Strony pracowników Wydziału Informatyki Politechniki Białostockiej

Monophonic music generation with a given emotion

J. Grekow and T. Dimitrova-Grekow, Monophonic Music Generation With a Given Emotion Using Conditional Variational Autoencoder, IEEE Access, vol. 9, pp. 129088-129101, (2021)

ABSTRACT. The rapid increase in the importance of human-machine interaction and the accelerating pace of life pose various challenges for the creators of digital environments. Continuous improvement of human-machine interaction requires precise modeling of the physical and emotional state of people. By implementing emotional intelligence in machines, robots are expected not only to recognize and track emotions when interacting with humans, but also to respond and behave appropriately. The machine should match its reaction to the mood of the user as precisely as possible. Music generation with a given emotion can be a good start to fulfilling such a requirement. This article presents the process of building a system generating music content of a specified emotion. As the emotion labels, four basic emotions: happy, angry, sad, relaxed, corresponding to the four quarters of Russell’s model, were used. Conditional variational autoencoder using a recurrent neural network for sequence processing was used as a generative model. The obtained results in the form of the generated music examples with a specific emotion are convincing in their structure and sound. The generated examples were evaluated with two methods, in the first using metrics for comparison with the training set and in the second using expert annotation.

Generated monophonic music examples labeled with four emotions

Example Emotion Quarter in Russell’s model / Arousal-Valence MIDI
Example_1 e1 Q1 / high-high e1_new_generated_0    
Example_2 e1 Q1 / high-high e1_new_generated_2
Example_3 e1 Q1 / high-high e1_new_generated_4
Example_4 e2 Q2 / high-low e2_new_generated_0 
Example_5 e2 Q2 / high-low e2_new_generated_1
Example_6 e2 Q2 / high-low e2_new_generated_11
Example_7 e3 Q3 / low-low e3_new_generated_1
Example_8 e3 Q3 / low-low e3_new_generated_8
Example_9 e3 Q3 / low-low e3_new_generated_11
Example_10 e4 Q4 / low-high e4_new_generated_3
Example_11 e4 Q4 / low-high e4_new_generated_4 
Example_12 e4 Q4 / low-high e4_new_generated_8
× W ramach naszego serwisu www stosujemy pliki cookies zapisywane na urządzeniu użytkownika w celu dostosowania zachowania serwisu do indywidualnych preferencji użytkownika oraz w celach statystycznych.
Użytkownik ma możliwość samodzielnej zmiany ustawień dotyczących cookies w swojej przeglądarce internetowej.
Więcej informacji można znaleźć w Polityce Prywatności
Korzystając ze strony wyrażają Państwo zgodę na używanie plików cookies, zgodnie z ustawieniami przeglądarki.
Akceptuję Politykę prywatności i wykorzystania plików cookies w serwisie.