertaken by Chen et al. (1998). Their sys-
tem was able to automatically find the liver boundaries and to recognize two

types of liver tumors: hepatoma and hemangioma. In this system, the image
texture was characterized by its fractal dimension and the features obtained

from the co-occurrence matrices. A probabilistic neural network was used
as a classifier. A similar system, but one able to distinguish a healthy liver

and liver disease, was later presented by Husain et al. (2000).
In 2003, Gletsos et al. described a system adapted for recognizing the

four types of liver tissue: healthy, hepatic cysts, hemangioma, and hepato-
cellular carcinoma (HCC). They characterized the textures with the features

calculated from the co-occurrence matrices. The classifier was composed of
three sequentially placed feed-forward neural networks, trained with a back-

propagation algorithm. The same tissue types were recognized in the study
presented by Stoitsis et al. (2006). Their system tested several sets of texture

features, derived from: the gray-level histogram, the co-occurrence matrices,
the run-length matrices, the Laws’ texture energy method, and the fractal

models. A feature selection, based on genetic algorithms, was performed
in order to find the most useful features. Classification was carried out by

neural networks and statistical methods. Further continuation of this re-
search has resulted in the creation of a telematics-enabled system for image

archiving, management, and diagnosis support (Mougiakakou et al., 2009).
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This integrated system performed an image preprocessing, a semi-automatic

image segmentation, an extraction of texture features, and a classification.
All of the aforementioned systems processed only one image at a time,

acquired without contrast media. Later systems used contrast-enhanced im-
ages, but they were still adapted for the analysis of a single image. For ex-

ample, in 2004, Bilello et al. presented a system working on portal-phase im-
ages. It combined the methods for detection, characterization and classifica-

tion of liver hypodense hepatic tissue (cysts, hemangiomas, and metastases).
The texture analysis was performed with frequency methods. As classifiers,

the support vector machines were used.
The system described by Smutek et al. (2006) focused on the analysis of

focal liver lesions. It used the first- and second order texture features. The
analyzed images corresponded to the late portal phase. Another system, de-

veloped by Lambrou et al. (2006), differentiated healthy and tumor tissue.
To extract texture features, it used a wavelet transform method, in combi-

nation with three statistical methods (based on the gray level histogram,
the co-occurrence matrices, and the run length matrices). In both systems,

an ensemble of Bayesian classifiers was applied.
Still, in 2006, Mala et al. described a system adapted for a recognition

of HCC, cholangiocarcinoma, hemangioma, and hepatic adenoma. Their sys-
tem was able to automatically detect regions affected by a disease, charac-

terize a tissue (using methods based on wavelet transform), select the best
texture features, and finally classify tissues, using a probabilistic neural net-

work.
In 2009, Wang et al. tested yet another diagnostic system, which worked

with the three types of liver tissue: HCC, hemangioma, and normal tissue.
This system used four texture analysis methods (based on the gray level

histogram, the co-occurrence matrices, the gray level difference matrices,
and the run length matrices), and the support vector machines as classifiers.

Finally, in the work presented by Duda et al. (2004), a simultaneous
analysis of the three images, corresponding to typical moments of contrast

propagation (without contrast, arterial phase, portal phase) was proposed.
At first, the three corresponding textures were characterized separately

by features obtained from: the gray level histogram, Laws’ texture energy
method, the co-occurrence matrices, and the run length matrices. Then, the

features corresponding to the three related textures were placed together in
a one feature vector, characterizing a triphase texture. Three types of liver

tissue were recognized: healthy, HCC, and cholangiocarcinoma. The classi-
fication results obtained with the triphase textures were significantly better

than the results corresponding to each acquisition moment separately. Fur-
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ther work on similar data has confirmed that considering texture evolution

over contrast media, propagation could considerably improve classification
accuracy (Duda et al., 2006).

The idea of a multiphase texture characterization was also exploited by
Quatrehomme et al. (2013). In this case, four acquisition moments were con-

sidered: the first one was a pre-injection phase, the next three corresponded
to arterial, portal, and late phase of contrast media propagation. Five types

of hepatic lesions were classified: cysts, adenomas, hemangiomas, HCC, and
metastasis. The multiphase vectors were composed of features calculated

separately for four acquisition moments and united in a multiphase vector.
The results obtained for the “four-phase” textures were significantly bet-

ter than the single-phase ones. However, this work, like the two previous
ones, did not select the most relevant features for each of the considered

acquisition moments.
In the work described by Ye et al. (2009) the quadruples of images were

analyzed in order to differentiate four tissue classes: normal, cyst, heman-
gioma, and HCC. Only some combinations of the mean pixel values were

considered as temporal features. Nevertheless, they did not outperform the
texture features (based on the gray level histogram and the co-occurrence

matrices) considered separately for each of four phases.

Methods

The two previously described stages of work can also be distinguished

in the system that we are developing. The first stage – the construction of
the classifiers from the preprocessed database of image triplets – is depicted

in Figure 1. After a database creation, triplets of images are formed. An (or-
dered) triplet contains the images acquired at the same slice location. Each

of the images in the triplet corresponds to a different moment of contrast
media propagation in the hepatic vessels. The first of them is acquired with-

out contrast, the second and the third – after its injection, in the two typical
phases of its propagation, arterial and portal, respectively. The next step,

the preprocessing of images, could be optional. It aims at improving the con-
trast, eliminating the noise or the artifacts. Then, a Region of Interest (ROI)

is drawn on each of the three images. The three corresponding ROIs are of
the same size and of the same anatomical position. Afterwards, a label is

attributed to each triplet of ROIs. It refers to a tissue class, determined on
the basis of a verified diagnosis, for example, confirmed by a histopatholog-

ical study. Then follows a tissue characterization. It is based on the texture
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Figure 1. The system for texture-based classification of liver tissues.
First stage of work: a construction of the classifiers from the
preprocessed database of triplets of images. C and H stand for
liver tissue classes, cirrhosis and HCC, respectively

analysis and consists of calculating a set of numerical parameters in order to

measure different texture properties, e.g. coarseness, homogeneity, entropy,
or local contrast. Such numerical descriptions of the texture are called tex-

ture features. The tissue characterization is firstly made separately for each
of the three corresponding ROIs. Each of the ROIs is characterized with the

same features. Then, features corresponding to the three ROIs (thus – to the
three acquisition moments) are placed together in the one triphase complex

vector, characterizing the triplet of ROIs. This vector contains the infor-
mation about tissue properties that change over different contrast product

concentrations in the vessels. The set of labeled feature vectors is called the
training (or the learning) set. Often, not all features are equally useful for

a tissue description. For this reason, the selection of the most suitable ones
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Figure 2. The system for texture-based classification of liver tissues.
Second stage of work: application of the classifiers to aid a diagnosis.
C and H stand for liver tissue classes, cirrhosis and HCC,
respectively

is made. The subsets of features selected for different acquisition moments
could differ. Finally, one or several classifiers are constructed on the basis

of the training set, composed of vectors of selected features.
The second stage of the system work, i.e., its application to aid a diag-

nosis, is presented in Figure 2. At this stage, a triplet of images, visualizing
the same part of liver, but in the three typical phases of contrast propa-

gation, is necessary. If the image preprocessing was performed at the first
stage, now it is also performed, in order to obtain the same properties of

the images, as they were in a previous stage. Then, a triplet ROIs is traced,
one ROI on each image. Each ROI is characterized with the features that

were selected in the previous stage. Features obtained for the three ROIs
are placed in one triphase vector. Finally, the classifiers are used in order

to propose the most probable tissue class. Such a class is one of the classes
considered in the first stage of system work.

One of the major problems encountered during the construction of such
systems is a choice of features for the proper tissue characterization. So far,

a wide variety of methods for texture feature extraction have been proposed.

55



Dorota Duda, Marek Krętowski, Johanne Bézy-Wendling

They allow the calculation of tens or even hundreds of features describing the

various properties of visualized tissue. There is no such set of features that
fits each problem, regardless of imaging techniques, acquisition conditions,

or the organ that is visualized. However, applying all available features could
be impossible for many reasons. Too many features, especially far in excess

of the number of objects, could result in data overfitting. The presence of
redundant or not reliable features could diminish the classification accuracy.

Moreover, handling a relatively big set of observations, described by a large
number of features, requires considerable memory resources and can be very

time consuming. In the next part of the work, some important aspects for
choosing the most relevant features will be discussed.

The ability to properly characterize tissue could be preliminarily as-
sessed taking into account the instability (or the stability) of the feature.

If a slight displacement of the ROI results in a significant change in the
feature value, the feature can be considered unstable, thus not reliable in

the tissue characterization process.
Another way to evaluate the usefulness of the feature could be assess-

ment of its dependency on a ROI size. This is particularly important when
the ROI size is different for different patients or for different images (which

is true in the case of the database that we explore).
The instability of a feature and its dependency on the ROI size can

be determined by a standard coefficient of variation (CV). The coefficient
of variation is calculated from a set of feature values, obtained for ROIs

located at very close positions, or having almost the same size. It expresses
the importance of the variability of several feature values (given by the

standard deviation) compared to the absolute value of their average. The
more unstable the feature is, the greater its coefficient of variation and the

lower its reliability in the process of tissue characterization. We consider
that the CV of a feature should not exceed a certain threshold, in order to

consider the feature as stable.
In our work, we use the same sets of square ROIs in order to assess both

the stability of the feature and its dependency on the ROI size. In each case,
the coefficient of variation is calculated on the basis of the same number of

feature values obtained, respectively, from ROIs of almost the same locations
(approach Displace) or from the ROIs of almost the same sizes (approach

Size Changing). For the first approach, the initial ROI size is first slightly
decreased, then the reduced ROI is successively displaced, in order to take all

the possible positions within its initial boundaries. For the second approach,
the successive ROI vertices are moved by one pixel towards the ROI center,

in order to obtain smaller and smaller square ROIs.
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The coefficient of variation, obtained with the approaches Displace and

Size Changing is denoted, respectively, CVD and CVS. Only the features
with relatively small values of both CVD and CVS, thus insensitive both to

small ROI displacements and to small changes in ROI size, are considered
in further analyses.

After identifying the features with a relatively low coefficient of varia-
tion, the next step is to assess which subset of them ensures the best possible

classification accuracy. When a set of available texture features is large, an
evaluation of all of its possible subsets is impossible; the number of subsets

of an N -element set is 2N . Also, there can exist many different feature com-
binations that ensure comparable classification results. Due to these facts,

it is possible and sufficient to test only a small part of the whole subset
space.

We perform the feature selection using two searching directions (For-
ward, and Backward) in order to test a certain number of feature subsets.

Each time, the quality of candidate feature subset is assessed by the classi-
fication accuracy ensured with the proposed subset. When the classification

accuracy does not grow significantly while adding (in the Forward method)
or eliminating (Backward) the new features, the search stops.

In our work, we propose repeating the following procedure many times:
At first, a certain part of observations is randomly chosen from the initial

set of observations. Afterwards, a feature selection is performed only on this
part of chosen observations. After a multiple repetition of this procedure, we

count how often each feature occurs in the final subset of selected features.
On the basis of this “feature incidence frequency” a ranking of features

is made. Then, we examine how many first features from the ranking are
sufficient to ensure the best possible classification accuracy, using the whole

set of observations. We suspect that such an approach ensures a better
generalization than one single execution of feature selection on the entire

observation set. We conduct our experiments separately for Forward and
Backward searching directions.

Experimental Setup

The images were gathered in two hospitals in Rennes (France): Eugene
Marquis Anticancer Center (Department of Medical Imaging, Radio Diag-

nosis Unit) and the University Hospital Pontchaillou (Department of Radi-
ology). The images from the first center were acquired on the HiSpeed NX/i

device, produced by GE Medical Systems. In total, studies on 28 patients
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from this center were available. 21 of them were characterized by a slice

thickness of 7 mm, the remaining 7 – by a slice thickness of 5 mm. The
images from the second center were acquired on the LightSpeed16 device

(GE Medical Systems). They corresponded to 48 patients, and were all char-
acterized by a 5 mm slice thickness.

All the images from both hospitals (about 100 images for each patient
examination) were acquired using a helical scanner. A standard amount of

contrast agent (100 ml) was injected into the patient’s arm vein, at a rate
of 4 ml/s. The acquisition of images corresponding to the arterial phase of

the contrast agent propagation started about 20 seconds after the beginning
of the injection. The images corresponding to the portal phase were acquired

from 30 to 40 seconds later.
The images were initially stored in DICOM format, of 4096 gray

levels. The minimum gray level (zero) corresponded to –2048 Hounsfield
Units (HU) and the maximum gray level (4095) corresponded to 2047 HU.

All the images were of the size 512×512 pixels. Their reconstruction diam-
eter was between 330 mm and 500 mm.

Four classes of liver tissue were distinguished: HCC (the most frequently
observed primary liver tumor), cholangiocarcinoma, the cirrhotic liver, and

the healthy liver.
ROIs were manually drawn, as large as possible, on the images, avoiding

the big vessels. They entered into the two disjoint ROI sets. The first set
(named Square-ROI-Set), composed of only square ROIs of the same size

(60×60 pixels), was used for assessing the stability of the texture features.
It included 62 ROIs for each of: 2 available slice thicknesses, 4 tissue classes,

and 3 acquisition moments (2 · 4 · 3 · 62 = 1488 ROIs in total). The second
one (named Circular-ROI-Set) was composed of only circular ROIs with

a diameter ranging from 20 to 130 pixels. This ROI set was created on the
basis of 2961 images (987 images for each of the three acquisition moments).

In total, it included 4533 ROIs (1511 triplets of ROIs), 3·319 ROIs for HCC,
3 · 222 ROIs for cholangiocarcinoma, 3 · 433 ROIs for the cirrhotic liver, and

3 · 537 ROIs for the normal liver.
All the considered images were pre-processed. Since it was found that

the range of pixel values characterizing the pixels belonging to all considered
ROIs was less than 256 = 2

8 (more precisely, it was 248), the DICOM images

were converted to a 8-bit BMP format. Such a conversion (windowing) was
done taking the window width of 256 levels (HU), and the window center

of 70 HU. Thus, all the differences in gray levels between all the pixel pairs
belonging to considered ROIs were preserved in the resulting images.

On the basis of 8-bit BMP images, 61 texture features were calculated
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separately for each of the three acquisition moments. For this purpose,

the MIP (Medical Image Processing) Application was used. This applica-
tion was created at the Faculty of Computer Science, Bialystok University

of Technology (Poland) and at the Signal and Image Processing Labora-
tory, Rennes 1 University (France). One of its modules, Texture Analyzer,

enabled us to extract the texture features, based on the following methods:
– First Order statistics, abbreviated FO,

– Gradient based, GB,
– Co-Occurrence Matrices, COM (Haralick et al., 1973),

– Run Length Matrices, RLM (Chu et al., 1990; Galloway, 1975),
– Gray Level Difference Matrices, GLDM (Weszka et al., 1976),

– Laws Texture Energy, LTE (Laws, 1980),
– Fractal based, FB (Chen et al., 1989),

– Texture Feature Coding Method, TFC (Horng et al., 1996),
– Autocorrelation, AC (Gonzalez et al., 2002).

Table 1 contains the names of features obtained from each method.

Table 1. Texture features chosen for evaluation

Method Features

AC Autocorr

COM AngSecMom, InvDiffMom, Entr, Corr, Contrast, DiffAvg, DiffEntr, DiffVar,
SumAvg, SumEntr, SumVar

FB FractalDim, FractalArea

FO Avg, Var, Skew, Kurt

GB GradAvg, GradVar, GradSkew, GradKurt

GLDM DAvg, DEntr, DAngSecMom, DInvDiffMom, DContrast

LTE E3L3, S3L3, S3E3, E3E3, S3S3, E5L5, S5L5, W5L5, R5L5, S5E5, W5E5,
R5E5, W5S5, R5S5, R5W5, E5E5, S5S5, W5W5, R5R5

RLM Fraction, RLNonUni, GLNonUni, LongEmp, ShortEmp, LowGLREmp,
HighGLREmp, RLEntr

TFC MeanConv, CodeEntr, Coarse, Hom, CodeVar, ResSim, CodeSim

When applying the COM, GLDM, and RLM methods, the number of

gray levels was reduced from 256, used initially, to 64. Other methods used
the whole range of 256 levels.

The co-occurrence matrices and the gray level difference matrices were
constructed separately for 4 standard directions (0◦, 45◦, 90◦, 135◦) and for

5 different distances between the pixel pairs, going from 1 to 5. From each
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of 20 thus obtained matrices, the same features were calculated, 11 features

by the COM method and 5 features by the GLDM method. Then, 20 values
of the same feature, corresponding to different directions and pixel dis-

tances, were averaged in order to obtain only one value per feature. The
run-length matrices were also constructed for 4 standard directions. Each

of them served to calculate the 8 features. The 4 values of the same feature,
obtained for different directions of pixel runs, were averaged.

The normalized autocorrelation coefficients (AC method) and the
2 among 7 TFC features (CodeEntr, CodeSim) were also calculated sep-

arately for 4 standard directions, and for 5 different pixel distances, going
from 1 to 5. Then, an average of 20 feature values were used to characterize

a liver tissue. The remaining 5 TFC features were obtained by averaging
4 values of the same feature, calculated separately for 4 standard directions.

The FB method was based on the fractional Brownian motion model
(Chen et al., 1998) and considered 4 pixel distances (1, 2, 3, and 4).

The LTE method provided 19 features, obtained either by the appli-
cation of 24 filtering masks of 5×5 size or the application of 8 masks

of 3×3 size. In the first case, 4 symmetric masks and 10 pairs of asym-
metric ones, each pair consisting of a mask and its transposition, were used,

in the second – 2 symmetric masks and 3 pairs of asymmetric ones (a mask
and its transposition). The sum of elements of each convolution matrix

was equal to zero. For each pair of asymmetric masks, the resulting im-
ages were added. Images obtained with an application of symmetric masks

were multiplied by two. Finally, the entropies of 14 or 5 thus obtained im-
ages (with, respectively, 5×5 masks, and 3×3 masks) served as texture

features.
In order to assess the feature stability and its dependency on the ROI

size, the Square-ROI-Set was used. The assessment of the coefficient of vari-
ation was performed separately for each of its 24 subsets. Two approaches

were separately applied for calculating the coefficient of variation for each
feature: Displace (giving the CVD value) and Size Changing (for CVS). The

coefficient of variation was always calculated on the basis of 9 feature values.
In the Displace approach, the ROI was reduced to a 58×58 square in or-

der to take the 9 possible positions inside its initial boundaries. In the Size
Changing approach, the 9 considered ROIs were of sizes going from 60×60

to 52×52. For each of the 24 subsets, the average of 62 values of coefficient
of variation, obtained separately for each of 62 ROIs, was used for further

analyses.
Next, the experiment consisted of selecting a subset of features ensuring

the best possible classification accuracy. In this step, only the triplets of
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ROIs from the Circular-ROI-Set were used. Each triplet was described by

120 texture features, 40 features for each acquisition moment. Only the
features insensitive both to small ROI displacements and to small changes

in ROI size were considered. This experiment was performed with theWeka
software (Hall et al., 2009). The following selection settings were applied:

the wrapper method – as an evaluator of each tested subset of features
(WraperSubserEval), the C4.5 tree (Quinlan, 1993) (called J48 in Weka),

as a classifier, and the BestFirst searching strategy with the two searching
directions, Forward and Backward (tested separately). The selection was

repeated 100 times. Each time 1007 = 1511 · 2/3 multiphase feature vectors
were randomly chosen for the selection experiment. On the basis of the

100 obtained subsets of selected features, the feature incidence frequency
ranking was made.

Finally, for the classification experiment, the entire Circular-ROI-Set
was used. Each triplet of ROIs was described only by several or several

dozen selected texture features, occupying the first positions of the feature
incidence frequency ranking. Different numbers of first ranked features were

used. The classification was performed with Weka, using an Ensemble of
Classifiers with an adaptive boosting voting scheme (Freund et al., 1997),

called AdaBoostM1 in Weka, and a C4.5 tree (J48) as the underlying algo-
rithm. The number of iterations for the AdaBoostM1 algorithm was 100. The

classification accuracy was estimated by 10-fold cross-validation, repeated
10 times.

Results and Discussion

First, we assessed the feature stability and its dependency on the ROI
size. Since the presentation of all the coefficients of variation obtained for

each of the 61 features (24 values of CVD, and 24 values of CVS) would oc-
cupy too much space, we limit ourselves, for the moment, to the presentation

of general conclusions, drawn from the whole set of results.
– Regardless of the approach (Displace or Size Changing) and, as far as

the same slice thickness is considered, the three averaged coefficient
of variation values (CVD or CVS), obtained for the three acquisition

moments do not differ significantly. Nor do they differ between 4 tis-
sue classes. However, for the Size Changing approach, the highest of

4 CVS values, obtained for different classes, but corresponding to the
same slice thicknesses and the same acquisition moment, is observed

slightly more frequently for the tumor tissue.
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Table 2. Maximum feature CV value (among the values corresponding
to 2 approaches, 3 acquisition moments, and 4 classes) obtained for
different slice thicknesses: 7 mm and 5 mm. The features are sorted
by the increasing maximal CV values, corresponding to the slice
thickness of 7 mm. Only the CV values not exceeding a threshold
of 0.01 for both slice thicknesses are taken into account

Rank Feature 7 mm 5 mm Rank Feature 7 mm 5 mm

1 Autocorr 0.0009 0.0010 21 S3S3 0.0034 0.0063

2 FractalDim 0.0013 0.0018 22 DInvDiffMom 0.0034 0.0049

3 E3E3 0.0014 0.0023 23 Avg 0.0036 0.0037

4 CodeEntr 0.0014 0.0040 24 InvDiffMom 0.0036 0.0047

5 S5L5 0.0016 0.0024 25 W5S5 0.0036 0.0079

6 S3L3 0.0017 0.0026 26 MeanConv 0.0037 0.0069

7 E5E5 0.0017 0.0025 27 SumAvg 0.0039 0.0039

8 S5S5 0.0017 0.0032 28 CodeVar 0.0044 0.0081

9 ShortEmp 0.0018 0.0017 29 GradAvg 0.0052 0.0060

10 W5E5 0.0019 0.0033 30 DiffEntr 0.0052 0.0034

11 E3L3 0.0021 0.0025 31 DEntr 0.0052 0.0033

12 Fraction 0.0022 0.0020 32 R5R5 0.0054 0.0083

13 W5L5 0.0022 0.0028 33 DAngSecMom 0.0054 0.0062

14 R5S5 0.0025 0.0050 34 Entr 0.0055 0.0042

15 S3E3 0.0026 0.0059 35 RLEntr 0.0058 0.0041

16 R5E5 0.0026 0.0050 36 LongEmp 0.0062 0.0053

17 E5L5 0.0027 0.0030 37 R5W5 0.0064 0.0089

18 R5L5 0.0027 0.0043 38 DAvg 0.0070 0.0072

19 S5E5 0.0030 0.0044 39 SumEntr 0.0072 0.0050

20 W5W5 0.0030 0.0054 40 HighGLREmp 0.0074 0.0076

– The CVD values are almost always lower than the corresponding

CVS values. This may indicate that studied features are more influ-
enced by the ROI size than by the ROI position. An exception to this

rule is observed for the most unstable features (with the largest values of
coefficient of variation), such as Skew (FO method) or GradKurt (GB).

We can thus conclude that one should be particularly careful in the
choice of features when analyzing the ROIs of different sizes.

As a measure of the feature stability, we finally took the maximum of
the 24 CV values, obtained for two different approaches, three acquisition

moments and four tissue classes. They are listed in Table 2. For each feature,
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Table 3. Ranking of features according to their frequency rate [%], obtained
with the Forward searching direction. Superscript indices indicate
the corresponding acquisition moment. Only the first 33 features are
considered

Rank Feature Frequency

1 Avg(A) 3.94

2 R5S5(P) 3.54

3 SumAvg(W) 3.27

4 LongEmp(A) 3.07

5 HighGLREmp(A) 2.67

6 SumAvg(A) 2.60

7 HighGLREmp(W) 2.54

8 Avg(W) 2.47

9 R5S5(W) 1.94

10–11 Avg(P), SumAvg(P) 1.87

12 HighGLREmp(P) 1.67

13 S3S3(A) 1.60

14 R5E5(P) 1.40

15–17 W5S5(W), ShortEmp(A), R5S5(A) 1.34

18–19 R5E5(W), Fraction(A) 1.27

20–21 R5E5(A), R5L5(P) 1.20

22–25 W5W5(W), W5W5(A), RLEntr(P), S3E3(W) 1.13

26 Entr(W) 1.00

27–33 ShortEmp(W), S5S5(W), MeanConv(A), 0.93

Fraction(P), R5R5(P), SumEntr(A), E3E3(P)

the maximum CV value was found separately for two different slice thick-
nesses: 7 mm and 5 mm. Only the most stable features (with the CV not

greater than a fixed threshold, 0.01, for both slice thicknesses) are included
in the table.

For most of the features, the greater stability (expressed in the lower
maximal value of the coefficient of variation) can be observed for thicker

slices – those with a thickness of 7 mm. An exception to this rule can
be found for the majority of RLM features (ShortEmp, Fraction, RLEntr,

LongEmp) and for the different measures of texture entropy: Entr, Diff-
Entr, SumEntr (COM method), DEntr (GLDM). When the slice thickness

diminishes, smaller and smaller details in the vascular structure became
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Table 4. Ranking of features according to their frequency rate [%], obtained
with the Backward searching direction. Superscript indices indicate
the corresponding acquisition moment. Only the first 32 features are
considered

Rank Feature Frequency

1 HighGLREmp(P) 1.46

2 R5R5(P) 1.43

3 HighGLREmp(W) 1.33

4–6 RLEntropy(P), R5L5(P), CodeEntr(W) 1.30

7 FractalDim(A) 1.29

8 SumAvg(W) 1.25

9–10 R5W5(P), DInvDiffMom(P) 1.19

11–12 S5E5(A), SumAvg(A) 1.18

13 S3S3(P) 1.14

14–18 HighGLREmp(A), FractalDim(P), SumAvg(P), 1.13

CodeEntr(P), DEntr(P)

19–20 Autocorr(A), Avg(P) 1.11

21 RLEntr(A) 1.10

22–24 S5E5(W), Avg(A), SumEntr(P) 1.08

25–26 LongEmp(A), CodeEntr(A) 1.07

27–30 Avg(W), FractalDim(W), SumEntr(A), S3S3(A) 1.03

31–32 W5S5(A), R5S5(P) 0.99

perceptible in the image. Its texture becomes more and more varied, and
its “disorder” increases.

In the next experiment (selection of a subset of features ensuring the
best possible classification accuracy), we used only the most stable 40 fea-

tures (Table 2).
In the case of the Forward searching direction, the minimum number

of selected features was 7, the maximum – 30, and the average number was
about 15. The features corresponding to the arterial phase were slightly more

frequently selected. On average, they represented 35.45% of the selected
features. The features corresponding to the portal phase, with the frequency

of 31.98%, followed.
An application of the Backward direction resulted in more numerous

subsets of selected features. They included between 45 and 91 features. The
average number of features was about 64. In this case, the percentages of

features corresponding to each acquisition moment were almost similar.
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Figure 3. Classification accuracy (with standard deviation) obtained
with different numbers of the most frequently selected features
with Forward direction

The ranking of features, according to their incidence frequency in the
entire selection experiment is presented in Tables 3 and 4, for the Forward

and the Backward directions, respectively. For each feature name, super-
script indices indicate the corresponding acquisition moment: without con-

trast (W), arterial phase (A), or portal phase (P). The rankings take into
account only a certain number of the best features. In the next experiment,

we will see that with such a number of features, it is possible to achieve the
highest possible classification accuracy.

Figures 3 and 4 show the classification accuracy obtained for differ-
ent numbers of first features taken from the rankings presented in Table 3

(concerning the Forward direction), and Table 4 (Backward direction).
From Figure 3, we can notice that the use of 26 features, most frequently

selected with the Forward searching direction (Table 3), leads to the cor-
rect recognition of 90.71% of the observations. Even if the best possible

result (91.10%) is obtained for a set of 69 features, using such a “better”
and larger set of features might not be necessary. Taking into account the

standard deviations (approximately 2.50%), we can conclude, that the im-
provement achieved in this case (0.39%) is not significant.

We can also observe that the 26 most selected features derive from only
4 extraction methods: LTE, RLM, COM, and FO (12, 7, 4, and 3 features,

respectively). The most represented acquisition moment is, in this case,
the arterial phase (10 of 26 features), then follows the no-contrast phase

(9 features) and the arterial phase (7 features).
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Figure 4. Classification accuracy (with standard deviation) obtained
with different numbers of the most frequently selected features
with Backward direction

In the case of the features most frequently selected with the Backward
direction (Table 4, Figure 4), the classification accuracy exceeds 90% even

with 12 features. The classification results do not change significantly even
when more and more features are considered. The best result (91.15% with

a standard deviation of 2.49%) is now obtained with the set of 74 features.
This time, the set of the most frequently selected features includes fea-

tures obtained from the 6 extraction methods: LTE (4 features), RLM (3 fea-
tures), COM (2 features), GLDM, FB, and TFC (one feature for each of

the last three methods). The features corresponding to the portal phase ac-
quisition are more numerously represented in this set. They constitute half

of the set. Each of the remaining acquisitions (no-contrast, and the arterial
phase one) is represented by 3 features.

For comparison, the classification accuracy obtained with the set of all
the 3 · 61 = 183 features (including the unstable features, and dependent on

ROI size) was 88.94%.

Conclusions and Future Work

In this paper, an image-based CAD system was presented. The advan-

tage of the system is its ability to analyze a triplet of images simultaneously.
Each image in a triplet visualizes the same liver slice, and corresponds to

a different moment of contrast media propagation. The first one is taken
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without contrast, the second – in the arterial phase, and the third – in

the portal phase. At first, the liver texture in each acquisition moment is
characterized. Afterwards – features corresponding to the three acquisition

moments are united in one multiphase vector. Thus, the texture evolution
over the contrast media propagation is characterized.

The study focused on a choice of the best texture features for descrip-
tion of triplets of textures. 61 features were tested for each of the three

acquisition moments (183 features in total). At the first step, 3 · 21 fea-
tures that were unstable or dependent on the ROI size were excluded.

Then 3 · 40 = 120 remaining features, united in triphase vectors, were sub-
jected to a selection. The classification experiments showed that a small

set of the most frequently selected features (composed of 26 or even
12 features) is able to ensure the classification accuracy that is com-

parable to, or even better than, the accuracy achieved by using all of
the 120 features. The features corresponding to each acquisition moment

were different.
In the future, we plan to search for the features that are independent

on the image resolution (or on the reconstruction diameter). It seems that
it would also be interesting to apply a similar method of multiphase tex-

ture characterization for other classification tasks, wherever the organ is
visualized repeatedly, each time under different acquisition conditions.
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