
A Memetic Algorithm for Global Induction of
Decision Trees

Marek Krȩtowski

Faculty of Computer Science, Bia�lystok Technical University
Wiejska 45a, 15-351 Bia�lystok, Poland

mkret@wi.pb.edu.pl

Abstract. In the paper, a new memetic algorithm for decision tree
learning is presented. The proposed approach consists in extending an
existing evolutionary approach for global induction of classification trees.
In contrast to the standard top-down methods, it searches for the opti-
mal univariate tree by evolving a population of trees. Specialized genetic
operators are selectively applied to modify both tree structures and tests
in non-terminal nodes. Additionally, a local greedy search operator is em-
bedded into the algorithm, which focusses and speeds up the evolutionary
induction. The problem of over-fitting is mitigated by suitably defined
fitness function. The proposed method is experimentally validated and
preliminary results show that the proposed approach is able to effectively
induce accurate and concise decision trees.

1 Introduction

Evolutionary Computations is the name commonly used for describing a group of
optimization and search techniques inspired by the process of natural evolution.
Their main advantages over greedy search methods is their ability to avoid local
optima. On the other hand it is known that pure evolutionary methods are not
the fastest methods and a lot of effort is put into speeding them up. One of the
possible solutions is a combination of evolutionary approach with local search
techniques, which is known as Memetic Algorithms [10]. However, designing a
competent memetic algorithm for a given problem is not an easy task and a
number of important issues have to be addressed (e.g. where and when local
search should be applied during the evolutionary search).

In this paper, an evolutionary learning of decision trees based on the training
dataset is investigated. There are two main approaches to induction of decision
trees: top-down and global. In the first approach, the optimal test searches and
data splitting are recursively repeated to consecutive subsets of the training data
until the stoping condition is not met. Usually, the growing phase is followed by
the post-pruning. Apart of the classical top-down system like CART [3] or C4.5
[18], several EC-based systems which learn (mainly oblique) decision trees in
the top-down manner (e.g. BTGA [5], OC1-ES [4], DDT-EA [11]) have been
proposed so far.

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 531–540, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

532 M. Krȩtowski

In this paper, the second approach to decision tree induction is advocated.
In contrast to the step-wise construction, the whole tree is being searched at
the time. It means the simultaneous search for an optimal structure of the tree
and for all tests in non-terminal nodes. This process is obviously much more
computationally complex but it can reveal hidden regularities, which are almost
undetectable by greedy methods

The global approach was initially proposed by Koza in [9], where genetic pro-
gramming was used for evolving LISP S-expressions that correspond to simple
decision trees. A similar idea was investigated in the GATree system [17] which
directly evolves classification trees with nominal tests. Fu et al. proposed a ge-
netic algorithm called GAIT [8], which evolves binary trees initially obtained
by applying C4.5 on small sub-samples of the original data. Two simple ge-
netic operator are utilized and individual performance is judged by measuring
classification accuracy on the validation set. It should be noted that only tests
from initial trees can be used in the internal nodes. Another interesting global
system is called GALE [15]. It is a fine-grained parallel evolutionary algorithm
for evolving both orthogonal and oblique decision trees. GALE uses squared re-
classification accuracy as a fitness and simple operators (one point cross-over
from genetic programming and random perturbation of the test).

In the paper, for the first time a memetic algorithm is proposed for global
induction of decision trees. It combines typical evolution of trees with the local
search for optimal tests in non-terminal nodes. The local optimality criteria
come from CART and C4.5 systems. This kind of hybridization should profit
from both global and greedy methods and should improve the efficiency of the
search.

The rest of the paper is organized as follows. In the next section the proposed
memetic algorithm for global induction of univariate decision trees is described.
Experimental validation of the method on artificial and real-life data is presented
in section 4. In the last section, the paper is concluded and possible future works
are sketched.

2 Memetic Algorithm for Global Induction

As the presented system evolved from our previous classical evolutionary al-
gorithm [12,13,14], the general structure of the memetic algorithm follows the
standard evolutionary framework [16]. The local search component responsible
of the optimal test search in internal nodes is introduced in the initialization and
embedded into the mutation operator.

2.1 Representation, Initialization and Termination Condition

Representation. There are two ways of representing candidate solutions in
the evolutionary search. In the first one, individuals are encoded in the fixed-
size (usually binary) chromosomes and standard genetic operators can be used.
The second possibility consists in applying more sophisticated representations

A Memetic Algorithm for Global Induction of Decision Trees 533

(e.g. variable-length) and developing specialized genetic operators. As a structure
of the optimal decision tree for a given learning set is not known a priori it is
obvious that the second approach is chosen for the global induction.

In the presented system, decision trees are represented in their actual form as
classical univariate trees where each test in a non-terminal node concerns only
one attribute (nominal or continuous valued). Additionally, in every node infor-
mation about learning vectors associated with the node is stored. This enables
the algorithm to perform more efficiently local structure and tests modifications
during applications of genetic operators.

In case of a nominal attribute at least one value is associated with each branch.
It means that an inner disjunction is built-in into the induction algorithm. For
a continuous-valued feature typical inequality tests are considered. Specialized
genetic operators consider only boundary thresholds [7] as potential splits. A
boundary threshold for the given attribute is defined as a midpoint between such
a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples belong to two different classes. All boundary
thresholds for each continuous-valued attribute are calculated before starting the
evolutionary induction [12]. It significantly limits the number of possible splits
and focuses the search process. It should be however noted that locally applied
the optimal test search can find a split, which is not based on a precalculated
threshold. In all internal nodes except from the root only limited sub-sample of
learning vectors can be used for the optimal test search.

Initialization. An initial population is usually randomly created with emphasis
on diversity of candidate solutions, which is especially useful when large search
space has to be penetrated. It is also known that proper initialization can focus
and significantly speed up the search process.

In the presented system, initial individuals are created by applying the classi-
cal top-down algorithm to randomly chosen sub-samples of the original training
data (10% of data, but not more then 500 examples). Additionally, for any
initial tree one of five test search strategies in non-terminal nodes is applied.
Three strategies come from the very well-known decision tree systems i.e. CART
[3] and C4.5 [18] and they are based on the corresponding optimality criteria:
GiniIndex, InfoGain and GainRatio. The fourth strategy is dipolar [11], where
a test splitting randomly selected mixed dipole (a pair of feature vectors from
different classes) is found. The last strategy is a random combination of all the
aforementioned strategies. The recursive partitioning is finished when all train-
ing objects in a node belong to the same class or the number of objects in a
node is lower than the predefined value (default value: 5). Finally, the resulting
trees are post-pruned according to the fitness function.

Termination condition. The evolution terminates when the fitness of the
best individual in the population does not improve during the fixed number
of generations (default value is equal 1000). This can be treated as a sign of
algorithm convergence. Additionally, the maximum number of generations is
specified, which allows limiting the computation time in case of a very slow
convergence (default value: 10000).

534 M. Krȩtowski

2.2 Genetic Operators

There are two specialized genetic operators corresponding to the classical mu-
tation and cross-over. Application of both operators can result in changes of
the tree structure and tests in non-terminal nodes. Additionally the local search
component is built into the mutation-like operator.

Mutation operator. A mutation-like operator [14] is applied with a given
probability to a tree (default value is 0.8) and it guarantees that at least one
node of the selected individual is mutated. Firstly, the type of the node (leaf or
internal node) is randomly chosen with equal probability and if a mutation of
a node of this type is not possible, the other node type is chosen. A ranked list
of nodes of the selected type is created and a mechanism analogous to ranking
linear selection [16] is applied to decide which node will be affected.

While concerning internal nodes, the location (the level) of the node in the
tree and the quality of the subtree starting in the considered node are taken into
account. It is evident that a modification of the test in the root node affects the
whole tree and has a great impact, whereas a mutation of an internal node in
lower parts of the tree has only a local impact. In the proposed method, nodes on
higher levels of the tree are mutated with lower probability and among nodes on
the same level the number of misclassified objects by the subtree is used to sort
them. Additionally, perfectly classifying nodes with only leaves as descendants
and with a test composed of one feature are excluded from a ranking, because
their mutation cannot improve the fitness.

As for leaves, the number of objects from other classes than the decision
assigned to the leaf is used to put them in order, but homogenous leaves are not
included. As a result, leaves which are worse in terms of classification accuracy
are mutated with higher probability.

Modifications performed by a mutation operator depend on the node type (i.e.
if the considered node is a leaf node or an internal node). For a non-terminal
node a few possibilities exist:

– A completely new test can be found. With the user defined probability (de-
fault value: 0.05) a new test can be locally optimized or can be chosen to
split a randomly drawn mixed dipole from the learning subset associated
with the node. The local search for the optimal test can be based on the
following criteria: GiniIndex, InfoGain and GainRatio. It should be noted
that for nominal features only tests with the maximal number of outcomes
(no inner disjunction) are analyzed due to the computational complexity
constraints.

– The existing test can be altered by shifting the splitting threshold (continuous-
valued feature) or re-grouping feature values (nominal features). These modifi-
cations can be purely random or can be guided by dipolar principles of splitting
mixed dipoles and avoiding to split pure ones.

– A test can be replaced by another test or tests can be interchanged,
– One sub-tree can be replaced by another sub-tree from the same node.
– A node can be transformed (pruned) into a leaf.

A Memetic Algorithm for Global Induction of Decision Trees 535

Modifying a leaf makes sense only if it contains objects from different classes.
The leaf is transformed into an internal node and a new test is chosen in the
aforementioned way.

Cross-over operator. There are also several variants of cross-over operators.
Three of them start with selecting of cross-over positions in two affected indi-
viduals. One node is randomly chosen in each of two trees. In the most straight-
forward variant, the subtrees starting in the selected nodes are exchanged. This
corresponds to the classical cross-over from genetic programming. In the second
variant, which can be applied only when non-internal nodes are randomly chosen
and the numbers of outcomes are equal, only tests associated with the nodes are
exchanged. The third variant is also applicable only when non-internal nodes
are drawn and the numbers of descendants are equal. Branches which start from
the selected nodes are exchanged in random order. There is also a variant of
crossover inspired by the dipolar principles. In the internal node in the first tree
a cut mixed dipole is randomly chosen and for the cross-over the node with the
test splitting this dipole is selected in the second tree.

Additional operations. The application of any genetic operator can result in a
necessity for relocation of the input vectors between parts of the tree rooted in the
modified node. Additionally the local maximization of the fitness is performed
by pruning lower parts of the sub-tree on the condition that it improves the
value of the fitness.

It was observed by Bennett et al. [2] that in oblique trees enlarging the margin,
it is profitable in terms of classification accuracy. In the presented system, a
simple mechanism called centering based on this observation is introduced and
it is applied to the best decision tree found. In case of an inequality test, the
threshold can also be shifted to half-distance between corresponding feature
values. It should be noted that such a post-processing does not change the fitness
corresponding to the final tree. The centering cannot be applied to tests based on
nominal features. For them, another kind of test improvement is used. If there is
an internal node with nominal test, and there are descendant leaves which have
the same decision, then such leaves are merged and inner disjunction is used in
the splitting node.

2.3 Selection

As a selection mechanism the ranking linear selection [16] is applied. Addition-
ally, the chromosome with the highest value of the fitness function in the iteration
is copied to the next population (elitist strategy).

2.4 Fitness Function

A fitness function drives the evolutionary search process and is the most im-
portant and sensitive component of the algorithm. The goal of any classification
system is the correct prediction of class labels of new objects, however such a

536 M. Krȩtowski

target function cannot be defined directly. Instead, the accuracy on the training
data is often used. However, it is well-known that their direct optimization leads
to an over-fitting problem. In a typical top-down induction of decision trees, the
over-specialization problem is mitigated by defining a stopping condition and by
applying a post-pruning [6].

In the presented approach a complexity term is introduced into the fitness
function preventing the over-specialization. The fitness function, which is maxi-
mized, has the following form:

Fitness(T) = QReclass(T) − α · (S(T) − 1), (1)

where QReclass(T) is the re-classification quality, S(T) is the size of the tree T
expressed as the number of nodes and α is a relative importance of the complexity
term (default value is 0.001) and a user supplied parameter. Subtracting 1.0
eliminates the penalty when the tree is composed of only one leaf (in majority
voting). It is worth to mention that the equation (1) is a form of regularization
with S(T) − 1 playing the role of a stabilizer and α the role of a regularization
parameter.

It is rather obvious that there is no optimal value of α for all possible datasets.
When the concrete problem is analyzed, tuning this parameter may lead to
the improvement of the results (in terms of classification accuracy or classifier
complexity).

3 Experimental Results

The proposed memetic approach (denoted as GDT-MA) to learning decision
trees is assessed on both artificial and real life datasets and is compared to the
well-known C4.5 system. It is also compared to the pure evolutionary versions of
the global inducer - GDT-AP. All prepared artificial datasets comprise training
and testing parts. Examples of artificial datasets are presented in Fig. 1. In case
of data from a UCI repository [1] for which testing data are not provided, a 10-
fold stratified cross-validation was employed. Each experiment on evolutionary
algorithms was performed 10 times and the average result of such an evaluation
was presented. All systems were tested with a default set of parameters.

3.1 Artificial Datasets

Results of experiments with artificial datasets are gathered in the Table 1. For
all domains GDT-MA and GDT-AP performed very well, both in terms of classi-
fication accuracy and tree complexity. Compared to the C4.5 system both global
inducers were able to find a proper decision trees when top-down system failed
and returned a default class.

3.2 Real-Life Datasets

Results obtained for the real-life datasets are gathered in Table 2. It can be
observed that in terms of the classification accuracy GDT-MA performs com-
parable to C4.5 (for certain datasets it is slightly better for other is slightly

A Memetic Algorithm for Global Induction of Decision Trees 537

chess2x2 chess3x3

house normchess

Fig. 1. Examples of artificial datasets

Table 1. Results on artificial data

C4.5 GDT-MA GDT-AP
Dataset size quality size quality size quality
chess2x2 1 50 4 99.9 4 99.8
chess2x2x2 1 50 8 99.8 8 99.7
chess3x3 9 99.7 9 99.8 9 99.7
chess3x3x3 54 99.3 27.2 99.0 27.1 98.9
house 21 97.4 12.1 96.4 13.3 96.6
normchess 1 50 4.1 95.5 4.2 95.5
normwave 15 94 8.8 92.6 9.1 93.5

worse than its competitor). However, it is easily noticeable that in terms of the
simplicity of the solution, the proposed memetic algorithm is significantly better

538 M. Krȩtowski

Table 2. Results on UCI datasets

C4.5 GDT-MA GDT-AP
Dataset size quality size quality size quality
balance-scale 57 77.5 20.8 79.8 32.8 78.2
bcw 22.8 94.7 5.7 95.6 6.6 95.8
bupa 44.6 64.7 33.6 63.7 69.3 62.8
cars 31 97.7 3 97.9 4 98.7
cmc 136.8 52.2 19.2 55.7 13.1 53.8
german 77 73.3 18.4 74.2 16.5 73.4
glass 39 62.5 35.3 66.2 40.4 63.6
heart 22 77.1 29 76.5 44.9 74.2
page-blocks 82.8 97 7.4 96.5 7.5 96.4
pima 40.6 74.6 14.8 74.2 14.3 73.8
sat 435 85.5 18.9 83.8 19.2 83
vehicle 138.6 72.7 43.2 71.1 45.1 70.3
vote 5 97 10.9 96.2 13.5 95.6
waveform 107 73.5 30.7 71.9 36.2 72.3
wine 9 85 5.1 88.8 5.2 86.3

95

96

97

98

99

100

100000 200000 300000 400000 500000
0

5

10

15

20

25

30

35

40

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 o

n
te

st
 d

at
a

In
du

ct
io

n
tim

e
[s

] /
 1

03

Dataset size

Accuracy - chess2x2
Time - chess2x2

Accuracy - chess3x3
Time - chess3x3

Fig. 2. Performance of the memetic algorithm on large datasets

that C4.5. It is also worth to mention that GDT-MA was more accurate than
its pure evolutionary rival for 12 out of 15 analyzed real-life datasets.

A Memetic Algorithm for Global Induction of Decision Trees 539

3.3 Evaluation of Algorithm Performance on Large Datasets

In order to verify that the proposed method can be applied to large datasets, a
performance test is conducted. The experiment was performed on two variants
of the chess dataset: ches2x2 and chess3x3, with increasing number of generated
observations (starting from 100000 learning vectors up to 500000). In Fig. 2
obtained results in terms of the classification accuracy and the induction time
are presented.

The promising outcome of this experiment is that it shows that the GDT−MA
system can deal with relatively large datasets (500000 observations) in acceptable
time - 7 hours as measured on a typical machine (Xeon 3.2GHz, 2GB RAM).
It should be noticed that for all datasets, optimal trees were found, both in
terms of the classification accuracy and the tree size. It can be also observed
that induction times scale almost linearly with the dataset size.

4 Conclusions

In the paper, for the first time a specialized memetic algorithm is developed
for global induction of decision trees. The local search for optimal tests in non-
terminal nodes based on the classical optimality criteria is embedded into the
evolutionary search process. The necessary modification encompasses the ini-
tialization and the mutation operator. Even preliminary experimental validation
shows that such a hybridization is profitable and improves the efficiency of the
evolutionary induction.

The presented approach is still under development. First of all, the influence of
the local search operator on the performance of the global inducer must be stud-
ied in more details. Furthermore, additional optimality criteria (e.g. TwoingRule
from the CART system) are planned to be implemented.

Acknowledgments

This work was supported by the grant W/WI/5/05 from Bia�lystok Technical
University.

References

1. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases
(1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

2. Bennett, K., Cristianini, N., Shave-Taylor, J., Wu, D.: Enlarging the margins in
perceptron decision trees. Machine Learning 41, 295–313 (2000)

3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth Int. Group (1984)

4. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation 7(1), 54–68 (2003)

http://www.ics.uci.edu/~mlearn/MLRepository.html

540 M. Krȩtowski

5. Chai, B., Huang, T., Zhuang, X., Zhao, Y., Sklansky, J.: Piecewise-linear classifiers
using binary tree structure and genetic algorithm. Pattern Recognition 29(11),
1905–1917 (1996)

6. Esposito, F., Malerba, D., Semeraro, G.: A comparative analysis of methods for
pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 19(5), 476–491 (1997)

7. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Proc. of IJCAI 1993, pp. 1022–1027. Morgan
Kaufmann, San Francisco (1993)

8. Fu, Z., Golden, B., Lele, S., Raghavan, S., Wasil, E.: A genetic algorithm-based
approach for building accurate decision trees. INFORMS Journal on Comput-
ing 15(1), 3–22 (2003)

9. Koza, J.: Concept formation and decision tree induction using genetic programming
paradigm. In: Schwefel, H.-P., Männer, R. (eds.) PPSN I. LNCS, vol. 496, pp. 124–
128. Springer, Heidelberg (1991)

10. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: model,
taxonomy and design issues. IEEE Transactions on Evolutionary Computa-
tion 9(5), 474–488 (2005)

11. Krȩtowski, M.: An evolutionary algorithm for oblique decision tree induction. In:
Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004.
LNCS (LNAI), vol. 3070, pp. 432–437. Springer, Heidelberg (2004)

12. Krȩtowski, M., Grześ, M.: Global learning of decision trees by an evolutionary
algorithm. In: Information Processing and Security Systems, pp. 401–410. Springer,
Heidelberg (2005)

13. Krȩtowski, M., Grześ, M.: Evolutionary learning of linear trees with embedded
feature selection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M.
(eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 400–409. Springer, Heidelberg
(2006)

14. Krȩtowski, M., Grześ, M.: Evolutionary induction of mixed decision trees. Inter-
national Journal of Data Warehousing and Mining 3(4), 68–82 (2007)

15. Llora, X., Garrell, J.: Evolution of decision trees. In: Proc. of CCAI 2001, pp.
115–122. ACIA Press (2001)

16. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, Heidelberg (1996)

17. Papagelis, A., Kalles, D.: Breeding decision trees using evolutionary techniques.
In: Proc. of ICML 2001, pp. 393–400. Morgan Kaufmann, San Francisco (2001)

18. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

	A Memetic Algorithm for Global Induction ofDecision Trees
	Introduction
	Memetic Algorithm for Global Induction
	Representation, Initialization and Termination Condition
	Genetic Operators
	Selection
	Fitness Function

	Experimental Results
	Artificial Datasets
	Real-Life Datasets
	Evaluation of Algorithm Performance on Large Datasets

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

