Strony pracowników Wydziału Informatyki Politechniki Białostockiej

Generating polyphonic symbolic emotional music in the style of J.S.Bach

Grekow J. – Generating polyphonic symbolic emotional music in the style of Bach using convolutional CVAE

ABSTRACT. In times of increasing human-machine interaction, the implementation of emotional intelligence in machines should not only recognize and track emotions during human interaction, but also respond with appropriate emotional content. Machines should be able to react and respond to human emotions. Music generation with a specific emotion is part of this task. This article presents the process of building a system generating polyphonic music content of a specified emotion using a conditional variational autoencoder and convolutional layers. The process of preparing a database of training examples with compositions by Johann Sebastian Bach, selecting and conducting transformations of musical examples was described. Annotation with emotion labels was done by music experts with a university music education. The four emotion labels – happy, angry, sad, relaxed – corresponding to the four quadrants of Russell’s model were used. The process of coding symbolic music examples into a time-pitch matrix representation, but also the structure of the built variational autoencoder, was described. Experiments on the implementation of different convolutional layers intended for visual analysis of the representation of music examples were presented. The generated emotional music files were evaluated using metrics and expert opinions.

Generated music examples labeled with four emotions using – CVAE-Mus2 model

Example Emotion Quarter in Russell’s model / Arousal-Valence MIDI
Example_1 e1 Q1 / high-high e1_new_generated_0 
Example_2 e1 Q1 / high-high e1_new_generated_15
Example_3 e1 Q1 / high-high e1_new_generated_9  
Example_4 e2 Q2 / high-low e2_new_generated_3
Example_5 e2 Q2 / high-low e2_new_generated_4
Example_6 e2 Q2 / high-low e2_new_generated_8 
Example_7 e3 Q3 / low-low e3_new_generated_3   
Example_8 e3 Q3 / low-low e3_new_generated_9 
Example_9 e3 Q3 / low-low e3_new_generated_18
Example_10 e4 Q4 / low-high e4_new_generated_5  
Example_11 e4 Q4 / low-high e4_new_generated_17 
Example_12 e4 Q4 / low-high e4_new_generated_9 
× W ramach naszego serwisu www stosujemy pliki cookies zapisywane na urządzeniu użytkownika w celu dostosowania zachowania serwisu do indywidualnych preferencji użytkownika oraz w celach statystycznych.
Użytkownik ma możliwość samodzielnej zmiany ustawień dotyczących cookies w swojej przeglądarce internetowej.
Więcej informacji można znaleźć w Polityce Prywatności
Korzystając ze strony wyrażają Państwo zgodę na używanie plików cookies, zgodnie z ustawieniami przeglądarki.
Akceptuję Politykę prywatności i wykorzystania plików cookies w serwisie.